首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Lithological and geochemical features of platformal carbonates record the signatures of the global climates and the regional environmental settings and also reconstruct the diagenetic history and porosity evolution, which are essential to evaluate the potential of hydrocarbon reservoirs. This study investigates the platformal carbonates of the Oligo‐Miocene Krunji Formation of North East Java Basin, which are potentially significant hydrocarbon reservoirs. The carbonate sequence in a 283 m thick section at Kranji in East Java is subdivided into three lithological units: limestone unit 1, dolostone unit 2, and limestone unit 3, in ascending order. The strontium‐isotope ratios of well‐preserved calcite samples indicate the depositional period from Chattian (late Oligocene) to Burdigalian (early Miocene), which is consistent with ages of the foraminifer assemblages. Unit 1 consists of low‐porosity limestone, in which two horizons of subaerial exposure are recognized by the occurrence of red‐colored matrix and lower δ13C values. Unit 2 consists of dolomitic rock and exhibits coarse‐grained calcitic grains and cross‐stratified structure. Considering that this unit has been subject to dolomitization, the sediment of unit 2 was initially permeable and was likely deposited in a shoal setting. The overlying unit 3 of Aquitanian–Burdigalian age is characterized by a highly granular texture. High porosity and uniformly low δ13C and δ18O values indicate that Unit 3 was subjected to more intense meteoric diagenesis than the Chattian unit 1. This was likely a consequence of the Antarctic ice‐sheet expansion during the Oligocene/Miocene transition, which amplified sea level change. The unit 2 dolomite has high δ13C and δ18O values and a high 87Sr/86Sr ratio which resulted from the reflux of seawater into permeable the sediment body in middle‐late Miocene (Burdigalian Tortonian) following the deposition of unit 3. The porosity and permeability of the Kujung Formation were initially controlled by sedimentological processes, but largely modified by later diagenetic processes.  相似文献   

2.
The discovery of Puguang Gas Field provides the exploration of China deep marine carbonate rock with important references.In Puguang Gas Field,the dolomite reservoirs discovered in the deep are the best in the present of China,which present big thickness and wide-range distribution,and develop abundant secondary porosity.The researches show that Puguang Gas Field bears the characteristics of early gas-filling time,deep burial,high matured organic matter and long-term interaction of hydrocarbon(oil and gas)-water-rock(carbonate reservoir).The developments of secondary pores in this area are affected by multiple diagenesis and their formation mechanisms are complicated.Through the research on depositional environment,sedimentary facies and reservoir porosity characters of Changxing and Feixianguan Formations,it is thought that high-quality dolomite reservoirs of Puguang Gas Field form on the favorable sedimentary facies belts,which are the integrate result affected by several factors including superficial corrosion,burial corrosion,overpressure and tectonic movement,among which burial corrosion of TSR to reservoir and overpressure formed by thermal evolution of organic matter have great effect on the formation of secondary porosity of Changxing and Feixianguan Formations.  相似文献   

3.
裂缝和孔洞型储层孔隙模型的理论进展   总被引:14,自引:6,他引:8       下载免费PDF全文
对有洞的和裂缝型储层的分析已经成为一个热点,因而孔隙模型的研究近年得到了很好的发展.目前已经用双孔隙和三孔隙模型研究这类储层的特性并寻找估计孔隙指数的方法,以便计算含水饱和度.用串联或并联电阻网络模拟储层表明:双孔隙模型适用于基质与非连通孔洞储层以及裂缝和(或)连通孔洞的储层.三孔隙模型更适用于由基质、裂缝和不连通孔洞组成储层的岩石物理评价,对于当前碳酸盐岩和火成岩以及变质岩储层评价具有明显的指导意义.  相似文献   

