首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Noah model is a land surface model of the National Centers for Environmental Prediction. It has been widely used in regional coupled weather and climate models (i.e. Weather Research and Forecasting Model, Eta Mesoscale Model) and global coupled weather and climate models (i.e. National Centers for Environmental Prediction Global Forecast System, Climate Forecast System). Therefore, its continued improvement and development are keys to enhancing our weather and climate forecast ability and water and energy flux simulation accuracy. North American Land Data Assimilation System phase 1 (NLDAS‐1) experiments indicated that the Noah model exhibited substantial bias in latent heat flux, total runoff and land skin temperature during the warm season, and such bias can significantly affect coupled weather and climate models. This paper presents a study to improve the Noah model by adding model parameterization processes such as including seasonal factor on leaf area index and root distribution and selecting optimal model parameters. We compared simulated latent heat flux, mean annual runoff and land skin temperature from the Noah control and test versions with measured latent heat flux, land surface skin temperature, mean annual runoff and satellite‐retrieved land surface skin temperature. The results show that the test version significantly reduces biases in latent heat, total runoff and land skin temperature simulation. The test version has been used for the NLDAS phase 2 (NLDAS‐2) to produce 30‐year water flux, energy flux and state variable products to support the US drought monitor of National Integrated Drought Information System. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
3.
Using data from the National Center for Environmental Prediction (NCEP), the paper analyzed the surface latent heat flux (SLHF) variations for five inland earthquakes occurred in some lake area, moist area and arid area of China during recent years. We used the SLHF daily and monthly data to differentiate the global and seasonal variability from the transient local anomalies. The temporal scale of the observed variations is 1-2 months before and after the earthquakes, and spatial scale is about 10°×10°. The result suggests that the SLHFs adjacent the epicenters all are anomalous high value (>μ+2σ) 8-30 days before the shocks as compared with past several years of data. Different from the abnormal meteorological phenomenon, the distribution of the anomalies was isolated and local, which usually occurred in the epicenter and its adjacent area, or along the fault lines. The increase of SLHF was tightly related with the season which the earthquake occurs in; the maximal (125 W/m2, Pu'er earthquake) and minimal (25 W/m2, Gaize earthquake) anomalies were in summer and winter, respectively. The abundant surface water and groundwater in the epicenter and its adjacent region can provide necessary condition for the change of SLHF. To further confirm the reliability of SLHF anomaly, it is necessary to explore its physical mechanism in depth by more earthquake cases.  相似文献   

4.
The aim of this work is to compare three remote sensing based models: two contextual and one physically-based single-pixel model for the estimation of daytime integrated latent heat flux without the use of any ground measurements over Indian ecosystems. Satellite datasets from the MODIS sensors aboard the Terra and the Aqua satellites were used. The latent heat flux estimated from the remote sensing models was compared with that estimated from Bowen ratio energy balance towers at five sites in India. The root mean square error (RMSE) of the latent heat flux estimated from the contextual and the physically-based models was found to be in the order of 40 and 70 W m?2, respectively. The relatively inferior performance of the more complex physically-based model in comparison with the contextual models was found to be largely due to inaccurate parameterizations estimated only from remote sensing datasets without any ground data.  相似文献   

5.
本文在城市边界层预报模式中耦合了一个单层冠层模式,此模式能够体现城市冠层结构和人为热源对城市热岛的共同作用.通过传统平板模式和城市冠层模式的模拟结果与自动气象站观测资料对比发现,耦合了城市冠层模式的模拟结果与观测资料更为吻合,尤其能够较好地模拟出城市地区夜间地面的气温变化情况.对北京城市区域的模拟结果进行分析,白家庄地区冠层建筑物使得城市地区气温白天下降,夜晚上升,不考虑人为热源作用时,城市冠层使得白家庄站地面气温白天最低下降2.5℃,夜间气温最大升高为4.7℃.针对模拟区域较小的理想算例模拟结果分析表明,城市冠层模式能够很好地模拟城市地区地表能量平衡关系,体现城市冠层对长短波辐射的封截以及热量存储能力,全天平均净辐射通量由传统模式的43.38 W/m2变为84.19 W/m2,热存储通量白天最大值为278.04 W/m2,夜晚最大释放热存储通量为160.35 W/m2.冠层建筑物和人为热源对夜间城市热岛强度的贡献分别为70.65%和29.35%.城市冠层建筑物对夜间城市热岛的形成起决定性作用.  相似文献   

