首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The 182Hf-182W isotopic systematics of Ca-Al-rich inclusions (CAIs), metal-rich chondrites, and iron meteorites were investigated to constrain the relative timing of accretion of their parent asteroids. A regression of the Hf-W data for two bulk CAIs, various fragments of a single CAI, and carbonaceous chondrites constrains the 182Hf/180Hf and εW at the time of CAI formation to (1.07 ± 0.10) × 10−4 and −3.47 ± 0.20, respectively. All magmatic iron meteorites examined here have initial εW values that are similar to or slightly lower than the initial value of CAIs. These low εW values may in part reflect 182W-burnout caused by the prolonged cosmic ray exposure of iron meteorites, but this effect is estimated to be less than ∼0.3 ε units for an exposure age of 600 Ma. The W isotope data, after correction for cosmic ray induced effects, indicate that core formation in the parent asteroids of the magmatic iron meteorites occurred less than ∼1.5 Myr after formation of CAIs. The nonmagmatic IAB-IIICD irons and the metal-rich CB chondrites have more radiogenic W isotope compositions, indicating formation several Myr after the oldest metal cores had segregated in some asteroids.Chondrule formation ∼2-5 Myr after CAIs, as constrained by published Pb-Pb and Al-Mg ages, postdates core formation in planetesimals, and indicates that chondrites do not represent the precursor material from which asteroids accreted and then differentiated. Chondrites instead derive from asteroids that accreted late, either farther from the Sun than the parent bodies of magmatic iron meteorites or by reaccretion of debris produced during collisional disruption of older asteroids. Alternatively, chondrites may represent material from the outermost layers of differentiated asteroids. The early thermal and chemical evolution of asteroids appears to be controlled by the decay of 26Al, which was sufficiently abundant (initial 26Al/27Al >1.4 × 10−5) to rapidly melt early-formed planetesimals but could not raise the temperatures in the late-formed chondrite parent asteroids high enough to cause differentiation. The preservation of the primitive appearance of chondrites thus at least partially reflects their late formation rather than their early and primitive origin.  相似文献   

2.
Application of 182Hf-182W chronometry to constrain the duration of early solar system processes requires the precise knowledge of the initial Hf and W isotope compositions of the solar system. To determine these values, we investigated the Hf-W isotopic systematics of bulk samples and mineral separates from several Ca,Al-rich inclusions (CAIs) from the CV3 chondrites Allende and NWA 2364. Most of the investigated CAIs have relative proportions of 183W, 184W, and 186W that are indistinguishable from those of bulk chondrites and the terrestrial standard. In contrast, one of the investigated Allende CAIs has a lower 184W/183W ratio, most likely reflecting an overabundance of r-process relative to s-process isotopes of W. All other bulk CAIs have similar 180Hf/184W and 182W/184W ratios that are elevated relative to average carbonaceous chondrites, probably reflecting Hf-W fractionation in the solar nebula within the first ∼3 Myr. The limited spread in 180Hf/184W ratios among the bulk CAIs precludes determination of a CAI whole-rock isochron but the fassaites have high 180Hf/184W and radiogenic 182W/184W ratios up to ∼14 ε units higher than the bulk rock. This makes it possible to obtain precise internal Hf-W isochrons for CAIs. There is evidence of disturbed Hf-W systematics in one of the CAIs but all other investigated CAIs show no detectable effects of parent body processes such as alteration and thermal metamorphism. Except for two fractions from one Allende CAI, all fractions from the investigated CAIs plot on a single well-defined isochron, which defines the initial ε182W = −3.28 ± 0.12 and 182Hf/180Hf = (9.72 ± 0.44) × 10−5 at the time of CAI formation. The initial 182Hf/180Hf and 26Al/27Al ratios of the angrites D’Orbigny and Sahara 99555 are consistent with the decay from initial abundances of 182Hf and 26Al as measured in CAIs, suggesting that these two nuclides were homogeneously distributed throughout the solar system. However, the uncertainties on the initial 182Hf/180Hf and 26Al/27Al ratios are too large to exclude that some 26Al in CAIs was produced locally by particle irradiation close to an early active Sun. The initial 182Hf/180Hf of CAIs corresponds to an absolute age of 4568.3 ± 0.7 Ma, which may be defined as the age of the solar system. This age is 0.5-2 Myr older than the most precise 207Pb-206Pb age of Efremovka CAI 60, which does not seem to date CAI formation. Tungsten model ages for magmatic iron meteorites, calculated relative to the newly and more precisely defined initial ε182W of CAIs, indicate that core formation in their parent bodies occurred in less than ∼1 Myr after CAI formation. This confirms earlier conclusions that the accretion of the parent bodies of magmatic iron meteorites predated chondrule formation and that their differentiation was triggered by heating from decay of abundant 26Al. A more precise dating of core formation in iron meteorite parent bodies requires precise quantification of cosmic-ray effects on W isotopes but this has not been established yet.  相似文献   