4.
This study is undertaken to understand how calcite precipitation and dissolution contributes to depth-related changes in porosity and permeability of gas-bearing sandstone reservoirs in the Kela 2 gas field of the Tarim Basin, Northwestern China. Sandstone samples and pore water samples are col-lected from well KL201 in the Tarim Basin. Vertical profiles of porosity, permeability, pore water chem-istry, and the relative volume abundance of calcite/dolomite are constructed from 3600 to 4000 m below the ground surface within major oil and gas reservoir rocks. Porosity and permeability values are in-versely correlated with the calcite abundance, indicating that calcite dissolution and precipitation may be controlling porosity and permeability of the reservoir rocks. Pore water chemistry exhibits a sys-tematic variation from the Na2SO4 type at the shallow depth (3600-3630 m), to the NaHCO3 type at the intermediate depth (3630―3695 m),and to the CaCl2 type at the greater depth (3728―3938 m). The geochemical factors that control the calcite solubility include pH, temperature, pressure, Ca2 concen-tration, the total inorganic carbon concentration (ΣCO2), and the type of pore water. Thermodynamic phase equilibrium and mass conservation laws are applied to calculate the calcite saturation state as a function of a few key parameters. The model calculation illustrates that the calcite solubility is strongly dependent on the chemical composition of pore water, mainly the concentration difference between the total dissolved inorganic carbon and dissolved calcium concentration (i.e., [ΣCO2] -[Ca2 ]). In the Na2SO4 water at the shallow depth, this index is close to 0, pore water is near the calcite solubility. Calcite does not dissolve or precipitate in significant quantities. In the NaHCO3 water at the intermedi-ate depth, this index is greater than 0, and pore water is supersaturated with respect to calcite. Massive calcite precipitation was observed at this depth interval and this intensive cementation is responsible for decreased porosity and permeability. In the CaCl2 water at the greater depth, pore water is un-der-saturated with respect to calcite, resulting in dissolution of calcite cements, as consistent with microscopic dissolution features of the samples from this depth interval. Calcite dissolution results in formation of high secondary porosity and permeability, and is responsible for the superior quality of the reservoir rocks at this depth interval. These results illustrate the importance of pore water chemis-try in controlling carbonate precipitation/dissolution, which in turn controls porosity and permeability of oil and gas reservoir rocks in major sedimentary basins.  相似文献   

5.
利用成像测井自动判别礁滩储层沉积相和岩性   总被引:4,自引:1,他引:3  
礁滩储层是我国海相碳酸盐岩油气勘探的重要目标,也是我国油气产能的重要接替领域之一。由于礁滩储层储集空间类型多样,非均质性极强,依靠常规测井判别其沉积相和岩性非常困难。成像测井能够清晰地反映礁滩储层的结构组分和沉积构造,为沉积相和岩性的判别提供了可靠的依据。在对大量礁滩储层的成像和岩心对比观察的基础上,我们提出了9种典型的成像解释模式,建立了利用成像解释模式自动判别礁滩储层沉积相和岩性的方法并研制了相应的处理软件。该方法在塔中和川东北地区礁滩储层的实际应用中取得了良好的效果。  相似文献   

6.
松辽盆地营城组火山机构相带地震-地质解译   总被引:7,自引:0,他引:7       下载免费PDF全文
将火山机构按距火山口1远近划分为火山口-近火山口、近源和远源三个相带.营城组火山机构相带有6种地震相类型,分别是丘状、透镜状、穹状、池塘状、楔状和席状地震相.丘状、透镜状和穹状均见于火山机构中心相带,但所代表的优势岩相不同,分别与爆发相、喷溢相和侵出相对应.池塘状和楔状均为近源相带,但前者以喷溢相辫状熔岩流为主,而后者...  相似文献   

7.
The Quaternary biogenetic gas reservoirs in the east of Qaidam Basin have many characteristics such as late forming time,shallow burial depth,low diagenetic grade,high porosity and high permeability and so on.It cannot be considered as caprock according to the traditional evaluation criterion.However, the large scale and high efficient biogenetic gas reservoirs of the Qaidam Basin are really formed under these kinds of caprocks,so it does have some specialty in its sealing mechanism.Aiming at the special sealing mechanism,some simulating experiments have been done.The research results show that the sealing ability of biogenetic gas caprock is related with water saturation,the caprock that is saturated with salt water can effectively block seepage and diffusion.Furthermore,the multiple reservoir-caprock groups have accumulated sealing effect,causing the formation of big gas fields.The evaluation method with traditional caprock parameters cannot be adopted in evaluating the study area.  相似文献   

