首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An 18 million year record of the Ca isotopic composition (δ44/42Ca) of planktonic foraminiferans from ODP site 925, in the Atlantic, on the Ceara Rise, provides the opportunity for critical analysis of Ca isotope-based reconstructions of the Ca cycle. δ44/42Ca in this record averages +0.37 ± 0.05 (1σ SD) and ranges from +0.21‰ to +0.52‰. The record is a good match to previously published Neogene Ca isotope records based on foraminiferans, but is not similar to the record based on bulk carbonates, which has values that are as much as 0.25‰ lower. Bulk carbonate and planktonic foraminiferans from core tops differ slightly in their δ44/42Ca (i.e., by 0.06 ± 0.06‰ (n = 5)), while the difference between bulk carbonate and foraminiferan values further back in time is markedly larger, leaving open the question of the cause of the difference. Modeling the global Ca cycle from downcore variations in δ44/42Ca by assuming fixed values for the isotopic composition of weathering inputs (δ44/42Caw) and for isotope fractionation associated with the production of carbonate sediments (Δsed) results in unrealistically large variations in the total mass of Ca2+ in the oceans over the Neogene. Alternatively, variations of ±0.05‰ in the Ca isotope composition of weathering inputs or in the extent of fractionation of Ca isotopes during calcareous sediment formation could entirely account for variations in the Ca isotopic composition of marine carbonates. Ca isotope fractionation during continental weathering, such as has been recently observed, could easily result in variations in δ44/42Caw of a few tenths of permil. Likewise a difference in the fractionation factors associated with aragonite versus calcite formation could drive shifts in Δsed of tenths of permil with shifts in the relative output of calcite and aragonite from the ocean. Until better constraints on variations in δ44/42Caw and Δsed have been established, modeling the Ca2+ content of seawater from Ca isotope curves should be approached cautiously.  相似文献   

2.
We investigate the sensitivity of U/Ca, Mg/Ca, and Sr/Ca to changes in seawater [CO32−] and temperature in calcite produced by the two planktonic foraminifera species, Orbulina universa and Globigerina bulloides, in laboratory culture experiments. Our results demonstrate that at constant temperature, U/Ca in O. universa decreases by 25 ± 7% per 100 μmol [CO32−] kg−1, as seawater [CO32−] increases from 110 to 470 μmol kg−1. Results from G. bulloides suggest a similar relationship, but U/Ca is consistently offset by ∼+40% at the same environmental [CO32−]. In O. universa, U/Ca is insensitive to temperature between 15°C and 25°C. Applying the O. universa relationship to three U/Ca records from a related species, Globigerinoides sacculifer, we estimate that Caribbean and tropical Atlantic [CO32−] was 110 ± 70 μmol kg−1 and 80 ± 40 μmol kg−1 higher, respectively, during the last glacial period relative to the Holocene. This result is consistent with estimates of the glacial-interglacial change in surface water [CO32−] based on both modeling and on boron isotope pH estimates. In settings where the addition of U by diagenetic processes is not a factor, down-core records of foraminiferal U/Ca have potential to provide information about changes in the ocean’s carbonate concentration.Below ambient pH (pH < 8.2), Mg/Ca decreased by 7 ± 5% (O. universa) to 16 ± 6% (G. bulloides) per 0.1 unit increase in pH. Above ambient pH, the change in Mg/Ca was not significant for either species. This result suggests that Mg/Ca-based paleotemperature estimates for the Quaternary, during which surface-ocean pH has been at or above modern levels, have not been biased by variations in surface-water pH. Sr/Ca increased linearly by 1.6 ± 0.4% per 0.1 unit increase in pH. Shell Mg/Ca increased exponentially with temperature in O. universa, where Mg/Ca = 0.85 exp (0.096*T), whereas the change in Sr/Ca with temperature was within the reproducibility of replicate measurements.  相似文献   

