首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary A methodological study on a tall canopy in a Mediterranean region was carried out in order to identify the most suitable method for measuring the actual evapotranspiration (ET). ET from a sweet sorghum crop was measured by 4 different methods: (i) energy balance/eddy correlation, (ii) energy balance/Bowen ratio, (iii) energy balance/aerodynamic simplified, and (iv) floating lysimeter (ETmeter). In order to compare a very large range of ET values and to reduce experimental errors due to low gradients of air humidity and temperature, the crop was submitted to two soil drying-wetting cycles. To evaluate the main limitations of each method with respect to crop height, crop ET was monitored during the entire vegetative cycle, from stem elongation (crop height 0.85 m, full canopy) to grain filling (when the crop was 2.5 m high). The comparison between the micrometeorological methods (i, ii, and iii) was made on hourly and daily time steps, while the analysis of ETmeter measurements was made on a daily time step only. On an hourly scale: eddy correlation ET was 106% of Bowen ratio ET and simplified aerodynamic ET was 116%, 125% and 135% of Bowen ratio ET with the first sensors are placed at the top of the canopy and the second sensors at 0.7 m, 1.4 m and 2.8 m from the first sensors, respectively. On a daily scale: eddy correlation ET was 102% of Bowen ratio ET, simplified aerodynamic was 114% of Bowen ratio ET and ETmeter ET was 97% of Bowen ratio ET. In the last case the values are very widely spread and the correlation is really not so good. The results show that the Bowen ratio method and the eddy correlation method are in good agreement on daily scales, however, certain precautions, must be taken concerning the eddy correlation method on an hourly scale. The simplified aerodynamic method failed when crop height was > 1.5 m and the ETmeter failed under windy conditions (wind speed > 2.0 m/s) and limited crop water conditions.With 13 Figures  相似文献   

2.
To investigate the alfalfa crop response to environmental factors, a Bowen ratio-energy balance method was used to evaluate short-term alfalfa canopy resistance. Continuous evapotranspiration (ET a ) and the aerodynamic resistance (r a ) for an alfalfa crop in each 20-min interval were calculated. Using the calculated ET a and r a and the Penman-Monteith approach, the bulk stomatal or actual canopy resistance (r c ) was evaluated. The continuous 20-min resistances were computed for clear and partially cloudy sky conditions, and different average crop heights. The results show that this technique can satisfactorily be used to study the manner in which the aerodynamic and canopy resistances respond to short-term variations in weather elements such as photosynthetically active radiation (PAR), wind speed and atmospheric saturation vapor deficit.Research Assistant Professor and Assistant Utah State Climatologist, Research Associate Professor and Research Assistant, respectively.  相似文献   

3.
Moderating effects of Lake Apopka, Florida on downwind surface temperatures were evaluated under cold-air advective conditions. Point temperature measurements north and south of the lake and data obtained from a thermal scanner flown at 1.6 km indicate that surface temperatures directly downwind may be higher than surrounding surface temperatures by as much as 5 °C under conditions of moderate winds (~4 m s–1). No substantial temperature effects were observed with surface wind speed less than 1 m s–1. Fluxes of sensible and latent heat from Lake Apopka were calculated from measurements of lake temperature, net radiation, relative humidity and air temperature above the lake. Bulk transfer coefficients and the Bowen ratio were calculated and found to be in agreement with reported data for non-advective conditions.IFAS Journal Series No. 1006.  相似文献   

4.
A case study of warm air advection over the Arctic marginalsea-ice zone is presented, based on aircraft observations with direct flux measurements carriedout in early spring, 1998. A shallow atmospheric boundary layer (ABL) was observed, which wasgradually cooling with distance downwind of the ice edge. This process was mainly connected with astrong stable stratification and downward turbulent heat fluxes of about 10–20 W m-2, but wasalso due to radiative cooling. Two mesoscale models, one hydrostatic and the other non-hydrostatic,having different turbulence closures, were applied. Despite these fundamental differences betweenthe models, the results of both agreed well with the observed data. Various closure assumptions had amore crucial influence on the results than the differences between the models.Such an assumption was, for example,the parameterization of the surface roughness for momentum (z0) and heat (zT). This stronglyaffected the wind and temperature fields not only close to the surface but also within and abovethe temperature inversion layer. The best results were achieved using a formulation for z0 that took intoaccount the form drag effect of sea-ice ridges together withzT = 0.1z0. The stability within theelevated inversion strongly depended on the minimum eddy diffusivity Kmin. A simple ad hocparameterization seems applicable, where Kmin is calculated as 0.005 timesthe neutral eddy diffusivity. Although the longwave radiative cooling was largest within the ABL, theapplication of a radiation scheme was less important there than above the ABL. This was related to theinteraction of the turbulent and radiative fluxes. To reproduce the strong inversion, it wasnecessary to use vertical and horizontal resolutions higher than those applied in most regional andlarge-scale atmospheric models.  相似文献   