8.
With a detailed study on petrology, mineralogy and geochemistry of some important Ordovician carbonate well core samples in Tazhong uplift of Tarim Basin, the distinguishing symbols of hydrothermal karstification are first put forward as the phenomena of rock hot depigmentation, hot cataclasm and the appearance of typical hydrothermal minerals such as fluorite, barite, pyrite, quartz and sphalerite. The main homogenization temperatures of primary fluid inclusions in fluorite are from 260 to 310°C, indicating the temperature of hydrothermal fluid. The fluid affected the dissolved rocks and showed typical geochemistry features with low contents of Na and Mg, and high contents of Fe, Mn and Si. The ratio of 3He/4He is 0.02R a, indicating the fluid from the typical continental crust. The hydrothermal fluid karstification pattern may be described as follows: the hot fluid is from the Permian magma, containing dissolving ingredients of CO2 and H2S, and shifts along fault, ruptures and unconformity, and dissolves the surrounding carbonates while it flows. The mechanism of hydrothermal karstification is that the mixture of two or more fluids, which have different ion intensity and pH values, becomes a new unsaturated fluid to carbonates. The hydrothermal karstification is an important process to form hypo-dissolved pinholes in Ordovician carbonates of Tazhong uplift of Tarim Basin, and the forming of hydrothermal minerals also has favorable influence on carbonate reservoirs.  相似文献   

9.

With a detailed study on petrology, mineralogy and geochemistry of some important Ordovician carbonate well core samples in Tazhong uplift of Tarim Basin, the distinguishing symbols of hydrothermal karstification are first put forward as the phenomena of rock hot depigmentation, hot cataclasm and the appearance of typical hydrothermal minerals such as fluorite, barite, pyrite, quartz and sphalerite. The main homogenization temperatures of primary fluid inclusions in fluorite are from 260 to 310°C, indicating the temperature of hydrothermal fluid. The fluid affected the dissolved rocks and showed typical geochemistry features with low contents of Na and Mg, and high contents of Fe, Mn and Si. The ratio of 3He/4He is 0.02R a, indicating the fluid from the typical continental crust. The hydrothermal fluid karstification pattern may be described as follows: the hot fluid is from the Permian magma, containing dissolving ingredients of CO2 and H2S, and shifts along fault, ruptures and unconformity, and dissolves the surrounding carbonates while it flows. The mechanism of hydrothermal karstification is that the mixture of two or more fluids, which have different ion intensity and pH values, becomes a new unsaturated fluid to carbonates. The hydrothermal karstification is an important process to form hypo-dissolved pinholes in Ordovician carbonates of Tazhong uplift of Tarim Basin, and the forming of hydrothermal minerals also has favorable influence on carbonate reservoirs.

  相似文献   

10.
The reservoirs of the Upper Triassic Xujiahe Formation in Sichuan Basin have the characteristics of low compositional maturity, low contents of cements and medium textural maturity. The general physical properties of the reservoirs are poor, with low porosity and low permeability, and there are only a few reservoirs with medium porosity and low permeability in local areas. Based on the diagenetic mineral association, a diagenetic sequence of cements is established: early calcites (or micrite siderites) →first quartz overgrowth→chlorite coatings→dissolution of feldspars and debris→chlorite linings→ second quartz overgrowth (quartz widen or filled in remain intergranular pores and solution pores)→dissolution→third quartz overgrowth (quartz filled in intergranular and intragranular solution pores)→intergrowth (ferro) calcites→dolomites→ferro (calcites) dolomites→later dissolution→veins of quartz and calcites formation. Mechanical compaction is the main factor in making the reservoirs tight in the basin, followed by the second and third quartz overgrowth. In a long-term closed system, only feld-spars and some lithic fragments are dissolved by diagenetic fluids, while intergranular cements such as quartz and calcit are not dissolved and thus have little influence on the porosity of the Xujiahe Formation. This is the third factor that may have kept the sandstones of Xujiahe Formation tight finally. The hydrocarbon was extensively generated from organic materials after the second quartz overgrowth, and selectively entered favorable reservoirs to form tight sandstone gas reservoirs.  相似文献   