6.
The snowcover energy balance is typically dominated by net radiation and sensible and latent heat fluxes. Validation of the two latter components is rare and often difficult to undertake at complex mountain sites. Latent heat flux, the focus of this paper, is the primary coupling mechanism between the snow surface and the atmosphere. It accounts for the critical exchange of mass (sublimation or condensation), along with the associated snowcover energy loss or gain. Measured and modelled latent heat fluxes at a wind‐exposed and wind‐sheltered site were compared to evaluate variability in model parameters. A well‐tested and well‐validated snowcover energy balance model, Snobal, was selected for this comparison because of previously successful applications of the model at these sites and because of the adjustability of the parameters specific to latent heat transfer within the model. Simulated latent heat flux and snow water equivalent (SWE) were not sensitive to different formulations of the stability profile functions associated with heat transfer calculations. The model parameters of snow surface roughness length and active snow layer thickness were used to improve latent heat flux simulations while retaining accuracy in the simulation of the SWE at an exposed and sheltered study site. Optimal parameters for simulated latent heat flux and SWE were found at the exposed site with a shorter roughness length and thicker active layer, and at the sheltered site with a longer roughness length and thinner active layer. These findings were linked to physical characteristics of the study sites and will allow for adoption into other snow models that use similar parameters. Physical characteristics of wind exposure and cover could also be used to distribute critical parameters in a spatially distributed modelling domain and aid in parameter selection for application to other watersheds where detailed information is not available. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
The North China Plain, which is critical for food production in China, is encountering serious water shortage due to heavy agricultural water requirement. The accurate modelling of carbon dioxide flux and evapotranspiration (ET) in croplands is thus essential for yield prediction and water resources management. The land surface model is powerful in simulating energy and carbon dioxide fluxes between land and atmosphere. Some key processes in the Simple Biosphere Model (Version 2, SiB2) were parameterized based on the observations. The simulated fluxes were tested against the eddy covariance flux measurements over two typical winter wheat/maize double cropping fields. A simple diagnostic parameterisation of soil respiration, not included in SiB2, was added and calibrated using the observations to model the carbon budget. The Ball‐Berry stomatal conductance model was calibrated using observed leaf gas exchange rate, showing that the original SiB2 could significantly underpredict the ET in the wheat field. SiB2 significantly underpredicted soil resistance at the Weishan site, leading to overpredict the ET. Overall, there was a close agreement between the simulated and observed latent heat fluxes and net CO2 exchange using the re‐parameterized SiB2. These findings are important when the model is used for the regional simulation in the North China Plain. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
北京城市热岛的时空变化分析   总被引:4,自引:0,他引:4       下载免费PDF全文
利用1987、1999、2000、2001、2002和2005年六幅陆地卫星影像研究北京市规划区地表城市热岛(SUHI).首先用决策树分类法进行分类,得到六幅不同时相的土地利用/覆盖分类图像.根据Artis&Carnahan算法利用热红外通道的灰度值计算地表辐射亮温,基于分类结果进行比辐射率纠正,计算地表温度.通过分析北京市规划区1987~2005年间地表城市热岛的特征,发现不同土地利用/土地覆盖类型与地表城市热岛有密切关系;2001年、2002年和2005年影像中市区的热岛分布的破碎度增加,由原来的集中分布慢慢向周围扩散,并在市区中心植被覆盖高的区域出现蓝色“凉爽”区;地表城市热岛增加的区域与城市扩展区域一致,城市化过程是城市热岛面积不断增加的主要的原因.  相似文献   