5.
On The Temperature-Humidity Correlation And Similarity   总被引:5,自引:3,他引:2  
The correlation coefficient between temperature and specific humidity (rTq) is considered. A brief literature review as well as experimental data reveals that there is evidence that the eddy diffusivities for heat and water vapour are not equal if |rTq| 1. Several conditions under which this can occur are discussed. It is concluded that if non-local effects are of the same order as local effects T and q will behave in a non-similar fashion. Moreover, it is shown that if |rTq| = 1, temperature and specific humidity both will obey Monin–Obukhov similarity. In addition, based on that derivation, a new method is presented to determine the Bowen ratio from the T - q correlation. A first test of this new Bowen ratio regression method is presented. It is recommended to use rTq as a diagnostic tool to judge whether T-q similarity holds.  相似文献   

6.
Summary In the present paper, an attempt is made for generalized the atmospheric diffusion operator. This can be accomplished by employing the realizability procedure, to identify a surface operator, that ensures self-adjointness’ of the atmospheric diffusion operator. The dispersion modeling in low wind speeds assumes importance because of the high frequency of occurrence and episodic nature of these poor diffusion conditions. A steady-state mathematical model for hermitized model has been calculated for the dispersion of air pollutants in low winds by taking into account the diffusion in the three coordinate directions and advection along the mean wind. The eddy diffusivities have been parameterized in terms of downwind distance for near source dispersion (Arya, 1995). The constants involved in this parameterization are the squares of intensities of turbulence. An analytical solution for resulting advection-diffusion equation with the physically relevant boundary conditions has been obtained. The solution has been used to simulate the field tracer data collected at IIT Delhi in low wind convective conditions.  相似文献   

7.
A modified infrared CO2 gas analyzer, a small thermocouple assembly, a heated-thermocouple anemometer for horizontal wind, and a propeller-type vertical wind sensor were used to measure the eddy fluxes of heat and CO2 above a corn crop. Experimental results of these fluxes are discussed. The main sources of errors of the eddy fluxes using these instruments were estimated:
  1. Sensors with a time constant of 0.5 s appear to be fast enough to detect most of the vertical CO2 transfer as long as the sensors are located at least one meter above the crop surface.
  2. The deviation from steady-state conditions for 10-min periods was found to have a significant effect on the eddy flux estimates.
  3. Temperature fluctuations of the air sample passing through the CO2 infrared gas analyzer were found to be non-negligible but could be easily corrected.
  4. A 1° misalignment of the vertical anemometer affected these eddy fluxes by less than 10% under all circumstances studied.
  相似文献   

8.
Model predictions of CO2 concentrations downwind from a line source were calibrated using experimental data. Agreement between the model and experimental data was improved by adjusting for wind direction meander and cup anemometer overshoot. The model predictions showed that by using a negative exponential wind speed profile within the crop canopy, predictions were closer to observed CO2 concentration profiles than when experimentally-observed wind speed profiles, which were constant with height in the lower canopy, were used. This finding suggests that much of the lower canopy airflow was not direct mass flow in the downwind direction. Eddy diffusivity profiles which showed a within-canopy local minimum resulted in arestriction in the predicted loss of CO2 out of the canopy system. Two-dimensional plots of predicted null vertical flux and CO2 concentration portrayed vividly the turbulent diffusion and mass flow transport of CO2 from the line source.  相似文献   

9.
Ozone(O_3) fluxes were measured over a maize field using the eddy covariance(EC) technique and gradient methods.The main objective was to evaluate the performance of the gradient methods for measuring the O_3 flux by comparing them with the EC O_3 flux.In this study,turbulent exchange coefficients(K) calculated with three methods were compared.These methods were the aerodynamic gradient(AG) method(in which K is calculated by using wind speed and temperature gradients),the aerodynamic gradient combined with EC(AGEC) method,in which the friction velocity and other variables are based on EC measurements,and the modified Bowen ratio using the EC sensible heat flux and temperature gradient(MBR) method.Meanwhile,the effects of the measurement and calculation methods of the O_3 concentration gradient were analyzed.The results showed that:(1) on average,the transfer coefficient computed by the MBR method was 40% lower,and the coefficient determined with the AG method was 25% higher,than that determined with the AGEC method.(2) The gradient method's O_3 fluxes with the MBR,AGEC,and AG methods were 30.4% lower,11.7% higher,and 45.6% higher than the EC O_3 flux,respectively.(3) The effect of asynchronous O_3 concentration measurements on the O_3 gradient must be eliminated when using one analyzer to cyclically measure two-level O_3 concentrations.The accuracy of gradient methods for O_3 flux is related to the exchange coefficient calculation method,and its precision mainly depends on the quality of the O_3 gradient.  相似文献   