11.
In situ REE concentrations of various dolomites from Tarim Basin were obtained by LA-ICP-MS analysis, and the data were normalized to standard seawater (Seawater Normalized=SWN). Most of the samples have a ΣREE range of less than 20 ppm. All samples show similar REESWN distributions with heavy REE depletion, and positive Ce anomaly, which indicates that they have the same dolomitization fluids (seawater). According to the origin and diagenetic process of dolomite, two types of dolomite are determined and described as follows: 1) syndepositional dolomite, with the highest REE concentrations (more than 20 ppm), the cores of which are more enriched in REE compared with their cortexes, indicating that they underwent the dolomitization of calcareous sediments by hypersaline and subsequent diagenesis decreased the REE content of the cortex because of the low REE concentration of the diagenetic fluids; 2) diagenetic dolomite, which can be subdivided into four groups. (1) burial dolomite which has higher REE concentrations than limestone, but lower than syndepositional dolomite. This shows that pore fluids with high salinity dolomitized the pre-existing limestone; (2) void filling dolomite which has the similar REE patterns with the matrix dolomite. In addition, the Eu anomaly is not obvious, suggesting that the dolomitization fluids originated from the diagenetic fluids; (3) recrystallized dolomite, whose REE concentration was obviously decreased, indicating that the REE concentration was decreased during the recrystallization processes; and (4) hydrothermal altered void-filling dolomite, which has the lowest REE concentration, but obvious positive Eu anomaly, reflecting its hydrothermal activity related origin. Thus, the diverse REE signatures, which were recorded in different dolomites, retain the information of their formation conditions and subsequent diagenetic processes. In situ REE analysis of dolomite is an effective probe into the origin and diagenetic process of dolomite. Supported by National Basic Research Program of China (Grant No. 2005CB422103)  相似文献   

12.
The reservoir quality of Jurassic and Triassic fluvial and lacustrine-deltaic sandstones of the Yanchang Oil Field in the Ordos Basin is strongly influenced by the burial history and facies-related diagenetic events. The fluvial sandstones have a higher average porosity (14.8%) and a higher permeability (12.7×10?3 ?m2) than those of the deltaic sandstones (9.8% and 5.8 ×10?3 ?m2, respectively). The burial compaction, which resulted in 15% and 20% porosity loss for Jurassic and Triassic sandstones, respectively, is the main factor causing the loss of porosity both for the Jurassic and Triassic sandstones. Among the cements, carbonate is the main one that reduced the reservoir quality of the sandstones. The organic acidic fluid derived from organic matter in the source rocks, the inorganic fluid from rock-water reaction during the late diagenesis, and meteoric waters during the epidiagenesis resulted in the formation of dissolution porosity, which is the main reason for the enhancement of reservoir-quality.  相似文献   

13.
Stiffness variations in carbonates may be described as resulting from different concentrations of flat compliant pores or cracks, which can have a significant effect on the effective stiffness and acoustic properties (e.g., velocities and attenuations) of dry as well as saturated carbonates, although they carry extremely little porosity. As shown in this paper, the effects of dual porosity and wave-induced fluid flow or pore pressure communication may also play a significant role. On the basis of a previously published T-matrix approach to model the effective viscoelastic properties of cracked porous media, we illustrate the (frequency-dependent) effects of wave-induced fluid flow (mainly squirt flow) or pore pressure communication for a model structure consisting of a mixture of fluid-saturated porous grains and fluid-saturated cavities (vugs, etc.) that are embedded in a solid matrix associated with carbonates. We assume that the pores within the porous grains are decoupled from the pores in the solid matrix (and possibly saturated with different fluids) but that each pore system at the micro and/or mesoscale may or may not be connected. For each of four different connectivity models, we present numerical results for four different cases of microstructure (that emphasize the importance of cracks and flat compliant pores). Our numerical results indicate that the velocity and attenuation spectra of carbonates vary significantly, even when the crack density and all other volume concentrations are constant.  相似文献   

