首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
X-ray absorption fine structure (XAFS) spectroscopic analysis at the As, Se, and Mn K-edges was used to study arsenate [As(V)O43−] and selenite [Se(IV)O32−] sorption complexes on the synthetic hydrous manganese oxides (HMOs) vernadite (δ-MnO2) and K-birnessite (nominal composition: K4Mn14O27 · 9H2O). No significant changes were observed in sorption complex structure as a function of sorbent, pH (5 to 8), surface coverage (0.04 to 0.73 μmol/m2), or reaction time (5 to 22 h) in the arsenate or selenite systems. In the arsenate/HMO system, extended XAFS parameters indicate an average second-neighbor As(V) coordination of 2.0 ± 0.4 Mn at an average distance of 3.16 ± 0.01 Å, which is consistent with formation of As(V)O4 sorption complexes sharing corners with two adjacent Mn(IV)O6 surface species (i.e., bidentate, binuclear). In the selenite/HMO system, selenite surface complexes are surrounded by two shells of Mn atoms, which could represent two different adsorption complexes or a precipitate. The first shell consists of 1.6 ± 0.4 Mn at 3.07 ± 0.01 Å, which is consistent with the selenite anion forming bidentate (mononuclear) edge-sharing complexes with Mn(II)O6 or Mn(III)O6 octahedra. The second shell consists of 1.4 ± 0.4 Mn at 3.49 ± 0.03 Å, consistent with selenite forming monodentate, corner-sharing complexes with Mn(II)O6 or Mn(III)O6 octahedra. Pauling bond valence analysis that uses the extended XAFS-derived bond lengths for As(V)-O, Se(IV)-O, and Mn-O bonds indicates that the proposed surface complexes of selenite and arsenate on HMOs should be stable. Although a nearly identical Se(IV) coordination environment is found in a crystalline Mn(II)-Se(IV) precipitate (which has a structure similar to that of MnSeO3 · H2O), there are significant differences in the X-ray absorption near-edge structure and extended XAFS spectra of this precipitate and the selenite/HMO sorption samples. These differences coupled with transmission electron microscopy results suggest that if a precipitate is present it lacks long-range order characteristic of crystalline MnSeO3 · H2O.  相似文献   

2.
Equilibrium and kinetic Fe isotope fractionation between aqueous ferrous and ferric species measured over a range of chloride concentrations (0, 11, 110 mM Cl) and at two temperatures (0 and 22°C) indicate that Fe isotope fractionation is a function of temperature, but independent of chloride contents over the range studied. Using 57Fe-enriched tracer experiments the kinetics of isotopic exchange can be fit by a second-order rate equation, or a first-order equation with respect to both ferrous and ferric iron. The exchange is rapid at 22°C, ∼60-80% complete within 5 seconds, whereas at 0°C, exchange rates are about an order of magnitude slower. Isotopic exchange rates vary with chloride contents, where ferrous-ferric isotope exchange rates were ∼25 to 40% slower in the 11 mM HCl solution compared to the 0 mM Cl (∼10 mM HNO3) solutions; isotope exchange rates are comparable in the 0 and 110 mM Cl solutions.The average measured equilibrium isotope fractionations, ΔFe(III)-Fe(II), in 0, 11, and 111 mM Cl solutions at 22°C are identical within experimental error at +2.76±0.09, +2.87±0.22, and +2.76±0.06 ‰, respectively. This is very similar to the value measured by Johnson et al. (2002a) in dilute HCl solutions. At 0°C, the average measured ΔFe(III)-Fe(II) fractionations are +3.25±0.38, +3.51±0.14 and +3.56±0.16 ‰ for 0, 11, and 111 mM Cl solutions. Assessment of the effects of partial re-equilibration on isotope fractionation during species separation suggests that the measured isotope fractionations are on average too low by ∼0.20 ‰ and ∼0.13 ‰ for the 22°C and 0°C experiments, respectively. Using corrected fractionation factors, we can define the temperature dependence of the isotope fractionation from 0°C to 22°C as: where the isotopic fractionation is independent of Cl contents over the range used in these experiments. These results confirm that the Fe(III)-Fe(II) fractionation is approximately half that predicted from spectroscopic data, and suggests that, at least in moderate Cl contents, the isotopic fractionation is relatively insensitive to Fe-Cl speciation.  相似文献   