3.
The 182Hf-182W systematics of meteoritic and planetary samples provide firm constraints on the chronology of the accretion and earliest evolution of asteroids and terrestrial planets and lead to the following succession and duration of events in the earliest solar system. Formation of Ca,Al-rich inclusions (CAIs) at 4568.3 ± 0.7 Ma was followed by the accretion and differentiation of the parent bodies of some magmatic iron meteorites within less than ∼1 Myr. Chondrules from H chondrites formed 1.7 ± 0.7 Myr after CAIs, about contemporaneously with chondrules from L and LL chondrites as shown by their 26Al-26Mg ages. Some magmatism on the parent bodies of angrites, eucrites, and mesosiderites started as soon as ∼3 Myr after CAI formation and may have continued until ∼10 Myr. A similar timescale is obtained for the high-temperature metamorphic evolution of the H chondrite parent body. Thermal modeling combined with these age constraints reveals that the different thermal histories of meteorite parent bodies primarily reflect their initial abundance of 26Al, which is determined by their accretion age. Impact-related processes were important in the subsequent evolution of asteroids but do not appear to have induced large-scale melting. For instance, Hf-W ages for eucrite metals postdate CAI formation by ∼20 Myr and may reflect impact-triggered thermal metamorphism in the crust of the eucrite parent body. Likewise, the Hf-W systematics of some non-magmatic iron meteorites were modified by impact-related processes but the timing of this event(s) remains poorly constrained.The strong fractionation of lithophile Hf from siderophile W during core formation makes the Hf-W system an ideal chronometer for this major differentiation event. However, for larger planets such as the terrestrial planets the calculated Hf-W ages are particularly sensitive to the occurrence of large impacts, the degree to which impactor cores re-equilibrated with the target mantle during large collisions, and changes in the metal-silicate partition coefficients of W due to changing fO2 in differentiating planetary bodies. Calculated core formation ages for Mars range from 0 to 20 Myr after CAI formation and currently cannot distinguish between scenarios where Mars formed by runaway growth and where its formation was more protracted. Tungsten model ages for core formation in Earth range from ∼30 Myr to >100 Myr after CAIs and hence do not provide a unique age for the formation of Earth. However, the identical 182W/184W ratios of the lunar and terrestrial mantles provide powerful evidence that the Moon-forming giant impact and the final stage of Earth’s core formation occurred after extinction of 182Hf (i.e., more than ∼50 Myr after CAIs), unless the Hf/W ratios of the bulk silicate Moon and Earth are identical to within less than ∼10%. Furthermore, the identical 182W/184W of the lunar and terrestrial mantles is difficult to explain unless either the Moon consists predominantly of terrestrial material or the W in the proto-lunar magma disk isotopically equilibrated with the Earth’s mantle.Hafnium-tungsten chronometry also provides constraints on the duration of magma ocean solidification in terrestrial planets. Variations in the 182W/184W ratios of martian meteorites reflect an early differentiation of the martian mantle during the effective lifetime of 182Hf. In contrast, no 182W variations exist in the lunar mantle, demonstrating magma ocean solidification later than ∼60 Myr, in agreement with 147Sm-143Nd ages for ferroan anorthosites. The Moon-forming giant impact most likely erased any evidence of a prior differentiation of Earth’s mantle, consistent with a 146Sm-142Nd age of 50-200 Myr for the earliest differentiation of Earth’s mantle. However, the Hf-W chronology of the formation of Earth’s core and the Moon-forming impact is difficult to reconcile with the preservation of 146Sm-142Nd evidence for an early (<30 Myr after CAIs) differentiation of a chondritic Earth’s mantle. Instead, the combined 182W-142Nd evidence suggests that bulk Earth may have superchondritic Sm/Nd and Hf/W ratios, in which case formation of its core must have terminated more than ∼42 Myr after formation of CAIs, consistent with the Hf-W age for the formation of the Moon.  相似文献   

4.
Early Solar System chronology is usually built with the assumption that the distribution of short-lived radionuclides was homogeneous through the solar accretion disk. At present, there is no unambiguous evidence for a homogeneous distribution of short-lived radionuclides in the solar accretion disk, while some data point to a heterogeneous distribution of short-lived radionuclides. In this paper, we explore a possible chronology based on a heterogeneous distribution of 26Al and 53Mn in the accretion disk. Our basic assumption is that the different abundances of extinct short-lived radionuclides in calcium-aluminium-rich inclusions (CAIs) and chondrules are due to spatial rather than temporal differences. We develop a simple model where CAIs and chondrules form contemporaneously, in different spatial locations, and are characterised by distinct initial 26Al and 53Mn abundances. In this model, all evolved bodies are supposed to be originally chondritic, i.e., to be made of a mixture of CAIs, chondrules, and matrix. This mixture determines the initial content in 26Al and 53Mn of a chondritic parent-body as a function of its CAI and chondrule abundance fraction. This approach enables us to calculate coherent 26Al and 53Mn ages from the agglomeration of the parent-body precursors (CAIs and chondrules) until the isotopic closure of 26Al and 53Mn, thereafter called 26Al-53Mn age. We calculate such 26Al-53Mn ages for a diversity of evolved objects, with the constraint that they should be found for realistic chondritic parent-body precursors, i.e., objects having similar or identical petrograpy to the existing chondrite groups. The so defined age of the d’Orbigny angrite is 4.3 ± 1.1 Myr, for the Asuka-881394 eucrite 2.8 ± 1.0 Myr, for the H4 chondrite Sainte Marguerite ∼3 Myr, and for H4 Forest Vale ∼5 Myr. The calculated 26Al-53Mn ages give timescales for the evolution of the respective parent-bodies/meteorites that can be investigated in the light of further petrographic studies. We anchor the calculated relative chronology to an absolute chronology using absolute Pb-Pb ages and relative Hf-W ages of the objects under scrutiny. The precursors of Sainte Marguerite and Forest Vale agglomerated at the same time (∼4565.8 ± 1.2 Ma ago). The precursors of eucrites (Asuka-881394) agglomerated 4564.8 ± 1.2 Ma ago. The precursors of angrites agglomerated late (4561.5 ± 1.8 Ma ago). Our model provides a fully compatible Al-Mg/Mn-Cr/Pb-Pb chronology, and is shown to be robust to reasonable changes in the input parameters. The calculated initial 26Al/27Al ratios are high enough to have 26Al as a possible heat source for differentiation.  相似文献   

5.
This paper presents a review of recent available data on the first solid condensates of the Solar System, which include refractory CAIs (Ca–Al-rich Inclusions) mostly composed of Ca, Al, Mg, and Ti minerals. A theoretical condensation sequence calculated from thermodynamic data confirmed that CAIs formed as fine-grained aggregates in the protoplanetary disk from an 16О-rich gas of solar composition at temperatures >1300° K and pressures <10–4 bar. Based on the diversity of CAI types, their mineralogical, bulk chemical, and isotopic compositions, it can be concluded that CAIs experienced melting and evaporation, possibly by shock waves, which may have occurred in the protoplanetary disk within a brief time interval. Some CAIs may have experienced multiple events such as melting, evaporation, and recycling back to the disk by means of a bipolar outflow. The CAIs having an absolute age of 4567.30 ± 0.16 Myr are the oldest objects in the Solar System. The study of CAIs revealed two distinct oxygen isotope reservoirs (16О-rich and 16О-poor) and established a chronology of the sequence of processes forming individual CAI components using Mg–Al, Cr–Mn and Pb–Pb isotopic systematics.  相似文献   