3.
Pedogenic goethites in each of two Early Permian paleosols appear to record mixing of two isotopically distinct CO2 components—atmospheric CO2 and CO2 from in situ oxidation of organic matter. The δ13C values measured for the Fe(CO3)OH component in solid solution in these Permian goethites are −13.5‰ for the Lower Leonardian (∼283 Ma BP) paleosol (MCGoeth) and −13.9‰ for the Upper Leonardian (∼270 Ma BP) paleosol (SAP). These goethites contain the most 13C-rich Fe(CO3)OH measured to date for pedogenic goethites crystallized in soils exhibiting mixing of the two aforementioned CO2 components. δ13C measured for 43 organic matter samples in the Lower Leonardian (Waggoner Ranch Fm.) has an average value of −20.3 ± 1.1‰ (1s). The average value yields a calculated Early Permian atmospheric Pco2 value of about 1 × PAL, but the scatter in the measured δ13C values of organic matter permits a calculated maximum Pco2 of 11 × PAL (PAL = present atmospheric level). Measured values of the mole fraction of Fe(CO3)OH in MCGoeth and SAP correspond to soil CO2 concentrations in the Early Permian paleosol profiles of 54,000 and 50,000 ppmV, respectively. Such high soil CO2 concentrations are similar to modern soils in warm, wet environments.The average δ13C values of pedogenic calcite from 9 paleosol profiles stratigraphically associated with MCGoeth (Waggoner Ranch Fm.) range from −6.5‰ to −4.4‰, with a mean δ13C value for all profiles of −5.4‰. Thus, the value of Δ13C between the pedogenic calcite data set and MCGoeth is 8.1 (±0.9)‰, which is in reasonable accord with the value of 7.7‰ expected if atmospheric Pco2 and organic matter δ13C values were the same for both paleosol types. Furthermore, the atmospheric Pco2 calculated for the Early Permian from the average measured carbon isotopic compositions of the paleosol calcite and organic matter is also analytically indistinguishable from 1 × PAL, with a maximum calculated atmospheric Pco2 (permitted by one standard deviation of the organic matter δ13C value) of ∼5 × PAL.If, however, measured average δ13C values of the plant organic matter are more positive than the original soil organic matter as a result of diagenetic loss of 13C-depleted, labile organic compounds, calculated Permian atmospheric Pco2 using these 13C-enriched organic values would underestimate the actual atmospheric Pco2 using either goethite or calcite. This is the first stratigraphically constrained, intrabasinal study to compare ancient atmospheric CO2 concentrations calculated from pedogenic goethite and calcite. These results demonstrate that the two different proxies record the same information about atmospheric CO2.The Fe(CO3)OH component in pedogenic goethite from a Triassic paleosol in Utah is significantly enriched in 13C relative to Fe(CO3)OH in goethites from soils in which there are mixtures of two isotopic CO2 components. Field-relationships and the δ13C value (−1.9‰) of the Triassic goethite indicate that this ancient paleosol profile experienced mixing of three isotopically distinct CO2 components at the time of goethite crystallization. The three components were probably atmospheric CO2, CO2 from in situ oxidation of organic matter and CO2 from in situ dissolution of preexisting calcite. Although mixing of three isotopically distinct CO2 components, as recorded by Fe(CO3)OH in goethite, has been described in modern soil, this is the first example from a documented paleosol. Its preservation affirms the need for careful, case-by-case assessment of ancient paleosols to establish that goethite in any particular soil is likely to be a valid proxy of atmospheric Pco2.  相似文献   