3.
Permanganate (MnO4) has widely been used as an effective oxidant for drinking water treatment systems, as well as for in situ treatment of groundwater impacted by various organic contaminants. The reaction stoichiometry of As(III) oxidation by permanganate has been assumed to be 1.5, based on the formation of solid product, which is putatively considered to be MnO2(s). This study determined the stoichiometric ratio (SR) of the oxidation reaction with varying doses of As(III) (3-300 μM) and MnO4 (0.5 or 300 μM) under circumneutral pH conditions (pH 4.5-7.5). We also characterized the solid product that was recovered ∼1 min after the oxidation of 2.16 mM As(III) by 0.97 mM MnO4 at pH 6.9 and examined the feasibility of secondary heterogeneous As(III) oxidation by the solid product. When permanganate was in excess of As(III), the SR of As(III) to Mn(VII) was 2.07 ± 0.07, regardless of the solution pH; however, it increased to 2.49 ± 0.09 when As(III) was in excess. The solid product was analogous to vernadite, a poorly crystalline manganese oxide based on XRD analysis. The average valence of structural Mn in the solid product corresponded to +III according to the splitting interval of the Mn3s peaks (5.5 eV), determined using X-ray photoelectron spectroscopy (XPS). The relative proportions of the structural Mn(IV):Mn(III):Mn(II) were quantified as 19:62:19 by fitting the Mn2p3/2 spectrum of the solid with the five multiplet binding energy spectra for each Mn valence. Additionally, the O1s spectrum of the solid was comparable to that of Mn-oxide but not of Mn-hydroxide. These results suggest that the solid product resembled a poorly crystalline hydrous Mn-oxide such as (MnII0.19MnIII0.62MnIV0.19)2O3·nH2O, in which Mn(II) and Mn(IV) were presumably produced from the disproportionation of aqueous phase Mn(III). Thermodynamic calculations also show that the formation of Mn(III) oxide is more favorable than that of Mn(IV) oxide from As(III) oxidation by permanganate under circumneutral pH conditions. Arsenic(III), when it remained in the solution after all of the permanganate was consumed, was effectively oxidized by the solid product. This secondary heterogeneous As(III) oxidation consisted of three steps: sorption to and oxidation on the solid surface and desorption of As(V) into solution, with the first step being the rate-limiting process as observed in As(III) oxidation by various Mn (oxyhydr)oxides reported elsewhere. We also discussed a potential reaction pathway of the permanganate oxidation of As(III).  相似文献   

4.
Siderophores are biogenic chelating agents produced in terrestrial and marine environments that increase the bioavailability of ferric iron. Recent work has suggested that both aqueous and solid-phase Mn(III) may affect siderophore-mediated iron transport, but scant information appears to be available about the potential roles of layer type manganese oxides, which are relatively abundant in soils and the oligotrophic marine water column. To probe the effects of layer type manganese oxides on the stability of aqueous Fe-siderophore complexes, we studied the sorption of ferrioxamine B [Fe(III)HDFOB+, an Fe(III) chelate of the trihydroxamate siderophore desferrioxamine B (DFOB)] to two synthetic birnessites [layer type Mn(III,IV) oxides] and a biogenic birnessite produced by Pseudomonas putida GB-1. We found that all of these predominantly Mn(IV) oxides greatly reduced the aqueous concentration of Fe(III)HDFOB+ at pH 8. Analysis of Fe K-edge EXAFS spectra indicated that a dominant fraction of Fe(III) associated with the Mn(IV) oxides is not complexed by DFOB as in solution, but instead Fe(III) is specifically adsorbed to the mineral structure at multiple sites, thus indicating that the Mn(IV) oxides displaced Fe(III) from the siderophore complex. These results indicate that layer type manganese oxides, including biogenic minerals, may sequester iron from soluble ferric complexes. We conclude that the sorption of iron-siderophore complexes may play a significant role in the bioavailability and biogeochemical cycling of iron in marine and terrestrial environments.  相似文献   

5.
Yavapaiite, KFe(SO4)2, is a rare mineral in nature, but its structure is considered as a reference for many synthetic compounds in the alum supergroup. Several authors mention the formation of yavapaiite by heating potassium jarosite above ca. 400°C. To understand the thermal decomposition of jarosite, thermodynamic data for phases in the K-Fe-S-O-(H) system, including yavapaiite, are needed. A synthetic sample of yavapaiite was characterized in this work by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and thermal analysis. Based on X-ray diffraction pattern refinement, the unit cell dimensions for this sample were found to be a = 8.152 ± 0.001 Å, b = 5.151 ± 0.001 Å, c = 7.875 ± 0.001 Å, and β = 94.80°. Thermal decomposition indicates that the final breakdown of the yavapaiite structure takes place at 700°C (first major endothermic peak), but the decomposition starts earlier, around 500°C. The enthalpy of formation from the elements of yavapaiite, KFe(SO4)2, ΔH°f = −2042.8 ± 6.2 kJ/mol, was determined by high-temperature oxide melt solution calorimetry. Using literature data for hematite, corundum, and Fe/Al sulfates, the standard entropy and Gibbs free energy of formation of yavapaiite at 25°C (298 K) were calculated as S°(yavapaiite) = 224.7 ± 2.0 J.mol−1.K−1 and ΔG°f = −1818.8 ± 6.4 kJ/mol. The equilibrium decomposition curve for the reaction jarosite = yavapaiite + Fe2O3 + H2O has been calculated, at pH2O = 1 atm, the phase boundary lies at 219 ± 2°C.  相似文献   