6.
Origin and chronology of chondritic components: A review   总被引:1,自引:0,他引:1  
Mineralogical observations, chemical and oxygen-isotope compositions, absolute 207Pb-206Pb ages and short-lived isotope systematics (7Be-7Li, 10Be-10B, 26Al-26Mg, 36Cl-36S, 41Ca-41K, 53Mn-53Cr, 60Fe-60Ni, 182Hf-182W) of refractory inclusions [Ca,Al-rich inclusions (CAIs) and amoeboid olivine aggregates (AOAs)], chondrules and matrices from primitive (unmetamorphosed) chondrites are reviewed in an attempt to test (i) the x-wind model vs. the shock-wave model of the origin of chondritic components and (ii) irradiation vs. stellar origin of short-lived radionuclides. The data reviewed are consistent with an external, stellar origin for most short-lived radionuclides (7Be, 10Be, and 36Cl are important exceptions) and a shock-wave model for chondrule formation, and provide a sound basis for early Solar System chronology. They are inconsistent with the x-wind model for the origin of chondritic components and a local, irradiation origin of 26Al, 41Ca, and 53Mn. 10Be is heterogeneously distributed among CAIs, indicating its formation by local irradiation and precluding its use for the early solar system chronology. 41Ca-41K, and 60Fe-60Ni systematics are important for understanding the astrophysical setting of Solar System formation and origin of short-lived radionuclides, but so far have limited implications for the chronology of chondritic components. The chronological significance of oxygen-isotope compositions of chondritic components is limited. The following general picture of formation of chondritic components is inferred. CAIs and AOAs were the first solids formed in the solar nebula ∼4567-4568 Myr ago, possibly within a period of <0.1 Myr, when the Sun was an infalling (class 0) and evolved (class I) protostar. They formed during multiple transient heating events in nebular region(s) with high ambient temperature (at or above condensation temperature of forsterite), either throughout the inner protoplanetary disk (1-4 AU) or in a localized region near the proto-Sun (<0.1 AU), and were subsequently dispersed throughout the disk. Most CAIs and AOAs formed in the presence of an 16O-rich (Δ17O ∼ −24 ± 2‰) nebular gas. The 26Al-poor [(26Al/27Al)0 < 1 × 10−5], 16O-rich (Δ17O ∼ −24 ± 2‰) CAIs - FUN (fractionation and unidentified nuclear effects) CAIs in CV chondrites, platy hibonite crystals (PLACs) in CM chondrites, pyroxene-hibonite spherules in CM and CO chondrites, and the majority of grossite- and hibonite-rich CAIs in CH chondrites—may have formed prior to injection and/or homogenization of 26Al in the early Solar System. A small number of igneous CAIs in ordinary, enstatite and carbonaceous chondrites, and virtually all CAIs in CB chondrites are 16O-depleted (Δ17O > −10‰) and have (26Al/27Al)0 similar to those in chondrules (<1 × 10−5). These CAIs probably experienced melting during chondrule formation. Chondrules and most of the fine-grained matrix materials in primitive chondrites formed 1-4 Myr after CAIs, when the Sun was a classical (class II) and weak-lined T Tauri star (class III). These chondritic components formed during multiple transient heating events in regions with low ambient temperature (<1000 K) throughout the inner protoplanetary disk in the presence of 16O-poor (Δ17O > −5‰) nebular gas. The majority of chondrules within a chondrite group may have formed over a much shorter period of time (<0.5-1 Myr). Mineralogical and isotopic observations indicate that CAIs were present in the regions where chondrules formed and accreted (1-4 AU), indicating that CAIs were present in the disk as free-floating objects for at least 4 Myr. Many CAIs, however, were largely unaffected by chondrule melting, suggesting that chondrule-forming events experienced by a nebular region could have been small in scale and limited in number. Chondrules and metal grains in CB chondrites formed during a single-stage, highly-energetic event ∼4563 Myr ago, possibly from a gas-melt plume produced by collision between planetary embryos.  相似文献   

7.
We have found clear evidence of live 10Be in five normal Type A Calcium-aluminum-rich inclusions (CAIs), one normal Type B CAI, and one FUN Type A CAI, all from CV3 chondrites. The (10Be/9Be)0 ratios range from ∼0.36 × 10-3 to ∼0.77 × 10-3 and are similar to those found by previous workers. The (10Be/9Be)0 ratios do not correlate in a temporal fashion with (26Al/27Al)0, suggesting that 10Be and 26Al were produced by different mechanisms. An examination of possible sources for the short-lived radionuclides indicates that production of 10Be was almost certainly by particle irradiation, possibly within the solar system, and was probably accompanied by significant production of 41Ca and 53Mn. In contrast, all of the 60Fe, most of the 26Al, and some of the 53Mn were probably produced in stars and were imported into the solar system within presolar dust grains.  相似文献   

8.
We report oxygen- and magnesium-isotope compositions of Ca,Al-rich inclusions (CAIs) from several Rumuruti (R) chondrites measured in situ using a Cameca ims-1280 ion microprobe. On a three-isotope oxygen diagram, δ17O vs. δ18O, compositions of individual minerals in most R CAIs analyzed fall along a slope-1 line. Based on the variations of Δ17O values (Δ17O = δ17O − 0.52 × δ18O) within individual inclusions, the R CAIs are divided into (i) 16O-rich (Δ17O ∼ −23-26‰), (ii) uniformly 16O-depleted (Δ17O ∼ −2‰), and (iii) isotopically heterogeneous (Δ17O ranges from −25‰ to +5‰). One of the hibonite-rich CAIs, H030/L, has an intermediate Δ17O value of −12‰ and a highly fractionated composition (δ18O ∼ +47‰). We infer that like most CAIs in other chondrite groups, the R CAIs formed in an 16O-rich gaseous reservoir. The uniformly 16O-depleted and isotopically heterogeneous CAIs subsequently experienced oxygen-isotope exchange during remelting in an 16O-depleted nebular gas, possibly during R chondrite chondrule formation, and/or during fluid-assisted thermal metamorphism on the R chondrite parent asteroid.Three hibonite-bearing CAIs and one spinel-plagioclase-rich inclusion were analyzed for magnesium-isotope compositions. The CAI with the highly fractionated oxygen isotopes, H030/L, shows a resolvable excess of 26Mg (26Mg) corresponding to an initial 26Al/27Al ratio of ∼7 × 10−7. Three other CAIs show no resolvable excess of 26Mg (26Mg). The absence of 26Mg in the spinel-plagioclase-rich CAI from a metamorphosed R chondrite NWA 753 (R3.9) could have resulted from metamorphic resetting. Two other hibonite-bearing CAIs occur in the R chondrites (NWA 1476 and NWA 2446), which appear to have experienced only minor degrees of thermal metamorphism. These inclusions could have formed from precursors with lower than canonical 26Al/27Al ratio.  相似文献   