14.
The Tarim Basin is a typical superimposed basin in which there have occurred multiphase adjustment and destruction of the reservoirs. The widely distributed asphaltic sandstones of the Silurian are the very product after destruction of the reservoirs. Studies show that the Silurian asphaltic sandstones distributed in both the middle and western parts on the basin are controlled chiefly by the Caledonian oil source area and by the Tazhong, Tabei and Bachu uplifts, whereas the distribution of the asphaltic sandstones on local structural belts is controlled by the reservoir's sedimentary system. Vertically, most of the asphaltic sandstones are under the regional caprock of red mudstones and the upper sandstone section of compact lithology. Due to the difference of hydrocarbon destruction in the early stage and the influence of hydrocarbon recharge in the late stage, the asphaltic sandstones and oil-bearing sandstones in the Tazhong area can be vertically divided into the upper and lower sections and they have an interactive distribution relationship as well. Asphaltic sandstones exist not only in intergranular pores but also inside the grains of sand and between the crevices, proving the destruction of early reservoirs due to uplifting. The existence of asphaltic sandstones over a large area reveals that the large-scale migration and accumulation and the subsequent destruction of hydrocarbons in the Craton area. The destruction caused a loss of the reserve resources of the Palaeozoic amounting to nearly 13.3 billion tons. Asphaltic sandstones formed after the destruction of oil and gas may serve as an effective caprock which is beneficial to accumulation of hydrocarbons and formation of the pool sealed by asphaltic sandstones in the later stage. The destruction of the early Silurian hydrocarbons depends on the stratigraphic burial depth. The deep part under the northern slope of Tazhong is an area favorable to search of undestroyed Silurian oil reservoirs.  相似文献   

15.
The reservoir quality of Jurassic and Triassic fluvial and lacustrine-deltaic sandstones of the Yanchang Oil Field in the Ordos Basin is strongly influenced by the burial history and facies-related diagenetic events. The fluvial sandstones have a higher average porosity (14.8%) and a higher permeability (12.7 × 10−3 μm2) than those of the deltaic sandstones (9.8% and 5.8 ×10−3) μm2, respectively). The burial compaction, which resulted in 15% and 20% porosity loss for Jurassic and Triassic sandstones, respectively, is the main factor causing the loss of porosity both for the Jurassic and Triassic sandstones. Among the cements, carbonate is the main one that reduced the reservoir quality of the sandstones. The organic acidic fluid derived from organic matter in the source rocks, the inorganic fluid from rock-water reaction during the late diagenesis, and meteoric waters during the epidiagenesis resulted in the formation of dissolution porosity, which is the main reason for the enhancement of reservoir-quality.  相似文献   