6.
A <2.0-mm fraction of a mineralogically complex subsurface sediment containing goethite and Fe(II)/Fe(III) phyllosilicates was incubated with Shewanella putrefaciens (strain CN32) and lactate at circumneutral pH under anoxic conditions to investigate electron acceptor preference and the nature of the resulting biogenic Fe(II) fraction. Anthraquinone-2,6-disulfonate (AQDS), an electron shuttle, was included in select treatments to enhance bioreduction and subsequent biomineralization. The sediment was highly aggregated and contained two distinct clast populations: (i) a highly weathered one with “sponge-like” internal porosity, large mineral crystallites, and Fe-containing micas, and (ii) a dense, compact one with fine-textured Fe-containing illite and nano-sized goethite, as revealed by various forms of electron microscopic analyses. Approximately 10-15% of the Fe(III)TOT was bioreduced by CN32 over 60 d in media without AQDS, whereas 24% and 35% of the Fe(III)TOT was bioreduced by CN32 after 40 and 95 d in media with AQDS. Little or no Fe2+, Mn, Si, Al, and Mg were evident in aqueous filtrates after reductive incubation. Mössbauer measurements on the bioreduced sediments indicated that both goethite and phyllosilicate Fe(III) were partly reduced without bacterial preference. Goethite was more extensively reduced in the presence of AQDS whereas phyllosilicate Fe(III) reduction was not influenced by AQDS. Biogenic Fe(II) resulting from phyllosilicate Fe(III) reduction remained in a layer-silicate environment that displayed enhanced solubility in weak acid. The mineralogic nature of the goethite biotransformation product was not determined. Chemical and cryogenic Mössbauer measurements, however, indicated that the transformation product was not siderite, green rust, magnetite, Fe(OH)2, or Fe(II) adsorbed on phyllosilicate or bacterial surfaces. Several lines of evidence suggested that biogenic Fe(II) existed as surface associated phase on the residual goethite, and/or as a Fe(II)-Al coprecipitate. Sediment aggregation and mineral physical and/or chemical factors were demonstrated to play a major role on the nature and location of the biotransformation reaction and its products.  相似文献   

7.
A Late Paleocene (∼60 Ma BP) lateritic soil from Northern Ireland (the Antrim paleosol, herein referred to as Nire) contains coexisting goethite, gibbsite, phyllosilicate, and hematite. The Fe(III) oxides exhibit pisolitic and Liesegang-type morphologies that are mutually exclusive in hand specimens. X-ray diffraction (XRD) measurements of Al substituted for Fe in goethite indicate two populations: (1) low-Al, Liesegang-type goethites (∼0 mol% Al) and (2) high-Al, pisolitic goethites (∼9 to ∼24 mol% Al). Selective dissolution and incremental vacuum dehydration-decarbonation were used to determine the concentration and δ13C values of CO2 occluded in the respective structures of the goethites and gibbsites in this complex mixture of Nire lateritic minerals. The Fe(CO3)OH component in the high-Al goethites appears to retain a proxy carbon isotopic record of vadose zone CO2 in the ancient soil. The δ13C values of CO2 occluded in coexisting goethites and gibbsites indicate that these minerals did not form in equilibrium with the same environmental CO2.The measured mole fractions (X) of Fe(CO3)OH in the high-Al goethites range from 0.0059 (±0.0005) to 0.0077 (±0.0006) and correspond to soil CO2 concentrations of ∼28,000 to ∼37,000 ppmV. The average values of X and δ13C for the four high-Al goethites are 0.0067 ± 0.0007 and −20.1 ± 0.5‰, respectively. The δ13C value of the organic matter undergoing oxidation in this midlatitude (∼55°N) Late Paleocene soil appears to have been ∼ −28.2‰. Taken together, these data indicate an atmospheric CO2 concentration of ∼2400 ppmV (± ∼1200 ppmV) at ∼60 Ma BP. The inferred high concentration of atmospheric CO2 would have been coincident with the warm global climate of the Late Paleocene and is consistent with the idea that CO2 plays an important role in climate variation.  相似文献   

8.
Application of the Fe isotope system to studies of natural rocks and fluids requires precise knowledge of equilibrium Fe isotope fractionation factors among various aqueous Fe species and minerals. These are difficult to obtain at the low temperatures at which Fe isotope fractionation is expected to be largest and requires careful distinction between kinetic and equilibrium isotope effects. A detailed investigation of Fe isotope fractionation between [FeIII(H2O)6]3+ and hematite at 98°C allows the equilibrium 56Fe/54Fe fractionation to be inferred, which we estimate at 103lnαFe(III)-hematite = −0.10 ± 0.20‰. We also infer that the slope of Fe(III)-hematite fractionation is modest relative to 106/T2, which would imply that this fractionation remains close to zero at lower temperatures. These results indicate that Fe isotope compositions of hematite may closely approximate those of the fluids from which they precipitated if equilibrium isotopic fractionation is assumed, allowing inference of δ56Fe values of ancient fluids from the rock record. The equilibrium Fe(III)-hematite fractionation factor determined in this study is significantly smaller than that obtained from the reduced partition function ratios calculated for [FeIII(H2O)6]3+ and hematite based on vibrational frequencies and Mössbauer shifts by [Polyakov 1997] and [Polyakov and Mineev 2000], and Schauble et al. (2001), highlighting the importance of experimental calibration of Fe isotope fractionation factors. In contrast to the long-term (up to 203 d) experiments, short-term experiments indicate that kinetic isotope effects dominate during rapid precipitation of ferric oxides. Precipitation of hematite over ∼12 h produces a kinetic isotope fractionation where 103lnαFe(III)-hematite = +1.32 ± 0.12‰. Precipitation under nonequilibrium conditions, however, can be recognized through stepwise dissolution in concentrated acids. As expected, our results demonstrate that dissolution by itself does not measurably fractionate Fe isotopes.  相似文献   