9.
We report both oxygen- and magnesium-isotope compositions measured in situ using a Cameca ims-1280 ion microprobe in 20 of 166 CAIs identified in 47 polished sections of 15 CR2 (Renazzo-type) carbonaceous chondrites. Two additional CAIs were measured for oxygen isotopes only. Most CR2 CAIs are mineralogically pristine; only few contain secondary phyllosilicates, sodalite, and carbonates - most likely products of aqueous alteration on the CR2 chondrite parent asteroid. Spinel, hibonite, grossite, anorthite, and melilite in 18 CAIs have 16O-rich (Δ17O = −23.3 ± 1.9‰, 2σ error) compositions and show no evidence for postcrystallization isotopic exchange commonly observed in CAIs from metamorphosed CV carbonaceous chondrites. The inferred initial 26Al/27Al ratios, (26Al/27Al)0, in 15 of 16 16O-rich CAIs measured are consistent with the canonical value of (4.5-5) × 10−5 and a short duration (<0.5 My) of CAI formation. These data do not support the “supra-canonical” values of (26Al/27Al)0 [(5.85-7) × 10−5] inferred from whole-rock and mineral isochrons of the CV CAIs. A hibonite-grossite-rich CAI El Djouf 001 MK #5 has uniformly 16O-rich (Δ17O = −23.0 ± 1.7‰) composition, but shows a deficit of 26Mg and no evidence for 26Al. Because this inclusion is 16O-rich, like CAIs with the canonical (26Al/27Al)0, we infer that it probably formed early, like typical CAIs, but from precursors with slightly nonsolar magnesium and lower-than-canonical 26Al abundance. Another 16O-enriched (Δ17O = −20.3 ± 1.2‰) inclusion, a spinel-melilite CAI fragment Gao-Guenie (b) #3, has highly-fractionated oxygen- and magnesium-isotope compositions (∼11 and 23‰/amu, respectively), a deficit of 26Mg, and a relatively low (26Al/27Al)0 = (2.0 ± 1.7) × 10−5. This could be the first FUN (Fractionation and Unidentified Nuclear effects) CAI found in CR2 chondrites. Because this inclusion is slightly 16O-depleted compared to most CR2 CAIs and has lower than the canonical (26Al/27Al)0, it may have experienced multistage formation from precursors with nonsolar magnesium-isotope composition and recorded evolution of oxygen-isotope composition in the early solar nebula over  My. Eight of the 166 CR2 CAIs identified are associated with chondrule materials, indicating that they experienced late-stage, incomplete melting during chondrule formation. Three of these CAIs show large variations in oxygen-isotope compositions (Δ17O ranges from −23.5‰ to −1.7‰), suggesting dilution by 16O-depleted chondrule material and possibly exchange with an 16O-poor (Δ17O > −5‰) nebular gas. The low inferred (26Al/27Al)0 ratios of these CAIs (<0.7 × 10−5) indicate melting >2 My after crystallization of CAIs with the canonical (26Al/27Al)0 and suggest evolution of the oxygen-isotope composition of the inner solar nebula on a similar or a shorter timescale. Because CAIs in CR2 and CV chondrites appear to have originated in a similarly 16O-rich reservoir and only a small number of CR2 and CV CAIs were affected by chondrule melting events in an 16O-poor gaseous reservoir, the commonly observed oxygen-isotope heterogeneity in CAIs from metamorphosed CV chondrites is most likely due to fluid-solid isotope exchange on the CV asteroidal body rather than gas-melt exchange. This conclusion does not preclude that some CV CAIs experienced oxygen-isotope exchange during remelting, instead it implies that such remelting is unlikely to be the dominant process responsible for oxygen-isotope heterogeneity in CV CAIs. The mineralogy, oxygen and magnesium-isotope compositions of CAIs in CR2 chondrites are different from those in the metal-rich, CH and CB carbonaceous chondrites, providing no justification for grouping CR, CH and CB chondrites into the CR clan.  相似文献   

10.
We have searched for excesses of 36S derived from the decay of extinct 36Cl in sodalite, a secondary Cl-rich mineral, in Ca-Al-rich inclusions (CAIs) from the Vigarano and Allende CV3 chondrites and in a chondrule from the Ningqiang carbonaceous chondrite. The presence of sodalite in two CAIs from Vigarano and its absence from surrounding CAI fragments suggests sodalite formation after CAI fragmentation. As for sodalite in the Allende Pink Angel CAI, oxygen isotopic compositions have been interpreted as indicative of high temperature interactions, thus suggesting formation prior to accretion to the parent body, probably in a nebular setting. Sodalite in the Ningqiang chondrule is considered to have formed via alkali-Ca exchange, which is believed to have occurred before accretion to the parent body.Sodalites in the Vigarano CAIs and in the Ningqiang chondrule show no clear evidence for the presence of radiogenic 36S. The inferred 2σ upper limits for 36Cl/35Cl at the time of sodalite formation are 1.6 × 10−6 (Vigarano CAIs) and 3.3 × 10−6 (Ningqiang chondrule), respectively. In the Pink Angel CAI sodalite exhibits small 36S excesses which weakly correlate with 35Cl/34S ratios. The inferred 36Cl/35Cl ratio of (1.8 ± 2.2) × 10−6 (2σ error) is lower than that found by Hsu et al. [Hsu, W., Guan, Y., Leshin, L. A., Ushikubo, T. and Wasserburg, G. J. (2006) A late episode of irradiation in the early solar system: Evidence from extinct 36Cl and 26Al in meteorites. Astrophys. J. 640, 525-529], thus indicative of heterogeneous distribution of 36Cl in this CAI. Spallation reactions induced by energetic particles from the young Sun are suggested for the origin of 36Cl, similar to the case of 10Be. While 10Be appears to be present in roughly equal abundance in all studied CAIs, our study indicates the level of 36Cl abundances to be variable so that there seems to be no simple relationship between 10Be and 36Cl. This would be expected if trapped cosmic rays rather than Early Solar System spallation were the dominant source of 10Be in the Early Solar System, since their contribution to 36Cl would have been tiny.If the variability of 36Cl abundances is caused by temporal differences in the alteration that formed sodalite, sodalite in the Vigarano CAIs and in the Ningqiang chondrule may have formed ?0.5 and ?0.2 Ma after formation of the sodalite in the Ningqiang CAI analyzed by Lin et al. [Lin, Y., Guan, Y., Leshin, L. A., Ouyang, Z. and Wang, D. (2005) Short-lived chlorine-36 in a Ca- and Al-rich inclusion from the Ningqiang carbonaceous chondrite. Proc. Natl. Acad. Sci. USA 102, 1306-1311]. The Pink Angel sodalite that we analyzed may have formed ∼0.3 Ma after formation of the sodalite in the Pink Angel analyzed by Hsu et al. [Hsu, W., Guan, Y., Leshin, L. A., Ushikubo, T. and Wasserburg G. J. (2006) A late episode of irradiation in the early solar system: Evidence from extinct 36Cl and 26Al in meteorites. Astrophys. J. 640, 525-529]. The estimated temporal differences suggest that alteration extended over at least 0.5 Ma. If previous works showing very low initial 36Cl/35Cl in the Allende CAIs and a H3 chondrite CAI are also considered, then alteration processes may have been more than 1.7 Ma.  相似文献   