16.
《国际泥沙研究》2023,38(5):754-768
The current study utilizes a range of diagenetic fingerprints to differentiate between sandstone facies deposited in the Nile Delta before and during the Messinian salinity crisis (MSC), which is normally a challenging task considering the complex bio- and lithostratigraphic subdivisions of Messinian rock units. Subaerial exposure of the pre-MSC (Qawasim deltaic sandstone), during drawdown of the Mediterranean Sea at the time of the MSC, triggered pervasive dissolution of unstable rock fragments, kaolinization of feldspar, and meteoric dolomitization of carbonate. This was followed by mesogenetic calcite cementation and kaolinite transformation into dickite in deeply buried Qawasim sandstone. Comparatively, the Abu Madi estuarine facies, deposited during transgression after drawdown related to the MSC, is characterized by eogenetic iron (Fe)-calcite, glauconite, and pyrite (averages of 14.5%, 6%, and 2%, respectively). This facies transition is marked by abundance of mature glauconite (with potassium oxide (K2O) at about 8%) whose content abates upward from the transgression surface. Moreover, the compositional variability of the Abu Madi sandstone gave rise to multiple diagenetic trajectories that resulted in chlorite formation presumably following smectite and kaolinite. Listed diagenetic variations in the studied Messinian sandstone resulted from a complex interplay between rocks’ compositional, depositional, and burial attributes, ultimately serving as a basis for high-resolution stratigraphic correlation in continental and marginal marine settings with poor biostratigraphic controls.  相似文献   

17.
The Junggar Basin is one of the largest and most petroliferous superimposed petroleum basins in China. The central depression area has become the frontier field for petroleum exploration. The characteristics of potential source rocks and reservoir sandstones, and the pressure regime in the central Junggar Basin were studied. Permian shales are dominated by hydrogen-rich, oil-prone algal organic matter, and Jurassic mudstones are dominated by hydrogen-poor, higher-plant derived organic matter. These source rocks are widespread and have been mature for hydrocarbon generation, suggesting good to excellent exploration potential, both for crude oils and for natural gases. The deeply buried Jurassic sandstones usually have low porosity and permeability. However, sandstones beneath the Jurassic/Cretaceous unconformity display relatively high porosity and permeability, suggesting that meteoric water leaching had improved the quality of the sandstones. Overpressure developed over much of the central Junggar Basin. The overpressured rocks are characterized by slightly increased interval transit time, low sandstone permeability, increased organic matter maturity, and high relative hydrocarbon-gas contents. Mudstones in the overpressured system have quite the same clay mineral compositions as mudstones in the lower part of the normally pressured system. Overpressure generation in the central Junggar Basin is best to be explained as the result of hydrocarbon generation and fluid retention in low-permeability rocks. Petroleum generated from Permian and Jurassic source rocks could migrate laterally through preferential petroleum migration pathways and accumulated in structural traps or lithological traps in the overpressured system, or migrate vertically through faults/hydraulic fractures into the overlying, normally pressured system and accumulate in structural or lithological traps. Therefore, commercial petroleum reservoirs could be potentially found in both the overpressured system, and in the normally pressured system.  相似文献   

18.
王斌  陈祥忠  陈娟  姚军  谭开俊 《地球物理学报》1954,63(12):4528-4539
近年来围绕四川盆地侏罗系陆相致密砂岩已取得了勘探突破,其中川中—川西过渡带具备形成大气田的地质条件,但对该套致密砂岩弹性性质变化规律的研究还较少,致使利用地震方法进行"甜点"储层预测的精度不高.本文利用四川盆地侏罗系沙溪庙组32块样品开展了系统的声学测量,在此基础上,分析了样品弹性性质的变化规律.结合X射线衍射矿物组分分析、扫描电镜、铸体薄片和岩石薄片特征确定了不同成岩作用对岩石储集性能的影响.研究结果表明,研究区致密砂岩储层表现为孔隙型储层,受差异性成岩作用影响,黏土含量、钙质含量和硅质含量的差异以及它们分布特征之间的差异对岩石弹性性质造成了很大的影响.在研究区对岩石物性及弹性性质有明显影响的成岩作用包括早期的钙质胶结作用、压实作用和溶蚀作用,因此针对不同时期的成岩作用对岩石弹性及物性的影响,利用接触-胶结模型、微分等效模量模型和临界孔隙度校正的Hashin-Shtrikman上限模型建立了研究区致密砂岩的岩石物理模型.  相似文献   