9.
The interaction of aqueous As(III) with magnetite during its precipitation from aqueous solution at neutral pH has been studied as a function of initial As/Fe ratio. Arsenite is sequestered via surface adsorption and surface precipitation reactions, which in turn influence the crystal growth of magnetite. Sorption samples were characterized using EXAFS spectroscopy at the As K-edge in combination with HRTEM observations, energy dispersive X-ray analysis at the nanoscale, electron energy loss spectroscopy at the Fe L3-edge, and XRD-Rietveld analyses of reaction products. Our results show that As(III) forms predominantly tridentate hexanuclear As(III)O3 complexes (3C), where the As(III)O3 pyramids occupy vacant tetrahedral sites on {1 1 1} surfaces of magnetite particles. This is the first time such a tridentate surface complex has been observed for arsenic. This complex, with a dominant As-Fe distance of 3.53 ± 0.02 Å, occurs in all samples examined except the one with the highest As/Fe ratio (0.33). In addition, at the two highest As/Fe ratios (0.133 and 0.333) arsenite tends to form mononuclear edge-sharing As(III)O3 species (2E) within a highly soluble amorphous As(III)-Fe(III,II)-containing precipitate. At the two lowest As/Fe ratios (0.007 and 0.033), our results indicate the presence of additional As(III) species with a dominant As-Fe distance of 3.30 ± 0.02 Å, for which a possible structural model is proposed. The tridentate 3C As(III)O3 complexes on the {1 1 1} magnetite surface, together with this additional As(III) species, dramatically lower the solubility of arsenite in the anoxic model systems studied. They may thus play an important role in lowering arsenite solubility in putative magnetite-based water treatment processes, as well as in natural iron-rich anoxic media, especially during the reductive dissolution-precipitation of iron minerals in anoxic environments.  相似文献   

10.
NiAl2O4 is a largely inverse spinel, which in detail shows increasing randomisation with temperature of Ni and Al between the octahedral and tetrahedral cation sites of the spinel structure. We have used powder XRD to determine this cation distribution in various samples of NiAl2O4 quenched after annealing between 700 and 1400° C. The inversion parameter (x) can be measured with a precision of ± 0.004 (one standard deviation), and a comparison of different methods of synthesis, X-ray diffraction and refinement techniques, suggests a probable accuracy of better than 0.01. The results are supported by some preliminary single crystal refinements on flux-grown samples.Below 800° C the rate of cation ordering becomes very slow, and, despite reaching an apparently steady state, it is doubtful if our samples attained complete internal equilibrium. Above 1250° C the cation redistribution becomes so fast that the quenching method becomes unreliable. Between 800 and 1250° C inclusive, the degree of inversion changes smoothly from 0.87 at 800° C to 0.79 at 1250° C, and is accompanied by linear changes in u, the oxygen parameter, from 0.2555 to 0.2563 (±0.0002), and a0, the lattice parameter, from 8.0462 to 8.0522 Å (±0.0002 Å).  相似文献   

11.
This study presents molecular orbital/density functional theory (MO/DFT) calculations of the electronic structure, vibrational frequencies, and equilibrium isotope fractionation factors for iron desferrioxamine B (Fe-DFO-B) complexes in aqueous solution. In general, there was good agreement between the predicted properties of Fe(III)-DFO-B and previously published experimental and theoretical results. The predicted fractionation factor for equilibrium between Fe(III)-DFO-B and Fe(III)-catecholate at 22 °C, 0.68 ± 0.25‰, was in good agreement with a previously measured isotopic difference between bacterial cells and solution during the bacterial-mediated dissolution of hornblende [Brantley S. L., Liermann L. and Bullen T. D. (2001) Fractionation of Fe isotopes by soil microbes and organic acids. Geology29, 535-538]. Conceptually, this agreement is consistent with the notion that Fe is first removed from mineral surfaces via complexation with small organic acids (e.g., oxalate), subsequently sequestered by DFO-B in solution, and ultimately delivered to bacterial cells by Fe(III)-DFO-B complexes. The ability of DFO-B to discriminate between Fe(III) and Fe(II)/Al(III) was investigated with Natural Bond Orbital (NBO) analysis and geometry calculations of each metal-DFO-B complex. The results indicated that higher affinity for Fe(III) is not strictly a function of bond length but also the degree of Fe-O covalent bonding.  相似文献   