11.
《Comptes Rendus Geoscience》2014,346(3-4):75-81
The time of the metal–silicate differentiation of the Eagle Station pallasite (ESP) parent body was investigated using the 26Al–26Mg short-lived chronometer (half-life of 0.72 Myr). The Mg isotope ratios were measured in ESP olivines by both MC–SIMS and HR-MC–ICPMS, allowing us to check the consistency between the results given by two different analytical protocols and data reduction processes. Results show that the two datasets are consistent, with a (δ26Mg*)av. value of –0.003 (± 0.005)‰ (2 s.e., n = 89). Such a value, associated with data from the 182Hf–182W short-lived systematics (half-life of 8.9 Myr), indicates an ESP parent body metal–silicate differentiation occurring most likely at least at ∼ 2 Ma, but possibly 4 Ma, after CAI formation. From the 27Al/24Mg ratios measured in ESP olivines using MC–SIMS, the duration of the olivine crystallization process was inferred to have lasted over ∼ 275 kyr if the core has differentiated as early as 2 Ma after CAIs, while in the case of a core differentiation occurring 4 Ma after CAIs, the silicate–silicate differentiation should have lasted for another 4 Myr.  相似文献   

12.
The timescale of accretion and differentiation of asteroids and the terrestrial planets can be constrained using the extinct 182Hf-182W isotope system. We present new Hf-W data for seven carbonaceous chondrites, five eucrites, and three shergottites. The W isotope data for the carbonaceous chondrites agree with the previously revised 182W/184W of chondrites, and the combined chondrite data yield an improved ?W value for chondrites of −1.9 ± 0.1 relative to the terrestrial standard. New Hf-W data for the eucrites, in combination with published results, indicate that mantle differentiation in the eucrite parent body (Vesta) occurred at 4563.2 ± 1.4 Ma and suggest that core formation took place 0.9 ± 0.3 Myr before mantle differentiation. Core formation in asteroids within the first ∼5 Myr of the solar system is consistent with the timescales deduced from W isotope data of iron meteorites. New W isotope data for the three basaltic shergottites EETA 79001, DaG 476, and SAU 051, in combination with published 182W and 142Nd data for Martian meteorites reveal the preservation of three early formed mantle reservoirs in Mars. One reservoir (Shergottite group), represented by Zagami, ALH77005, Shergotty, EETA 79001, and possibly SAU 051, is characterized by chondritic 142Nd abundances and elevated ?W values of ∼0.4. The 182W excess of this mantle reservoir results from core formation. Another mantle reservoir (NC group) is sampled by Nakhla, Lafayette, and Chassigny and shows coupled 142Nd-182W excesses of 0.5-1 and 2-3 ? units, respectively. Formation of this mantle reservoir occurred 10-20 Myr after CAI condensation. Since the end of core formation is constrained to 7-15 Myr, a time difference between early silicate mantle differentiation and core formation is not resolvable for Mars. A third early formed mantle reservoir (DaG group) is represented by DaG 476 (and possibly SAU 051) and shows elevated 142Nd/144Nd ratios of 0.5-0.7 ? units and ?W values that are indistinguishable from the Shergottite group. The time of separation of this third reservoir can be constrained to 50-150 Myr after the start of the solar system. Preservation of these early formed mantle reservoirs indicates limited convective mixing in the Martian mantle as early as ∼15 Myr after CAI condensation and suggests that since this time no giant impact occurred on Mars that could have led to mantle homogenization. Given that core formation in planetesimals was completed within the first ∼5 Myr of the solar system, it is most likely that Mars and Earth accreted from pre-differentiated planetesimals. The metal cores of Mars and Earth, however, cannot have formed by simply combining cores from these pre-differentiated planetesimals. The 182W/184W ratios of the Martian and terrestrial mantles require late effective removal of radiogenic 182W, strongly suggesting the existence of magma oceans on both planets. Large impacts were probably the main heat source that generated magma oceans and led to the formation metallic cores in the terrestrial planets. In contrast, decay of short-lived 26Al and 60Fe were important heat sources for melting and core formation in asteroids.  相似文献   