4.
We investigate the Logatchev Hydrothermal Field at the Mid-Atlantic Ridge, 14°45′N to constrain the calcium isotope hydrothermal flux into the ocean. During the transformation of seawater to a hydrothermal solution, the Ca concentration of pristine seawater ([Ca]SW) increases from about 10 mM to about 32 mM in the hydrothermal fluid endmember ([Ca]HydEnd) and thereby adopts a δ44/40CaHydEnd of −0.95 ± 0.07‰ relative to seawater (SW) and a 87Sr/86Sr isotope ratio of 0.7034(4). We demonstrate that δ44/40CaHydEnd is higher than that of the bedrock at the Logatchev field. From mass balance calculations, we deduce a δ44/40Ca of −1.17 ± 0.04‰ (SW) for the host-rocks in the reaction zone and −1.45 ± 0.05‰ (SW) for the isotopic composition of the entire hydrothermal cell of the Logatchev field. The values are isotopically lighter than the currently assumed δ44/40Ca for Bulk Earth of −0.92 ± 0.18‰ (SW) [Skulan J., DePaolo D. J. and Owens T. L. (1997) Biological control of calcium isotopic abundances in the global calcium cycle. Geochim. Cosmochim. Acta61,(12) 2505-2510] and challenge previous assumptions of no Ca isotope fractionation between hydrothermal fluid and the oceanic crust [Zhu P. and Macdougall J. D. (1998) Calcium isotopes in the marine environment and the oceanic calcium cycle. Geochim. Cosmochim. Acta62,(10) 1691-1698; Schmitt A. -D., Chabeaux F. and Stille P. (2003) The calcium riverine and hydrothermal isotopic fluxes and the oceanic calcium mass balance. Earth Planet. Sci. Lett. 6731, 1-16]. Here we propose that Ca isotope fractionation along the fluid flow pathway of the Logatchev field occurs during the precipitation of anhydrite. Two anhydrite samples from the Logatchev Hydrothermal Field show an average fractionation of about Δ44/40Ca = −0.5‰ relative to their assumed parental solutions. Ca isotope ratios in aragonites from carbonate veins from ODP drill cores indicate aragonite precipitation directly from seawater at low temperatures with an average δ44/40Ca of −1.54 ± 0.08‰ (SW). The relatively large fractionation between the aragonite precipitates and seawater in combination with their frequent abundance in weathered mafic and ultramafic rocks suggest a reconsideration of the marine Ca isotope budget, in particular with regard to ocean crust alteration.  相似文献   

5.
Ca isotope fractionation during inorganic calcite formation was experimentally studied by spontaneous precipitation at various precipitation rates (1.8 < log R < 4.4 μmol/m2/h) and temperatures (5, 25, and 40 °C) with traces of Sr using the CO2 diffusion technique.Results show that in analogy to Sr/Ca [see Tang J., Köhler S. J. and Dietzel M. (2008) Sr2+/Ca2+ and 44Ca/40Ca fractionation during inorganic calcite formation: I. Sr incorporation. Geochim. Cosmochim. Acta] the 44Ca/40Ca fractionation during calcite formation can be followed by the Surface Entrapment Model (SEMO). According to the SEMO calculations at isotopic equilibrium no fractionation occurs (i.e., the fractionation coefficient αcalcite-aq = (44Ca/40Ca)s/(44Ca/40Ca)aq = 1 and Δ44/40Cacalcite-aq = 0‰), whereas at disequilibrium 44Ca is fractionated in a primary surface layer (i.e., the surface entrapment factor of 44Ca, F44Ca < 1). As a crystal grows at disequilibrium, the surface-depleted 44Ca is entrapped into the newly formed crystal lattice. 44Ca depletion in calcite can be counteracted by ion diffusion within the surface region. Our experimental results show elevated 44Ca fractionation in calcite grown at high precipitation rates due to limited time for Ca isotope re-equilibration by ion diffusion. Elevated temperature results in an increase of 44Ca ion diffusion and less 44Ca fractionation in the surface region. Thus, it is predicted from the SEMO that an increase in temperature results in less 44Ca fractionation and the impact of precipitation rate on 44Ca fractionation is reduced.A highly significant positive linear relationship between absolute 44Ca/40Ca fractionation and the apparent Sr distribution coefficient during calcite formation according to the equation
Δ44/40Cacalcite-aq=(1.90±0.26)·logDSr2.83±0.28  相似文献   

6.
The mineral barite (BaSO4) accommodates calcium in its crystal lattice, providing an archive of Ca-isotopes in the highly stable sulfate mineral. Holocene marine (pelagic) barite samples from the major ocean basins are isotopically indistinguishable from each other (δ44/40Ca = −2.01 ± 0.15‰) but are different from hydrothermal and cold seep barite samples (δ44/40Ca = −4.13 to −2.72‰). Laboratory precipitated (synthetic) barite samples are more depleted in the heavy Ca-isotopes than pelagic marine barite and span a range of Ca-isotope compositions, Δ44/40Ca = −3.42 to −2.40‰. Temperature, saturation state, , and aCa2+/aBa2+ each influence the fractionation of Ca-isotopes in synthetic barite; however, the fractionation in marine barite samples is not strongly related to any measured environmental parameter. First-principles lattice dynamical modeling predicts that at equilibrium Ca-substituted barite will have much lower 44Ca/40Ca than calcite, by −9‰ at 0 °C and −8‰ at 25 °C. Based on this model, none of the measured barite samples appear to be in isotopic equilibrium with their parent solutions, although as predicted they do record lower δ44/40Ca values than seawater and calcite. Kinetic fractionation processes therefore most likely control the extent of isotopic fractionation exhibited in barite. Potential fractionation mechanisms include factors influencing Ca2+ substitution for Ba2+ in barite (e.g. ionic strength and trace element concentration of the solution, competing complexation reactions, precipitation or growth rate, temperature, pressure, and saturation state) as well as nucleation and crystal growth rates. These factors should be considered when investigating controls on isotopic fractionation of Ca2+ and other elements in inorganic and biogenic minerals.  相似文献   