12.
The potential for reduction of 99TcO4(aq) to poorly soluble 99TcO2 · nH2O(s) by biogenic sediment-associated Fe(II) was investigated with three Fe(III)-oxide containing subsurface materials and the dissimilatory metal-reducing subsurface bacterium Shewanella putrefaciens CN32. Two of the subsurface materials from the U.S. Department of Energy’s Hanford and Oak Ridge sites contained significant amounts of Mn(III,IV) oxides and net bioreduction of Fe(III) to Fe(II) was not observed until essentially all of the hydroxylamine HCl-extractable Mn was reduced. In anoxic, unreduced sediment or where Mn oxide bioreduction was incomplete, exogenous biogenic TcO2 · nH2O(s) was slowly oxidized over a period of weeks. Subsurface materials that were bioreduced to varying degrees and then pasteurized to eliminate biological activity, reduced TcO4(aq) at rates that generally increased with increasing concentrations of 0.5 N HCl-extractable Fe(II). Two of the sediments showed a common relationship between extractable Fe(II) concentration (in mM) and the first-order reduction rate (in h−1), whereas the third demonstrated a markedly different trend. A combination of chemical extractions and 57Fe Mössbauer spectroscopy were used to characterize the Fe(III) and Fe(II) phases. There was little evidence of the formation of secondary Fe(II) biominerals as a result of bioreduction, suggesting that the reactive forms of Fe(II) were predominantly surface complexes of different forms. The reduction rates of Tc(VII)O4 were slowest in the sediment that contained plentiful layer silicates (illite, vermiculite, and smectite), suggesting that Fe(II) sorption complexes on these phases were least reactive toward pertechnetate. These results suggest that the in situ microbial reduction of sediment-associated Fe(III), either naturally or via redox manipulation, may be effective at immobilizing TcO4(aq) associated with groundwater contaminant plumes.  相似文献   

13.
Oxidation of As(III) by natural manganese (hydr)oxides is an important geochemical reaction mediating the transformation of highly concentrated As(III) in the acidic environment such as acid mine drainage (AMD) and industrial As-contaminated wastewater, however, little is known regarding the presence of dissolved Fe(II) on the oxidation process. In this study, oxidation of As(III) in the absence and presence of Fe(II) by MnO2 under acidic conditions was investigated. Kinetic results showed that the presence of Fe(II) significantly inhibited the removal of As(III) (including oxidation and sorption) by MnO2 in As(III)-Fe(II) simultaneous oxidation system even at the molar ratio of Fe(II):As(III) = 1/64:1, and the inhibitory effects increased with the increasing ratios of Fe(II):As(III). Such an inhibition could be attributed to the formation of Fe(III) compounds covering the surface of MnO2 and thus preventing the oxidizing sites available to As(III). On the other hand, the produced Fe(III) compounds adsorbed more As(III) and the oxidized As(V) on the MnO2 surface with an increasing ratio of Fe(II):As(III) as demonstrated in kinetic and XPS results. TEM and EDX results confirmed the formation of Fe compounds around MnO2 particles or separated in solution in Fe(II) individual oxidation system, Fe(II) pre-treated and simultaneous oxidation processes, and schwertmannite was detected in Fe(II) individual and Fe pre-treated oxidation processes, while a new kind of mineral, probably amorphous FeOHAs or FeAsO4 particles were detected in Fe(II)-As(III) simultaneous oxidation process. This suggests that the mechanisms are different in Fe pre-treated and simultaneous oxidation processes. In the Fe pre-treated and MnO2-mediated oxidation pathway, As(III) diffused through a schwertmannite coating formed around MnO2 particles to be oxidized. The newly formed As(V) was adsorbed onto the schwertmannite coating until its sorption capacity was exceeded. Arsenic(V) then diffused out of the coating and was released into the bulk solution. The diffusion into the schwertmannite coating and the oxidation of As(III) and sorption of both As(V) and As(III) onto the coating contributed to the removal of total As from the solution phase. In the simultaneous oxidation pathway, the competitive oxidation of Fe(II) and As(III) on MnO2 occurred first, followed by the formation of FeOHAs or FeAsO4 around MnO2 particles, and these poorly crystalline particles of FeOHAs and FeAsO4 remained suspended in the bulk solution to adsorb As(III) and As(V). The present study reveals that the formation of Fe(III) compounds on mineral surfaces play an important role in the sorption and oxidation of As(III) by MnO2 under acidic conditions in natural environments, and the mechanisms involved in the oxidation of As(III) depend upon how Fe(II) is introduced into the As(III)-MnO2 system.  相似文献   