13.
While many uncertainties remain, a kinetic evaporation-condensation model is used to show that type A chondrules, and compact Type A and B calcium-aluminum-rich inclusions (CAIs) could have formed from CI-like precursors under conditions that are consistent with predictions for 2-3 AU in a canonical solar nebula. Type B and Al-rich chondrules, and Type C CAIs, on the other hand, may have formed from fractionated precursors. Based primarily on chondrule and CAI isotopic compositions, previous studies have reached different conclusions because they did not take into account the effects of gas-melt exchange.Assuming CI-like precursor compositions, equilibrium silicate melts with elemental compositions like those of type A chondrules could have formed over a wide range of conditions (T, Ptot, solid/gas/solar). Metal is not predicted to be stable when T ≥ 1600°C. When T < 1600°C, the abundances and compositions of metal in chondrules appear to be less successfully reproduced than the silicates, e.g., at a given temperature more metal is predicted in type II chondrules than is generally observed, and under some conditions type IIs are predicted to be more metal-rich than type Is. These differences could be overcome if type Is formed from precursors that were more reduced than CI, and if type IIs formed after significant metal-silicate fractionation.The formation conditions of molten CAIs are much more restricted than for chondrules, perhaps in part explaining their lower abundances. The Mg, Si and O isotopic mass fractionations in non-FUN CAIs can be reproduced if they formed between ∼1400 to 1500°C in regions where CAI-like equilibrium melts were stable, but they did not quite reach equilibrium with the gas. CAI formation times at Ptot = 10−4-10−3 bars are consistent with estimates of Type B CAI cooling times, but pressures much below this require formation times that are too long. The isotopic mass fractionations in FUN CAIs can be explained if they formed at or below the ranges of solid/gas/solar ratios where CAI-like equilibrium compositions are stable. Under these conditions, FUN inclusions undergo less gas-melt exchange than non-FUN CAIs. The FUN CAI formation temperatures are consistent with formation at 1400 to 1500°C, but may have been higher.Two general explanations for the distribution of O mass independent fractionations (MIF) in chondrules/CAIs have been explored: creation of the MIF before chondrule/CAI formation, and creation of the MIF during chondrule/CAI formation. If the MIF was established before chondrule/CAI formation, the most promising explanation is that H2O (presumably as ice) and silicate dust with MIFs of opposite sign are fractionated together from the remaining gas. On heating, the H2O now in the gas exchanges with the melt.If the MIF was generated during chondrule/CAI formation, it must be generated in the H2O, because it exchanges most rapidly with the melt, and mass balance requires creation of MIF of opposite sign in CO. Self-shielding from UV radiation is one possibility, but the effect may be quenched at high temperatures. Non-RRKM intramolecular kinetic isotope effects are another possibility, but a continuous source of radiation may be needed to prevent gas phase reactions from approaching equilibrium.  相似文献   

14.
We report on a study of Al3509, a large Na- and Cl-rich, radially-zoned object from the oxidized CV carbonaceous chondrite Allende. Al3509 consists of fine-grained ferroan olivine, ferroan Al-diopside, nepheline, sodalite, and andradite, and is crosscut by numerous veins of nepheline, sodalite, and ferroan Al-diopside. Some poorly-characterized phases of fine-grained material are also present; these phases contain no significant H2O. The minerals listed above are commonly found in Allende CAIs and chondrules and are attributed to late-stage iron-alkali-halogen metasomatic alteration of primary high-temperature minerals. Textural observations indicate that Al3509 is an igneous object. However, no residual crystals that might be relicts of pre-existing CAI or chondrule minerals were identified. To establish the levels of 26Al and 36Cl originally present, 26Al-26Mg and 36Cl-36S isotopic systematics in sodalite were investigated. Al3509 shows no evidence of radiogenic 26Mg, establishing an upper limit of the initial 26Al/27Al ratio of 3 × 10−6. All sodalite grains measured show large but variable excesses of 36S, which, however, do not correlate with 35Cl/34S ratio. If these excesses are due to decay of 36Cl, local redistribution of radiogenic 36S after 36Cl had decayed is required. The oxygen-isotope pattern in Al3509 is the same as found in secondary minerals resulting from iron-alkali-halogen metasomatic alteration of Allende CAIs and chondrules and in melilite and anorthite of most CAIs in Allende. The oxygen-isotope data suggest that the secondary minerals precipitated from or equilibrated with a fluid of similar oxygen-isotope composition. These observations suggest that the formation of Al3509 and alteration products in CAIs and chondrules in Allende requires a very similar fluid phase, greatly enriched in volatiles (e.g., Na and Cl) and with Δ17O ∼ −3‰. We infer that internal heating of planetesimals by 26Al would efficiently transfer volatiles to their outer portions and enhance the formation of volatile-enriched minerals there. We conclude that the site for the production of Na- and Cl-rich fluids responsible for the formation of Al3509 and the alteration of the Allende CAIs and chondrules must have been on a protoplanetary body prior to incorporation into the Allende meteorite. Galactic cosmic rays cannot be the source of the inferred initial 36Cl in Allende. The problem of 36Cl production by solar energetic particle (SEP) bombardment and the possibility that 36Cl and 41Ca might be the product of neutron capture resulting from SEP bombardment of protoplanetary surfaces are discussed. This hypothesis can be tested comparing inferred “initial” 36Cl with neutron fluencies measured on the same samples and on phases showing 36S by Sm and Gd isotopic measurements.  相似文献   

15.
We present high-precision Mg isotope data for most classes of basaltic meteorites including eucrites, mesosiderite silicate clasts, angrites and the ungrouped Northwest Africa (NWA) 2976 measured by pseudo-high-resolution multiple-collector inductively coupled plasma mass spectrometry and utilising improved techniques for chemical purification of Mg. With the exception of the angrites Angra dos Reis, Lewis Cliff (LEW) 86010, NWA 1296 and NWA 2999 and the diogenite Bilanga, which have either been shown to have young ages by other dating techniques or have low Al/Mg ratios, all bulk samples of basaltic meteorites have 26Mg excesses (δ26Mg=+0.0135 to +0.0392‰). The 26Mg excesses cannot be explained by analytical artefacts, cosmogenic effects or heterogeneity of initial 26Al/27Al, Al/Mg ratios or Mg isotopes in asteroidal parent bodies as compared to Earth or chondrites. The 26Mg excesses record asteroidal melting and formation of basaltic magmas with super-chondritic Al/Mg and confirm that radioactive decay of short-lived 26Al was the primary heat source that melted planetesimals. Model 26Al-26Mg ages for magmatism on the eucrite/mesosiderite, angrite and NWA 2976 parent bodies are 2.6-3.2, 3.9-4.1 and 3.5 Myr, respectively, after formation of calcium-aluminium-rich inclusions (CAIs). However, the validity of these model ages depends on whether the elevated Al/Mg ratios of basaltic meteorites result from magma ocean evolution on asteroids through fractional crystallisation or directly during partial melting. Mineral isochrons for the angrites Sahara (Sah) 99555 and D’Orbigny, and NWA 2976, yield ages of and , respectively, after CAI formation. Both isochrons have elevated initial δ26Mg values. Given the brecciated and equilibrated texture of NWA 2976 it is probable that its isochron age and elevated initial δ26Mg(+0.0175±0.0034) reflects thermal resetting during an impact event and slow cooling on its parent body. However, in the case of the angrites the marginally elevated initial δ26Mg(+0.0068±0.0058) may reflect either δ26Mg ingrowth in a magma ocean prior to eruption and crystallisation or in an older igneous protolith with super-chondritic Al/Mg prior to impact melting and crystallisation of these angrites, or partial internal re-equilibration of Mg isotopes after crystallisation. 26Al-26Mg model ages and an olivine + pyroxene + whole rock isochron for the angrites Sah 99555 and D’Orbigny are in good agreement with age constraints from 53Mn-53Cr and 182Hf-182W short-lived chronometers, suggesting that the 26Al-26Mg feldspar-controlled isochron ages for these angrites may be compromised by the partial resetting of feldspar Mg isotope systematics. Even when age constraints from the 26Al-26Mg angrite model ages or the mafic mineral + whole rock isochron are considered, the relative time difference between Sah 99555/D’Orbigny crystallisation and CAI formation cannot be reconciled with Pb-Pb ages for Sah 99555/D’Orbigny and CAIs, which are ca. 1.0 Myr too old (angrites) or too young (CAIs) for reasons that are not clear. This discrepancy might indicate that 26Al was markedly lower (ca. 40%) in the planetesimal- and planet-forming regions of the proto-planetary disc as compared to CAIs, or that CAI Pb-Pb ages may not accurately date CAI formation, which might be better dated by the 182Hf-182W and 26Al-26Mg chronometers as 4568.3±0.7 (Burkhardt et al., 2008) and (herein), respectively, when mapped onto an absolute timescale using Pb-Pb ages for angrites.  相似文献   