10.
There is not much information in the literature about the energy partitioning and micrometeorological features of sunn hemp. Therefore, in this study, the variations in the energy-balance components and plant characteristics such as aerodynamic and surface conductance, crop coefficient, albedo, short- and long wave down- and upward radiation have been measured and estimated for the time period from August to October 2004 over an irrigated sand field at the Arid Land Research Center in Tottori, Japan. The Bowen ratio energy-balance method was used to calculate the partitioning of heat fluxes of sunn hemp. The Bowen ratio values at the first growing stages in August were found to be higher than the Bowen ratio values at the latest growing stages in September and October because of the heavy rain and high soil-water content. The daytime averaged Bowen ratio was 0.19. During the measurement period, the daytime average net radiation, and soil, latent and sensible heat fluxes were approximately 231, 28, 164, and 39 W m–2, respectively. The net radiation and soil heat flux showed decreasing trends from the beginning to the end of the experiment period due to the atmospheric and crop growth conditions. The daytime averages of aerodynamic and surface conductance for sunn hemp were around 31 and 17 mm s–1, respectively. Also, the daytime average albedo of sunn hemp was around 19%. Finally, the high precipitation amount due to typhoons, high soil-water content, low available energy and low vapor-pressure deficit lead to decreasing trend of the energy fluxes during the generative phase of sunn hemp.  相似文献   

11.
The sensitivity of land surface energy partitioning to near-surface air temperature (T a) is a critical issue to understand the interaction between land surface and climatic system. Thus, studies with in situ observed data compiled from various climates and ecosystems are required. The relations derived from such empirical analyses are useful for developing accurate estimation methods of energy partitioning. In this study, the effect of T a on land surface energy partitioning is evaluated by using flux measurement data compiled from a global network of eddy covariance tower sites (FLUXNET). According to the analysis of 25 FLUXNET sites (60 site-years) data, the Bowen ratio is found to have a linear relation with the bulk surface resistance normalized by aerodynamic and climatological resistance parameters in general, of which the slope and intercept are dependent on T a. Energy partitioning in warmer atmosphere is less sensitive to changes in land surface conditions. In addition, a negative relation is found between Bowen ratio and T a, and this relation is stronger above less vegetated surface and under low vapor pressure deficit and low received radiative energy condition. The empirical results obtained in this study are expected to be useful in gaining better understanding of alternating surface energy partitioning under increasing T a.  相似文献   

12.
Similarity of transport of water vapour and sensible heat was investigated within an advective inversion layer by measuring eddy fluxes together with gradients of temperature and humidity. The experimental site was a field of rice, grown under flood irrigation, which was situated in a semi-arid region. The fetch was about 300 m and local stabilities (z/L) over the rice ranged from 0 to 0.1. Results were expressed as the ratio of eddy transfer coefficients for sensible heat (K H) and water vapour (K w). Near neutral stability, K H/KW approached 1, but the ratio decreased to about 0.65 with increasing stability. Existing theory predicts the result qualitatively but accounts for only about one fifth of the decrease in K H/KW with stability.  相似文献   

13.
Data from the Antarctic winter at Halley Base have been used in order to evaluate qualitatively and quantitatively how the stratification in the low atmosphere (evaluated with the gradient Richardson number, Ri) influences the eddy transfers of heat and momentum. Vertical profiles of wind and temperature up to 32 m, and turbulent fluxes ( , and ) measured from three ultrasonic thermo-anemometers installed at 5, 17 and 32 m are employed to calculate Ri, the friction velocity (u *) and the eddy diffusivities for heat (K h ) and momentum (K m ). The results show a big dependence of stability onK m ,K h andu *, with a sharp decrease of these turbulent parameters with increasing stability. The ratio of eddy diffusivities (K h /K m ) is also analyzed and presents a decreasing tendency as Ri increases, reaching values even less than 1, i.e., there were situations where the turbulent transfer of momentum was greater than that of heat. Possible mechanisms of turbulent mixing are discussed.  相似文献   