14.
The stoichiometry and stability of arsenic gaseous complexes were determined in the system As-H2O ± NaCl ± HCl ± H2S at temperatures up to 500°C and pressures up to 600 bar, from both measurements of As(III) and As(V) vapor-liquid and vapor-solid partitioning, and X-ray absorption fine structure (XAFS) spectroscopic study of As(III)-bearing aqueous fluids. Vapor-aqueous solution partitioning for As(III) was measured from 250 to 450°C at the saturated vapor pressure of the system (Psat) with a special titanium reactor that allows in situ sampling of the vapor phase. The values of partition coefficients for arsenious acid (H3AsO3) between an aqueous solution (pure H2O) and its saturated vapor (K = mAsvapor /mAsliquid) were found to be independent of As(III) solution concentrations (up to ∼1 to 2 mol As/kg) and equal to 0.012 ± 0.003, 0.063 ± 0.023, and 0.145 ± 0.020 at 250, 300, and 350°C, respectively. These results are interpreted by the formation, in the vapor phase, of As(OH)3(gas), similar to the aqueous As hydroxide complex dominant in the liquid phase. Arsenic chloride or sulfide gaseous complexes were found to be negligible in the presence of HCl or H2S (up to ∼0.5 mol/kg of vapor). XAFS spectroscopic measurements carried out on As(III)-H2O (±NaCl) solutions up to 500°C demonstrate that the As(OH)3 complex dominates As speciation both in dense H2O-NaCl fluids and low-density supercritical vapor. Vapor-liquid partition coefficients for As(III) measured in the H2O-NaCl system up to 450°C are consistent with the As speciation derived from these spectroscopic measurements and can be described by a simple relationship as a function of the vapor-to-liquid density ratio and temperature. Arsenic(III) partitioning between vapor and As-concentrated solutions (>2 mol As/kg) or As2O3 solid is consistent with the formation, in the vapor phase, of both As4O6 and As(OH)3. Arsenic(V) (arsenic acid, H3AsO4) vapor-liquid partitioning at 350°C for dilute aqueous solution was interpreted by the formation of AsO(OH)3 in the vapor phase.The results obtained were combined with the corresponding properties for the aqueous As(III) hydroxide species to generate As(OH)3(gas) thermodynamic parameters. Equilibrium calculations carried out by using these data indicate that As(OH)3(gas) is by far the most dominant As complex in both volcanic gases and boiling hydrothermal systems. This species is likely to be responsible for the preferential partition of arsenic into the vapor phase as observed in fluid inclusions from high-temperature (400 to 700°C) Au-Cu (-Sn, -W) magmatic-hydrothermal ore deposits. The results of this study imply that hydrolysis and hydration could be also important for other metals and metalloids in the H2O-vapor phase. These processes should be taken into account to accurately model element fractionation and chemical equilibria during magma degassing and fluid boiling.  相似文献   

15.
The influence of aqueous silica on the hydrolysis of iron(III) nitrate and chloride salts in dilute aqueous solutions (mFe ∼ 0.01 mol/kg) was studied at ambient temperature using X-ray absorption fine structure (XAFS) spectroscopy at the Fe K-edge. Results show that in Si-free iron nitrate and chloride solutions at acid pH (pH < 2.5), Fe is hexa-coordinated with 6 oxygens of H2O- and/or OH-groups in the first coordination sphere of the metal, at an Fe-O distance of 2.00 ± 0.01 Å. With increasing pH (2.7 < pH < 13), these groups are rapidly replaced by bridging hydroxyls (-OH-) or oxygens (-O-), and polymerized Fe hydroxide complexes form via Fe-(O/OH)-Fe bonds. In these polymers, the first atomic shell of iron represents a distorted octahedron with six O/OH groups and Fe-O distances ranging from 1.92 to 2.07 Å. The Fe octahedra are linked together by their edges (Fe-Fe distance 2.92-3.12 Å) and corners (Fe-Fe distance ∼3.47 ± 0.03 Å). The Fe-Fe coordination numbers (Nedge = 1-2; Ncorner = 0.5-0.7) are consistent with the dominant presence of iron dimers, trimers and tetramers at pH 2.5 to 2.9, and of higher-polymerized species at pH > 3.At pH > 2.5 in the presence of aqueous silica, important changes in Fe(III) hydrolysis are detected. In 0.05-m Si solutions (pH ∼ 2.7-3.0), the corner linkages between Fe octahedra in the polymeric complexes disappear, and the Fe-Fe distances corresponding to the edge linkages slightly increase (Fe-Feedge ∼ 3.12-3.14 Å). The presence of 1 to 2 silicons at 3.18 ± 0.03 Å is detected in the second atomic shell around iron. At basic pH (∼12.7), similar structural changes are observed for the iron second shell. The Fe-Si and Fe-Fe distances and coordination numbers derived in this study are consistent with (1) Fe-Si complex stoichiometries Fe2Si1-2 and Fe3Si2-3 at pH < 3; (2) structures composed of Fe-Fe dimers and trimers sharing one or two edges of FeO6-octahedra; and (3) silicon tetrahedra linked to two neighboring Fe octahedra via corners. At higher Si concentration (0.16 m, polymerized silica solution) and pH ∼ 3, the signal of the Fe second shell vanishes indicating the destruction of the Fe-Fe bonds and the formation of different Fe-Si linkages. Moreover, ∼20 mol.% of Fe is found to be tetrahedrally coordinated with oxygens in the first coordination shell (RFe-O = 1.84 Å). This new finding implies that Fe may partially substitute for Si in the tetrahedral network of the silica polymers in Si-rich solutions.The results of this study demonstrate that aqueous silica can significantly inhibit iron polymerization and solid-phase formation, and thus increase the stability and mobility of Fe(III) in natural waters. The silica “poisoning” of the free corner sites of iron-hydroxide colloids should reduce the adsorption and incorporation of trace elements by these colloids in Si-rich natural waters.  相似文献   