16.
Magnesium, potassium and calcium isotope compositions in terrestrial samples and refractory phases from primitive meteorites are determined using an ion microprobe. A thorough investigation of the different instrument parameters is carried out to ensure that conditions necessary for high mass resolution and high precision isotopic studies are adequately satisfied. The instrument can be tuned to achieve mass resolution (M/ΔM) of up to 10,000 (M≤60); it has a very good dynamic stability (ΔB/B≤10 ppm over durations of ≤40 minutes) and the counting system has an effective dead-time of ≤25 nsec and a dynamic background of ≤0·01 c/s. Reproducibility and precision of isotopic measurements are checked by analyzing magnesium and titanium isotopic compositions in terrestrial standards and isotopically doped silicate glasses. A precision of 2‰ (2σ m ) was achieved during magnesium isotopic analysis in samples with low Mg content (200 ppm). Results from studies of magnesium and potassium isotopic compositions in several Ca−Al-rich refractory inclusions (CAIs) from the primitive meteorites Efremovka and Grosnaja, representing some of the early solar system objects, are presented. The well-behaved Mg−Al isotopic systematics confirm the pristine nature of the Efremovka CAIs inferred earlier from petrographic and trace element studies. The Grosnaja CAIs that have experienced secondary alterations show disturbed magnesium isotopic systematics. Observation of excess26Mg in several of the analyzed CAIs confirms the presence of the now extinct26Al (t 1/2=7×105 years) in the solar nebula at the time of CAI formation. Our data also suggest a relatively uniform distribution of26Al in the solar nebula. Several Efremovka CAIs with excess26Mg also have excess41K resulting from the decay of41Ca (t 1/2≃105 years). This observation constrains the time interval between cessation of nucleosynthetic input to the solar nebula and the formation of some of the first solar system solids (CAIs) to less than a million years.  相似文献   

17.
Recent 182Hf-182W age determinations on Allende Ca-, Al-rich refractory inclusions (CAIs) and on iron meteorites indicate that CAIs have initial ε182W (−3.47 ± 0.20, 2σ) identical to that of magmatic iron meteorites after correction of cosmogenic 182W burn-out (−3.47 ± 0.35, 2σ). Either the Allende CAIs were isotopically disturbed or the differentiation of magmatic irons (groups IIAB, IID, IIIAB, and IVB) all occurred <1 m.y. after CAI formation. To assess the extent of isotopic disturbance, we have analyzed the elemental distribution of Hf and W in two CAIs, Ef2 from Efremovka (CV3 reduced), and Golfball from Allende (CV3 oxidized). Fassaite is the sole host of Hf (10-25 ppm) and, therefore, of radiogenic W in CAIs, with 180Hf/184W > 103, which is lowered by the ubiquitous presence of metal inclusions to 180Hf/184W > 10 in bulk fassaite. Metal alloy (Ni ∼ 50%) is the sole host of W (∼500 ppm) in Ef2, while opaque assemblages (OAs) and secondary veins are the hosts of W in Golfball. A large metal alloy grain from Ef2, EM2, has 180Hf/184W < 0.006. Melilite has both Hf and W below detection limits (<0.01 ppm), but the presence of numerous metallic inclusions or OAs makes melilite a carrier for W, with 180Hf/184W < 1 in bulk melilite. Secondary processes had little impact on the 182Hf-182W systematics of Ef2, but a vein cross-cutting fassaite in Golfball has >100 ppm W with no detectable Pt or S. This vein provides evidence for transport of oxidized W in the CAI. Because of the ubiquitous distribution of OAs, interpretations of the 182Hf-182W isochron reported for Allende CAIs include: (i) all W in the OAs was derived by alteration of CAI metal, or (ii) at least some of the W in OAs may have been equilibrated with radiogenic W during metamorphism of Allende. Since (ii) cannot be ruled out, new 182Hf-182W determinations on CAIs from reduced CV3 chondrites are needed to firmly establish the initial W isotopic composition of the solar system.  相似文献   