7.
Exploring the potentials of new methods in palaeothermometry is essential to improve our understanding of past climate change. Here, we present a refinement of the published δ44/40Ca-temperature calibration investigating modern specimens of planktonic foraminifera Globigerinoides sacculifer and apply this to sea surface temperature (SST) reconstructions over the last two glacial-interglacial cycles. Reproduced measurements of modern G. sacculifer collected from surface waters describe a linear relationship for the investigated temperature range (19.0-28.5 °C): δ44/40Ca [‰] = 0.22 (±0.05)∗SST [°C] −4.88. Thus a change of δ44/40Ca[‰] of 0.22 (±0.05) corresponds to a relative change of 1 °C. The refined δ44/40Camodern-calibration allows the determination of both relative temperature changes and absolute temperatures in the past. This δ44/40Camodern-calibration for G. sacculifer has been applied to the tropical East Atlantic sediment core GeoB1112 for which other SST proxy data are available. Comparison of the different data sets gives no indication for significant secondary overprinting of the δ44/40Ca signal. Long-term trends in reconstructed SST correlate strongly with temperature records derived from oxygen isotopes and Mg/Ca ratios supporting the methods validity. The observed change of SST of approximately 3 °C at the Holocene-last glacial maximum transition reveals additional evidence for the important role of the tropical Atlantic in triggering global climate change, based on a new independent palaeothermometer.  相似文献   

8.
Atmospheric carbon dioxide is widely studied using records of CO2 mixing ratio, δ13C and δ18O. However, the number and variability of sources and sinks prevents these alone from uniquely defining the budget. Carbon dioxide having a mass of 47 u (principally 13C18O16O) provides an additional constraint. In particular, the mass 47 anomaly (Δ47) can distinguish between CO2 produced by high temperature combustion processes vs. low temperature respiratory processes. Δ47 is defined as the abundance of mass 47 isotopologues in excess of that expected for a random distribution of isotopes, where random distribution means that the abundance of an isotopologue is the product of abundances of the isotopes it is composed of and is calculated based on the measured 13C and 18O values. In this study, we estimate the δ13C (vs. VPDB), δ18O (vs. VSMOW), δ47, and Δ47 values of CO2 from car exhaust and from human breath, by constructing ‘Keeling plots’ using samples that are mixtures of ambient air and CO2 from these sources. δ47 is defined as , where is the R47 value for a hypothetical CO2 whose δ13CVPDB = 0, δ18OVSMOW = 0, and Δ47 = 0. Ambient air in Pasadena, CA, where this study was conducted, varied in [CO2] from 383 to 404 μmol mol−1, in δ13C and δ18O from −9.2 to −10.2‰ and from 40.6 to 41.9‰, respectively, in δ47 from 32.5 to 33.9‰, and in Δ47 from 0.73 to 0.96‰. Air sampled at varying distances from a car exhaust pipe was enriched in a combustion source having a composition, as determined by a ‘Keeling plot’ intercept, of −24.4 ± 0.2‰ for δ13C (similar to the δ13C of local gasoline), δ18O of 29.9 ± 0.4‰, δ47 of 6.6 ± 0.6‰, and Δ47 of 0.41 ± 0.03‰. Both δ18O and Δ47 values of the car exhaust end-member are consistent with that expected for thermodynamic equilibrium at∼200 °C between CO2 and water generated by combustion of gasoline-air mixtures. Samples of CO2 from human breath were found to have δ13C and δ18O values broadly similar to those of car exhaust-air mixtures, −22.3 ± 0.2 and 34.3 ± 0.3‰, respectively, and δ47 of 13.4 ± 0.4‰. Δ47 in human breath was 0.76  ± 0.03‰, similar to that of ambient Pasadena air and higher than that of the car exhaust signature.  相似文献   