19.
Zou  Caineng  Yang  Zhi  Sun  Shasha  Zhao  Qun  Bai  Wenhua  Liu  Honglin  Pan  Songqi  Wu  Songtao  Yuan  Yilin 《中国科学:地球科学(英文版)》2020,63(7):934-953
The Sichuan Basin is rich in shale oil and gas resources, with favorable geological conditions that the other shale reservoirs in China cannot match. Thus, the basin is an ideal option for fully "exploring petroleum inside source kitchen" with respect to onshore shale oil and gas in China. This paper analyzes the characteristics of shale oil and gas resources in the United States and China, and points out that maturity plays an important role in controlling shale oil and gas composition. US shale oil and gas exhibit high proportions of light hydrocarbon and wet gas, whereas Chinese marine and transitional shale gas is mainly dry gas and continental shale oil is generally heavy. A comprehensive geological study of shale oil and gas in the Sichuan Basin reveals findings with respect to the following three aspects. First, there are multiple sets of organic-rich shale reservoirs of three types in the basin, such as the Cambrian Qiongzhusi Formation and Ordovician Wufeng Formation-Silurian Longmaxi Formation marine shale, Permian Longtan Formation transitional shale, Triassic Xujiahe Formation lake-swamp shale, and Jurassic lacustrine shale. Marine shale gas enrichment is mainly controlled by four elements: Deep-water shelf facies, moderate thermal evolution, calcium-rich and silicon-rich rock association, and closed roof/floor. Second, the "sweet section" is generally characterized by high total organic carbon, high gas content, large porosity, high brittle minerals content, high formation pressure,and the presence of lamellation/bedding and natural microfractures. Moreover, the "sweet area" is generally characterized by very thick organic-rich shale, moderate thermal evolution, good preservation conditions, and shallow burial depth, which are exemplified by the shale oil and gas in the Wufeng-Longmaxi Formation, Longtan Formation, and Daanzhai Member of the Ziliujing Formation. Third, the marine, transitional, and continental shale oil and gas resources in the Sichuan Basin account for 50%, 25%, and 30% of the respective types of shale oil and gas geological resources in China, with great potential to become the cradle of the shale oil and gas industrial revolution in China. Following the "Conventional Daqing-Oil"(i.e., the Daqing oilfield in the Songliao Basin) and the "Western Daqing-Oil Gas"(i.e., the Changqing oilfield in the Ordos Basin), the Southwest oil and gas field in the Sichuan Basin is expected to be built into a "Sichuan-Chongqing Daqing-Gas" in China.  相似文献   

20.
Oils from two lacustrine rift basins in east China are thoroughly investigated using geochemical method to understand controls on alkylphenol occurrence and distribution in oils. Oils in the Lujiapu Depression, Kailu Basin are derived from the Cretaceous source rocks, and those in the Dongying De- pression, Bohai Bay Basin, from the Tertiary source rocks. All oils are experienced relatively short distance of migration and have similar maturity in each basin. Differences in homologue distributions from different oilfields are most likely caused by organic facies variation of source rocks. The oils in the Lujiapu Depression are characterized by high proportion of C3 alkylphenols (prefixes refer to the number of alkylcarbons joined to the aromatic ring of the phenol molecule) and low proportion of cre- sols and C2 alkylphenols compared to oils from the Dongying Depression. Alkylphenol isomer distri- bution is possibly affected by depositional environment especially for C3 alkylphenols. Dysoxic fresh- water environment is favorable for the formation of propyl or isopropyl substituted C3 alkylphenols, while highly reducing saline water is more suitable for trimethyl substituted C3 alkylphenols. Variations in alkylphenol concentrations within a petroleum system are controlled mainly by secondary migration processes with alkylphenol concentrations decreasing along migration direction. Interestingly, coupled with geological factors, a subtle change of alkylphenol concentrations can be applied to differentiate carrier systems. When oil migrates through sandy beds, concentrations of total alkylphenols decrease dramatically with migration distance, while such change is less significant when oil migrates vertically along faults. However, most isomer ratios potentially related to migration distance are not as effective as those alkylcarbazoles in migration diagnosis due to complicated affecting factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号