18.
The 26Al-26Mg isotope systematics in 33 petrographically and mineralogically characterized plagioclase-rich chondrules (PRCs) from 13 carbonaceous chondrites (CCs) - one ungrouped (Acfer 094), six CR, five CV, and one CO - reveal large variations in the initial 26Al/27Al ratio, (26Al/27Al)0. Well-resolved 26Mg excesses (δ26Mg) from the in situ decay of the short-lived nuclide 26Al (t1/2 ∼ 0.72 Ma) were found in nine chondrules, two from Acfer 094, five from the CV chondrites, Allende and Efremovka, and one each from the paired CR chondrites, EET 92147 and EET 92042, with (26Al/27Al)0 values ranging from ∼3 × 10−6 to ∼1.5 × 10−5. Data for seven additional chondrules from three CV and two CR chondrites show evidence suggestive of the presence of 26Al but do not yield well defined values for (26Al/27Al)0, while the remaining chondrules do not contain excess radiogenic 26Mg and yield corresponding upper limits of (11-2) × 10−6 for (26Al/27Al)0. The observed range of (26Al/27Al)0 in PRCs from CCs is similar to the range seen in chondrules from unequilibrated ordinary chondrites (UOCs) of low metamorphic grade (3.0-3.4). However, unlike the UOC chondrules, there is no clear trend between the (26Al/27Al)0 values in PRCs from CCs and the degree of thermal metamorphism experienced by the host meteorites. High and low values of (26Al/27Al)0 are found equally in PRCs from both CCs lacking evidence for thermal metamorphism (e.g., CRs) and CCs where such evidence is abundant (e.g., CVs). The lower (26Al/27Al)0 values in PRCs from CCs, relative to most CAIs, are consistent with a model in which 26Al was distributed uniformly in the nebula when chondrule formation began, approximately a million years after the formation of the majority of CAIs. The observed range of (26Al/27Al)0 values in PRCs from CCs is most plausibly explained in terms of an extended duration of ∼2-3 Ma for the formation of CC chondrules. This interval is in sharp contrast to most CAIs from CCs, whose formation appears to be restricted to a narrow time interval of less than 105 years. The active solar nebula appears to have persisted for a period approaching 4 Ma, encompassing the formation of both CAIs and chondrules present in CCs, and raising important issues related to the storage, assimilation and mixing of chondrules and CAIs in the early solar system.  相似文献   

19.
The oxygen isotopic micro-distributions within and among minerals in a coarse-grained Ca, Al-rich inclusion (CAI), 7R-19-1 from the Allende meteorite, were measured by in situ using secondary ion mass spectrometry (SIMS). All values of O isotopic ratios in 7R-19-1 minerals fall along the carbonaceous chondrite anhydrous mineral mixing (CCAM) line on a δ17OSMOW vs. δ18OSMOW plot. Major refractory minerals (spinel, fassaite and melilite) in 7R-19-1 showed large negative anomalies of Δ17O in the order, spinel (−21‰) > 16O-rich melilite (∼−18‰) > fassaite (−15 to +1‰) > 16O-poor melilite (−8 to +2‰). However, the lower limit values of Δ17O are similar at about −21‰, a value commonly observed in CAIs. The similarity in the extreme values of the isotope anomaly anomalies suggests that crystallization of all CAIs started from an 16O enrichment of 21‰ (Δ17O) relative to terrestrial values. The order of the O isotopic anomalies observed for 7R-19-1, except for 16O-poor melilite, is parallel to the crystallization sequence determined by experiment from CAI liquid (Stolper, 1982), indicating that the O isotopic exchange in 7R-19-1 occurred between CAI melt and surrounding gas while 7R-19-1 was crystallizing from the 16O enriched CAI liquid (∼−21‰ in Δ17O) in the 16O-poor solar nebula. However, the a single crystallization sequence during the cooling stage cannot explain the existence of 16O-poor melilite. The presence of 16O-poor melilite suggests that multiple heating events occurred during CAI formation. The sharp contact between 16O-rich and 16O-poor melilite crystals and within 16O-rich melilite indicates that these multiple heatings occurred quickly. Based on the O isotopic and chemical compositions, fassaite crystals were aggregates of relic crystals formed from CAI melt whichthat have had various O isotopic compositions from the remelting processes. The results of intra-mineral distributions of O isotopes also support multiple heating events during CAI formation.  相似文献   

20.
We develop a physical model of the thermal history of the ureilite parent body (UPB) that numerically tracks the history of its heating, hydration, dehydration, partial melting and smelting as a function of its formation time and the initial values of its composition, formation temperature and water ice content. Petrologic and chemical data from the main group (non-polymict) ureilite meteorites, which sample the interior of the UPB between depths corresponding to pressures in the range 3-10 MPa, are used to constrain the model. We find that to achieve the ∼30% melting inferred for ureilites from all sampled depths, the UPB must have had a radius between ∼80 and ∼130 km and must have accreted about 0.55 Ma after CAI formation. Melting began in the body at ∼1 Ma after CAI, and the time at which 30% melting was reached varied with depth in the asteroid but was always between ∼4.5 and ∼5.8 Ma after CAI. The total rate at which melt was produced in the UPB varied from more than 100 m3 s−1 in the very early stages of melting at ∼1 Ma after CAI to ∼5 m3 s−1 between 2 and 3 Ma after CAI, decreasing to extremely small values as the end of melting was approached beyond ∼5 Ma. Although the initial period of high melt production occupied only a short time around 1 Ma after CAI, it corresponded to ∼half (16%) of total silicate melting, and all strictly basaltic (i.e. plagioclase-saturated) melts must have been produced during this period.A very efficient melt transport network, consisting of a hierarchy of veins and larger pathways (dikes), developed quickly at the start of melting, ensuring rapid (timescales of months) transport of any single parcel of melt to shallow levels, thus ensuring that chemical interaction between melts and the rocks through which they subsequently passed was negligible. Volatile (mainly carbon monoxide) production due to smelting began at the start of silicate melting in the shallowest parts of the UPB and at later times at greater depths. Except at the very start and very end of melting, the volatile content of the melts produced was always high - generally between 15 and 35 mass % - and most of the melt produced was erupted at the surface of the UPB with speeds well in excess of the escape velocity and was lost into space. However, we show that 30% melting at the 3 MPa pressure level was only possible if ∼15% of the total melt produced in the asteroid was retained as a small number (∼5) of very extensive, sill-like intrusions centered at a depth of ∼7 km below the surface, near the base of the ∼8 km thick outer crust of the asteroid that was maintained at temperatures below the basalt solidus by conductive heat loss to the surface. The horizontal extents of these sills occupied about 75% of the surface area of the UPB, and the sills acted as buffers between the steady supply of melt from depth and the intermittent explosive eruption of the melt into space. We infer that samples from these intrusions are preserved as the rare feldspathic (loosely basaltic) clasts in polymict ureilites, and show that the cooling histories of the sills are consistent with these clasts reaching isotopic closure at ∼5 Ma after CAI, as given by 26Al-26Mg, 53Mn-53Cr and Pb-Pb age dates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号