14.
Abstract

Summertime energy budgets of contiguous wetland tundra and forest near Churchill, Manitoba along the coast of Hudson Bay were measured over a five year period, 1989–1993. An examination of differences in energy budgets between the two sites showed that net radiation was similar in all years. Soil heat flux was greater at the tundra site in most, but not all, years. However, sensible heat flux was always larger at the forest site and latent heat flux was always greater at the tundra site. Mean daily Bowen ratios at both sites were less than unity in all years. Average Bowen ratios for the five years were 0.45 for tundra and 0.66 for forest. Wind direction is used as an analogue for changing climatic conditions where onshore winds are cooler and moister than offshore winds. Sensible and latent heat fluxes at both sites varied significantly between onshore and offshore wind regimes. However, differences between onshore and offshore fluxes at the tundra site were larger than for the forest. Thus, Bowen ratios also varied more at the tundra site. We have plotted the ratio of tundra‐to‐forest Bowen ratios as a measure of the relative sensitivity of energy partitioning to climatic change. The ratio decreases with increasing vapour pressure deficit (and increasing air temperature). We interpret these results as suggesting that energy partitioning over the wetland tundra is more sensitive to changes in climate than the treeline forest environment. Thus, as the climate warms and becomes drier, more additional energy goes into evaporation of water from the wetland tundra than from the forest.  相似文献   

15.
The Bowen-ratio profile method for calculating total carbon dioxide, latent heat, and sensible heat flux density above a corn crop was used by measuring temperature, water vapor, and CO2 concentrations at several heights in the aerodynamic boundary layer of the crop. The ratio (α) of sensible heat flux density to carbon dioxide flux density as well as the Bowen ratio (β) were used in the computations. The two ratios, α and β were determined graphically from the slopes of linear plots of temperature vs CO2 concentration and vs water vapor. Each of the energy flux densities was computed from the two ratios and net radiation minus soil heat flux density. An analysis of probable error was performed on the Bowen-ratio profile method to evaluate the accuracy of the flux density estimates. Less than 10% error was found for latent heat flux density and less than 15% for carbon dioxide flux density under normal midday conditions for the instrumentation used. However, the carbon dioxide flux density error increased to over 40% when the sensible heat flux was small.  相似文献   

16.
广州番禺地区草地陆气相互作用观测研究   总被引:3,自引:1,他引:3       下载免费PDF全文
介绍了2004年在广州番禺进行的陆气相互作用观测试验。观测研究表明:新型的超声风温仪虽然带有雨滴防护沙网, 但雨滴对超声观测的误差影响显著, 尤其是对u, w方向。雨天情况下与z/L相关系数很低, 湍流强度与稳定度不存在1/3次方关系。涡动相关法和能量平衡法计算的感热通量及潜热通量比较接近, 感热、潜热通量相关系数分别达到0.8699和0.8633, 两种方法带来的误差主要发生在近地层稳定度发生明显变化的时刻, 即在午间热通量的峰值或傍晚或晚间热通量的低值, 其中能量平衡法计算的感热、潜热普遍具有较大的正负峰值。涡动相关法计算的Qh+Qe普遍偏小, 与可用能量Rn-Qg多数情况下存在能量不平衡, 说明了忽略热存储项的地表能量平衡方程的局限性。番禺夏、秋季近地层各能量具有与太阳辐射相似的日变化特征, 但夏季的潜热大于感热, 而秋季则相反。近地面二氧化碳从5—8月是一个减低过程, 尔后上升到12月份浓度最高, 总体浓度值在350×10-6~400×10-6之间变化。  相似文献   

17.
Turbulent dispersion of spores was studied near a source located inside a wheat canopy. Two colors of Lycopodium spores were released simultaneously at a steady rate from line sources at two heights (0.4–0.5 m and 0.7–0.8 m) in a 0.8 to 1.0 m tall crop. The number of spores of each color released was estimated by weighing the sources before and after each release. Aerial spore concentrations were measured at 2 and 4 m downwind of the sources using rotorods placed at four heights above the canopy and small suction traps at two heights inside the canopy. Concentrations near the ground were estimated from deposits on sticky glass microscope slides placed on the ground. Experiments were conducted on six different days. Friction velocities ranged from about 0.3 to 0.5 m s–1. The average horizontal fluxes of spores were calculated as the product of the observed concentrations and average wind speeds. At a distance of 2 m downwind from the sources, more than 16 to 44% of the flux of spores released from the lower source and more than 41 to 50% of the flux of spores released from the upper source were estimated to be above the canopy. These fluxes were compared with fluxes calculated using both a K-theory model and a random-flight-fluid-parcel-trajectory simulation model. The fluxes predicted by the models were generally considerably less than the values determined experimentally.  相似文献   