16.
Sorption and desorption processes are an important part of biological and geochemical metallic isotope cycles. Here, we address the dynamic aspects of metallic isotopic fractionation in a theoretical and experimental study of Fe sorption and desorption during the transport of aqueous Fe(III) through a quartz-sand matrix. Transport equations describing the behavior of sorbing isotopic species in a water saturated homogeneous porous medium are presented; isotopic fractionation of the system (Δsorbedmetal-soln) being defined in terms of two parameters: (i) an equilibrium fractionation factor, αe; and (ii) a kinetic sorption factor, α1. These equations are applied in a numerical model that simulates the sorption-desorption of Fe isotopes during injection of a Fe(III) solution pulse into a quartz matrix at pH 0-2 and explores the effects of the kinetic and equilibrium parameters on the Fe-isotope evolution of porewater. The kinetic transport theory is applied to a series of experiments in which pulses of Na and Fe(III) chloride solutions were injected into a porous sand grain column. Fractionation factors of αe = 1.0003 ± 0.0001 and α1 = 0.9997 ± 0.0004 yielded the best fit between the transport model and the Fe concentration and δ56Fe data. The equilibrium fractionation (Δ56FesorbedFe-soln) of 0.3‰ is comparable with values deduced for adsorption of metallic cations on iron and manganese oxide surfaces and suggests that sandstone aquifers will fractionate metallic isotopes during sorption-desorption reactions. The ability of the equilibrium fractionation factor to describe a natural system, however, depends on the proximity to equilibrium, which is determined by the relative time scales of mass transfer and chemical reaction; low fluid transport rates should produce a system that is less dependent on kinetic effects. The results of this study are applicable to Fe-isotope fractionation in clastic sediments formed in highly acidic conditions; such conditions may have existed on Mars where acidic oxidizing ground and surface waters may have been responsible for clastic sedimentation and metallic element transport.  相似文献   

17.
The Fe(II) adsorption by non-ferric and ferric (hydr)oxides has been analyzed with surface complexation modeling. The CD model has been used to derive the interfacial distribution of charge. The fitted CD coefficients have been linked to the mechanism of adsorption. The Fe(II) adsorption is discussed for TiO2, γ-AlOOH (boehmite), γ-FeOOH (lepidocrocite), α-FeOOH (goethite) and HFO (ferrihydrite) in relation to the surface structure and surface sites. One type of surface complex is formed at TiO2 and γ-AlOOH, i.e. a surface-coordinated Fe2+ ion. At the TiO2 (Degussa) surface, the Fe2+ ion is probably bound as a quattro-dentate surface complex. The CD value of Fe2+ adsorbed to γ-AlOOH points to the formation of a tridentate complex, which might be a double edge surface complex. The adsorption of Fe(II) to ferric (hydr)oxides differs. The charge distribution points to the transfer of electron charge from the adsorbed Fe(II) to the solid and the subsequent hydrolysis of the ligands that coordinate to the adsorbed ion, formerly present as Fe(II). Analysis shows that the hydrolysis corresponds to the hydrolysis of adsorbed Al(III) for γ-FeOOH and α-FeOOH. In both cases, an adsorbed M(III) is found in agreement with structural considerations. For lepidocrocite, the experimental data point to a process with a complete surface oxidation while for goethite and also HFO, data can be explained assuming a combination of Fe(II) adsorption with and without electron transfer. Surface oxidation (electron transfer), leading to adsorbed Fe(III)(OH)2, is favored at high pH (pH > ∼7.5) promoting the deprotonation of two FeIII-OH2 ligands. For goethite, the interaction of Fe(II) with As(III) and vice versa has been modeled too. To explain Fe(II)-As(III) dual-sorbate systems, formation of a ternary type of surface complex is included, which is supposed to be a monodentate As(III) surface complex that interacts with an Fe(II) ion, resulting in a binuclear bidentate As(III) surface complex.  相似文献   

18.
X-ray Absorption Fine Structure (XAFS) spectroscopy was used in combination with high resolution transmission electron microscopy (HRTEM), electron energy loss spectroscopy (EELS), X-ray energy dispersive spectroscopy (XEDS), X-ray powder diffraction, and Mössbauer spectroscopy to obtain detailed information on arsenic and iron speciation in the products of anaerobic reduction of pure and As(V)- or As(III)-adsorbed lepidocrocite (γ-FeOOH) by Shewanella putrefaciens ATCC 12099. We found that this strain of S. putrefaciens is capable of using Fe(III) in lepidocrocite and As(V) in solution or adsorbed on lepidocrocite surfaces as electron acceptors. Bioreduction of lepidocrocite in the absence of arsenic resulted in the formation of hydroxycarbonate green rust 1 [FeII4FeIII2(OH)12CO3: GR1(CO3)], which completely converted into ferrous-carbonate hydroxide (FeII2(OH)2CO3: FCH) over nine months. This study thus provides the first evidence of bacterial reduction of stoichiometric GR1(CO3) into FCH. Bioreduction of As(III)-adsorbed lepidocrocite also led to the formation of GR1(CO3) prior to formation of FCH, but the presence of As(III) slows down this transformation, leading to the co-occurrence of both phases after 22-month of aging. At the end of this experiment, As(III) was found to be adsorbed on the surfaces of GR1(CO3) and FCH. After five months, bioreduction of As(V)-bearing lepidocrocite led directly to the formation of FCH in association with nanometer-sized particles of a minor As-rich Fe(OH)2 phase, with no evidence for green rust formation. In this five-month experiment, As(V) was fully converted to As(III), which was dominantly sorbed at the surface of the Fe(OH)2 nanoparticles as oligomers binding to the edges of Fe(OH)6 octahedra at the edges of the octahedral layers of Fe(OH)2. These multinuclear As(III) surface complexes are characterized by As-As pairs at a distance of 3.32 ± 0.02 Å and by As-Fe pairs at a distance of 3.50 ± 0.02 Å and represent a new type of As(III) surface complex. Chemical analyses show that the majority of As(III) produced in the experiments with As present is associated with iron-bearing hydroxycarbonate or hydroxide solids, reinforcing the idea that, at least under some circumstances, bacterial reduction can promote As(III) sequestration instead of mobilizing it into solution.  相似文献   