9.
本文研究了2010年2月27日智利8.8级地震前后地球表面潜热通量的时空演化过程, 并分析了可能的潜热通量异常及其与地表温度变化的关系.结果表明:(1)此次地震及其强余震前出现了三次明显的潜热通量异常,第一次潜热通量异常出现于主震1个月前,主要分布在震中及其东南陆区,第二次潜热通量异常出现在主震前7天,异常区分布在震中西南的海域,呈北西向分布,指向俯冲带,第三次潜热通量异常出现在强余震前,异常区分布在震中西南的海域及北段俯冲带上;(2)相似于2004年印度尼西亚地震海啸前潜热通量的异常演化特征,潜热通量异常从弧后向俯冲带迁移,此次地震前的潜热通量异常首先出现在弧后火山活动强烈地区,然后迁移到海域俯冲带附近,可能反映了临震前的构造变形过程;(3)当陆区出现潜热通量异常时,同时也可见地表温度异常,但在海域出现潜热通量异常时,却未发现有地表温度异常,这可能是由于海域水的热容量较大,不易出现红外温度异常所致.  相似文献   

10.
Local flow properties and regional weather or climate are strongly affected by land‐atmosphere interactions of momentum and scalars within the daytime convective boundary layer (CBL). In this study, we investigate the impact of green space scale on the daytime atmospheric boundary layer (ABL) over a synthetic urban domain using a recently developed large‐eddy simulation‐land surface model (LES–LSM) framework. With the use of realistic soundings as initial conditions, a series of numerical experiments over synthetic urban surfaces with varied scale of vegetated area is performed. Simulated micrometeorological properties, surface fluxes, basic CBL characteristics, and cloud distribution are analysed. The results show reference‐level air potential temperature and specific humidity as well as surface fluxes over green space are significantly affected by the scale of green space in the urban domain. The surface organization due to vegetated area scale also has impacts on horizontally averaged scalar and momentum profiles; however, the magnitude in this study is smaller than the results of a previous study using a set of offline surface fluxes as the lower boundary condition for LES. In addition, even though this study only performs a daytime diurnal cycle, the impact of green space scale on cloud distribution in simulations is significant. The cases with more organized green space yield lower‐elevated cumulus cloud and larger‐cloud cover fraction, which impacts the energy budget at the top of boundary layer and, in turn, could lead to additional surface cooling with respect to longer‐term weather and climate. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
Abstract

Reliable estimation of sensible heat flux (H) is important in energy balance models for quantifying evapotranspiration (ET). This study was conducted to evaluate the value of adding the Priestley-Taylor (PT) equation to the METRIC (Mapping Evapotranspiration at high Resolution with Internalized Calibration) model. METRIC was used to estimate energy fluxes for 10 Landsat images from the 2005, 2006 and 2007 crop growing seasons in south-central Nebraska, USA, where each image owing to recent rainfall exhibited high residual moisture content even at the hot pixel. The METRIC model performed satisfactorily for net radiation (Rn ) and soil heat flux (G) estimation with a root mean square error (RMSE) of 52 and 24 W m-2, respectively. A RMSE of 122 W m-2 for H indicated the limitation of the METRIC model in estimating H for high residual moisture content of the hot pixel (Alfalfa reference ET fraction, ET r F > 0.15). The modified METRIC model (wet METRIC or wMETRIC) incorporating the PT equation was applied to calculate H at the anchor pixels (hot and cold) for high residual moisture content of the hot pixel. The α coefficient of the PT equation was locally calibrated using hourly meteorological data from an automatic weather station and Rn and G data from a Bowen ratio flux tower. The mean α coefficient value was 1.14. The wMETRIC model reduced the RMSE of H from 122 to 64 W m-2 and that of latent heat flux, LE, from 163 to 106 W m-2. The RMSE of daily ET decreased from 1.7 to 1.1 mm d-1 with wMETRIC. The results indicate that treatment of anchor pixels for high residual moisture content with the PT approach gives improved estimation of H, LE and daily ET. It is recommended that the wMETRIC model be used for estimating ET if the hot pixel has high residual moisture (i.e. reference ET fraction > 0.15).