18.
During the summer of 1974, simultaneous heat flux measurements were made over a pine forest in three ways:
  1. Using the Bowen ratio - Energy Budget technique, with the Bowen ratio estimated from temperature and humidity profiles measured with two pairs of wet-and dry-bulb thermometers at six levels.
  2. Using the Bowen ratio - Energy Budget technique, with the Bowen ratio estimated from temperature and humidity measurements using pairs of wet-and dry-bulb thermometers mechanically interchanged every ten minutes.
  3. Using the Eddy Correlation - Energy Budget technique, with a direct measurement of the sensible heat flux made by a simple eddy correlation apparatus.
Methods (b) and (c) are shown to give similar results apart from a systematic difference of about 25% in the measured sensible heat flux. This corresponds to an underestimate of the sensible heat flux by the eddy correlation apparatus. Although sometimes consistent with the other two methods, on occasions method (a) gave results which were significantly different from both (b) and (c). When differences occurred, they tended to be systematic and persistent over individual days; but they could change magnitude and sign if the particular sensors used at each level in the profile were rearranged. The experimental program used to collect these and previous data involved the rearrangement of sensors on a regular (two day) time scale. It is shown that, when averaged over several such rearrangements, method (a) produces median values of surface resistance which are more in keeping with those produced by the other methods. This is taken to imply that data previously gathered in this way can be used to produce physically reasonable results providing they are averaged over several days. On the basis of the results presented, recommendations are made on future experimental work in forest micrometeorology.  相似文献   

19.
This is the second paper describing a study of the turbulence regimes and exchange processes within and above an extensive Douglas-fir stand. The experiment was conducted on Vancouver Island during a two-week rainless period in July and August 1990. Two eddy correlation units were operated in the daytime to measure the fluxes of sensible heat and water vapour and other turbulence statistics at various heights within and above the stand. Net radiation was measured above the overstory using a stationary net radiometer and beneath the overstory using a tram system. Supplementary measurements included soil heat flux, humidity above and beneath the overstory, profiles of wind speed and air temperature, and the spatial variation of sensible heat flux near the forest floor.The sum of sensible and latent heat fluxes above the stand accounted for, on average, 83% of the available energy flux. On some days, energy budget closure was far better than on others. The average value of the Bowen ratio was 2.1 above the stand and 1.4 beneath the overstory. The mid-morning value of the canopy resistance was 150–450 s/m during the experiment and mid-day value of the Omega factor was about 0.20. The daytime mean canopy resistance showed a strong dependence on the mean saturation deficit during the two-week experimental period.The sum of sensible and latent heat fluxes beneath the overstory accounted for 74% of the available energy flux beneath the overstory. One of the reasons for this energy imbalance was that the small number of soil heat flux plates and the short pathway of the radiometer tram system was unable to account for the large horizontal heterogeneity in the available energy flux beneath the overstory. On the other hand, good agreement was obtained among the measurements of sensible heat flux made near the forest floor at four positions 15 m apart.There was a constant flux layer in the trunk space, a large flux divergence in the canopy layer, and a constant flux layer above the stand. Counter-gradient flux of sensible heat constantly occurred at the base of the canopy.The transfer of sensible heat and water vapour was dominated by intermittent cool downdraft and warm updraft events and dry downdraft and moist updraft events, respectively, at all levels. For sensible heat flux, the ratio of the contribution of cool downdrafts to that of warm updrafts was greater than one in the canopy layer and less than one above the stand and near the forest floor.  相似文献   

20.
On the Significance of the Webb Correction to Fluxes   总被引:2,自引:0,他引:2  
For establishing correct mass or energy balances at the Earth's surface, detailed and correct measurements of air constituent fluxes are needed. Flux measurements obtained from the eddy covariance technique have to pass several corrections of different relevance in order to give correct flux data. One of these corrections, the Webb correction, is analysed herein from latent heat flux and CO2 flux data recorded during two field experiments. The significance of this correction for the latent heat flux data varies with the air humidity and the Bowen ratio. The correction changes the latent heat flux values only a little, but significantly (by 2 to 3%). For other air constituents (like CO2), the Webb correction is much more important (20 to 30% of the flux).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号