19.
The application of stable Fe isotopes as a tracer of the biogeochemical Fe cycle necessitates a mechanistic knowledge of natural fractionation processes. We studied the equilibrium Fe isotope fractionation upon sorption of Fe(II) to aluminum oxide (γ-Al2O3), goethite (α-FeOOH), quartz (α-SiO2), and goethite-loaded quartz in batch experiments, and performed continuous-flow column experiments to study the extent of equilibrium and kinetic Fe isotope fractionation during reactive transport of Fe(II) through pure and goethite-loaded quartz sand. In addition, batch and column experiments were used to quantify the coupled electron transfer-atom exchange between dissolved Fe(II) (Fe(II)aq) and structural Fe(III) of goethite. All experiments were conducted under strictly anoxic conditions at pH 7.2 in 20 mM MOPS (3-(N-morpholino)-propanesulfonic acid) buffer and 23 °C. Iron isotope ratios were measured by high-resolution MC-ICP-MS. Isotope data were analyzed with isotope fractionation models. In batch systems, we observed significant Fe isotope fractionation upon equilibrium sorption of Fe(II) to all sorbents tested, except for aluminum oxide. The equilibrium enrichment factor, , of the Fe(II)sorb-Fe(II)aq couple was 0.85 ± 0.10‰ (±2σ) for quartz and 0.85 ± 0.08‰ (±2σ) for goethite-loaded quartz. In the goethite system, the sorption-induced isotope fractionation was superimposed by atom exchange, leading to a δ56/54Fe shift in solution towards the isotopic composition of the goethite. Without consideration of atom exchange, the equilibrium enrichment factor was 2.01 ± 0.08‰ (±2σ), but decreased to 0.73 ± 0.24‰ (±2σ) when atom exchange was taken into account. The amount of structural Fe in goethite that equilibrated isotopically with Fe(II)aq via atom exchange was equivalent to one atomic Fe layer of the mineral surface (∼3% of goethite-Fe). Column experiments showed significant Fe isotope fractionation with δ56/54Fe(II)aq spanning a range of 1.00‰ and 1.65‰ for pure and goethite-loaded quartz, respectively. Reactive transport of Fe(II) under non-steady state conditions led to complex, non-monotonous Fe isotope trends that could be explained by a combination of kinetic and equilibrium isotope enrichment factors. Our results demonstrate that in abiotic anoxic systems with near-neutral pH, sorption of Fe(II) to mineral surfaces, even to supposedly non-reactive minerals such as quartz, induces significant Fe isotope fractionation. Therefore we expect Fe isotope signatures in natural systems with changing concentration gradients of Fe(II)aq to be affected by sorption.  相似文献   

20.
Assessing the influence of CO2 on soil and aquifer geochemistry is a task of increasing interest when considering risk assessment for geologic carbon sequestration. Leakage and CO2 ascent can lead to soil acidification and mobilization of potentially toxic metals and metalloids due to desorption or dissolution reactions. We studied the CO2 influence on an Fe(III) (oxyhydr)oxide rich, gleyic Fluvisol sampled in close vicinity to a Czech mofette site and compared the short-term CO2 influence in laboratory experiments with observations on long-term influence at the natural site. Six week batch experiments with/without CO2 gas flow at 3 different temperatures and monitoring of liquid phase metal(loid) concentrations revealed two main short-term mobilization processes. Within 1 h to 1 d after CO2 addition, mobilization of weakly adsorbed metal cations occurred due to surface protonation, most pronounced for Mn (2.5–3.3 fold concentration increase, mobilization rates up to 278 ± 18 μg Mn kgsoil−1 d−1) and strongest at low temperatures. However, total metal(loid) mobilization by abiotic desorption was low. After 1–3 d significant Fe mobilization due to microbially-triggered Fe(III) (oxyhydr)oxide dissolution began and continued throughout the experiment (up to 111 ± 24 fold increase or up to 1.9 ± 0.6 mg Fe kgsoil−1 d−1). Rates increased at higher temperature and with a higher content of organic matter. The Fe(III) mineral dissolution was coupled to co-release of incorporated metal(loid)s, shown for As (up to 16 ± 7 fold, 11 ± 8 μg As kgsoil−1 d−1). At high organic matter content, re-immobilization due to resorption reactions could be observed for Cu. The already low pH (4.5–5.0) did not change significantly during Fe(III) reduction due to buffering from sorption and dissolution reactions, but a drop in redox potential (from > +500 mV to minimum +340 ± 20 mV) occurred due to oxygen depletion. We conclude that microbial processes following CO2 induction into a soil can contribute significantly to metal(loid) mobilization, especially at optimal microbial growth conditions (moderate temperature, high organic carbon content) and should be considered for carbon sequestration monitoring and risk assessment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号