Citation Singh, R. K. & Irmak, A. (2011) Treatment of anchor pixels in the METRIC model for improved estimation of sensible and latent heat fluxes. Hydrol. Sci. J. 56(5), 895–906.  相似文献   

12.
This paper explores the potential for documenting regional fields of surface energy fluxes over the Tibetan plateau using published algorithms and previously calibrated empirical formulae with data from NOAA‐14 AVHRR and atmospheric data collected during the GAME‐Tibet field experiment. Comparison with observations at three field sites suggests errors in the resulting estimates are less than 10% in the clear sky conditions necessary for application of this approach. Because of the need for clear skies, it was only possible to calculate the desired regional fields for one satellite scene during the 5 month study period. Maps of surface energy fluxes, and frequency analyses of these maps, are presented for this scene. The need for an alternative, more consistently applicable, satellite‐based method to map surface energy fields is highlighted. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

13.
L. Li  Q. Yu  Z. Su  C. van der Tol 《水文研究》2009,23(5):665-674
Estimation of evapotranspiration from a crop field is of great importance for detecting crop water status and proper irrigation scheduling. The Penman–Monteith equation is widely viewed as the best method to estimate evapotranspiration but it requires canopy resistance, which is very difficult to determine in practice. This paper presents a simple method simplified from the Penman–Monteith equation for estimating canopy temperature (Tc). The proposed method is a biophysically‐sound extended version of that proposed by Todorovic. The estimated canopy temperature is used to calculate sensible heat flux, and then latent heat flux is calculated as the residual of the surface energy balance. An eddy covariance (EC) system and an infrared thermometer (IRT) were installed in an irrigated winter wheat field on the North China Plain in 2004 and 2005, to measure Tc, and sensible and latent heat fluxes were used to test the modified Todorovic model (MTD). The results indicate that the original Todorovic model (TD) severely underestimates Tc and sensible heat flux, and hence severely overestimates the latent heat flux. However, the MTD model has good capability for estimating Tc, and gives acceptable results for latent heat flux at both half‐hourly and daily scales. The MTD model results also agreed well with the evapotranspiration calculated from the measured Tc. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
北京城市下垫面对雾影响的数值模拟研究   总被引:2,自引:0,他引:2       下载免费PDF全文

为了探究北京城市下垫面对雾天气过程的影响,为北京地区雾数值预报水平的提高提供理论基础和科学依据,选取2011年10月29日北京地区雾天个例进行了数值模拟试验,通过对WRF/Noah/UCM模式系统中城市冠层参数的调整,显著改善了模式对此次雾天气过程的模拟效果.使用参数调整后的模式系统通过敏感性试验分析研究了北京城市下垫面对雾发生、发展和消散过程的影响.结果表明:参数调整后的WRF/Noah/UCM模式系统能够与实际观测较相符地模拟此次发生在北京地区的雾天气过程,北京城市下垫面主要通过对温度的改变对雾的形成、发展和消散产生显著影响,使雾不易在城市及其附近形成和发展,延后城市地区雾的形成,但城市的存在也使得城市地区及其附近雾不易消散,相较于没有城市时消散时间延后.

  相似文献   

15.
ABSTRACT

Ballona Creek watershed in Los Angeles, California provides a unique combination of heterogeneous urban land cover, a semi-arid environment, and a large outdoor water-use flux that presents a challenge for physically-based models. We ran simulations using the Noah Land Surface Model and Parflow-Community Land Model and compared to observations of evapotranspiration (ET), runoff, and land surface temperature (LST) for the entire 11-year study period. Both models were systematically adjusted to test the impact of land cover and urban irrigation on simulation results. Monthly total runoff and ET results are greatly improved when compared to an in-situ stream gauge and meteorological tower data: from 0.64 to 0.81 for the Nash–Sutcliffe efficiency (NSE) for runoff and from a negative NSE to 0.82 for ET. The inclusion of urban irrigation in semi-arid urban environments is found to be vital, but not sufficient, for the accurate simulation of variables in the studied models.  相似文献   

16.
The influences of human activities on regional climate and weather are tremendous. The re-gional temperature and the distributing of wind field are influenced, whereas the precipitation in-tensity and the spatial and temporal distribution of the precipita…  相似文献   

17.
A vertical one-dimensional numerical model for heat transferring within the near-surface snow layer of the Antarctic Ice Sheet was developed based on simplified parameterizations of associated physical processes for the atmosphere, radiation, and snow/ice systems. Using the meteorological data of an automatic weather station (AWS) at Dome A (80°22′S, 70°22′E), we applied the model to simulate the seasonal temperature variation within a depth of 20 m. Comparison of modeled results with observed snow temperat...  相似文献   

18.
Understanding and representing hydrologic fluxes in the urban environment is challenging because of fine scale land cover heterogeneity and lack of coherent scaling relationships. Here, the impact of urban land cover heterogeneity, scale, and configuration on the hydrologic and surface energy budget (SEB) is assessed using an integrated, coupled land surface/hydrologic model at high spatial resolutions. Archetypes of urban land cover are simulated at varying resolutions using both the National Land Cover Database (NLCD; 30 m) and an ultra high‐resolution land cover dataset (0.6 m). The analysis shows that the impact of highly organized, yet heterogeneous, land cover typical of the urban domain can cause large variations in hydrologic and energy fluxes within areas of similar land cover. The lateral flow processes that occur within each simulation create variations in overland flow of up to ±200% and ±4% in evapotranspiration. The impact on the SEB is smaller and largely restricted to the wet season for our semi‐arid forcing scenarios. Finally, we find that this seasonal bias, predominantly caused by lateral flow, is displaced by a systematic diurnal bias at coarser resolutions caused by deficiencies in the method used for scaling of land surface and hydrologic parameters. As a result of this research, we have produced land surface parameters for the widely used NLCD urban land cover types. This work illustrates the impact of processes that remain unrepresented in traditional high‐resolutions land surface models and how they may affect results and uncertainty in modeling of local water resources and climate. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
Long‐term heating of shallow urban aquifers is observed worldwide. Our measurements in the city of Cologne, Germany revealed that the groundwater temperatures found in the city centre are more than 5 K higher than the undisturbed background. To explore the role of groundwater flow for the development of subsurface urban heat islands, a numerical flow and heat transport model is set up, which describes the hydraulic conditions of Cologne and simulates the transient evolution of thermal anomalies in the urban ground. A main focus is on the influence of horizontal groundwater flow, groundwater recharge and trends in local ground warming. To examine heat transport in groundwater, a scenario consisting of a local hot spot with a length of 1 km of long‐term ground heating was set up in the centre of the city. Groundwater temperature‐depth profiles at upstream, central and downstream locations of this hot spot are inspected. The simulation results indicate that the main thermal transport mechanisms are long‐term vertical conductive heat input, horizontal advection and transverse dispersion. Groundwater recharge rates in the city are low (<100 mm a?1) and thus do not significantly contribute to heat transport into the urban aquifer. With groundwater flow, local vertical temperature profiles become very complex and are hard to interpret, if local flow conditions and heat sources are not thoroughly known. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
During two successive growing seasons meteorological measurements were made in a pearl millet field in the Sahel to investigate the evaporation process in relation to crop growth. The evaporation was measured by eddy correlation and simulated using the Shuttleworth Wallace (SW) model [Q. J. R. Meteorol. Soc. 111 (1985) 839–855]. To take sun height and multi-layer scattering into account a radiation balance model was formulated. The model indicates that partitioning of the net radiation between the vegetation and the soil may be estimated (r2=0.94) from the fraction of diffuse radiation, the leaf area index and an attenuation coefficient, but that the attenuation coefficient may not be similar in different locations. To solve the SW-model with respect to the soil resistance an iterative solution was employed with the total evaporation estimated from the Bowen-ratio calculated from eddy correlation measurements. The procedure made it possible to derive stable estimates of soil resistance at soil evaporation rates down to 25 W m−2. The soil resistance was found to be in accordance with evaporation through a dry surface layer. The SW-model indicates, that advection of sensible heat from the dry soil to the plants, increases transpiration considerably. This will cause management techniques, such as mulching and dry farming, aimed at reducing soil evaporation to be less effective than might be anticipated. The effects of raising the leaf area index to improve the microclimate is discussed in relation to management of the available water and crop security.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号