9.
Calcium isotope fractionation in calcite and aragonite   总被引:1,自引:0,他引:1  
Calcium isotope fractionation was measured on skeletal aragonite and calcite from different marine biota and on inorganic calcite. Precipitation temperatures ranged from 0 to 28°C. Calcium isotope fractionation shows a temperature dependence in accordance with previous observations: 1000 · ln(αcc) = −1.4 + 0.021 · T (°C) for calcite and 1000 · ln(αar) = −1.9 + 0.017 · T (°C) for aragonite. Within uncertainty the temperature slopes are identical for the two polymorphs. However, at all temperatures calcium isotopes are more fractionated in aragonite than in calcite. The offset in δ44/40Ca is about 0.6‰. The underlying mechanism for this offset may be related to the different coordination numbers and bond strengths of the calcium ions in calcite and aragonite crystals, or to different Ca reaction behavior at the solid-liquid interface. Recently, the observed temperature dependence of the Ca isotope fractionation was explained quantitatively by the temperature control on precipitation rates of calcium carbonates in an experimental setting (Lemarchand et al., 2004). We show that this mechanism can in principle also be applied to CaCO3 precipitation in natural environments in normal marine settings. Following this model, Ca isotope fractionation in marine Ca carbonates is primarily controlled by precipitation rates. On the other hand the larger Ca isotope fractionation of aragonite compared to calcite can not be explained by different precipitation rates. The rate control model of Ca isotope fractionation predicts a strong dependence of the Ca isotopic composition of carbonates on ambient CO32− concentration. While this model is in general accordance with our observations in marine carbonates, cultured specimens of the planktic foraminifer Orbulina universa show no dependence of Ca-isotope fractionation on the ambient CO32− concentration. The latter observation implies that the carbonate chemistry in the calcifying vesicles of the foraminifer is independent from the ambient carbonate ion concentration of the surrounding water.  相似文献   

10.
The chemical and isotopic composition of speleothem calcite and particularly that of stalagmites and flowstones is increasingly exploited as an archive of past environmental change in continental settings. Despite intensive research, including modelling and novel approaches, speleothem data remain difficult to interpret. A possible way foreword is to apply a multi-proxy approach including non-conventional isotope systems. For the first time, we here present a complete analytical dataset of magnesium isotopes (δ26Mg) from a monitored cave in NW Germany (Bunker Cave). The data set includes δ26Mg values of loess-derived soil above the cave (−1.0 ± 0.5‰), soil water (−1.2 ± 0.5‰), the carbonate hostrock (−3.8 ± 0.5‰), dripwater in the cave (−1.8 ± 0.2‰), speleothem low-Mg calcite (stalactites, stalagmites; −4.3 ± 0.6‰), cave loam (−0.6 ± 0.1‰) and runoff water (−1.8 ± 0.1‰) in the cave, respectively. Magnesium-isotope fractionation processes during weathering and interaction between soil cover, hostrock and solute-bearing soil water are non-trivial and depend on a number of variables including solution residence times, dissolution rates, adsorption effects and potential neo-formation of solids in the regolith and the carbonate aquifer. Apparent Mg-isotope fractionation between dripwater and speleothem low-Mg calcite is about 1000lnαMg-cc-Mg(aq) = −2.4‰. A similar Mg-isotope fractionation (1000lnαMg-cc-Mg(aq) ≈ −2.1‰) is obtained by abiogenic precipitation experiments carried out at aqueous Mg/Ca ratios and temperatures close to cave conditions. Accordingly, 26Mg discrimination during low-Mg calcite formation in caves is highly related to inorganic fractionation effects, which may comprise dehydration of Mg2+ prior to incorporation into calcite, surface entrapment of light isotopes and reaction kinetics. Relevance of kinetics is supported by a significant negative correlation of Mg-isotope fractionation with the precipitation rate for inorganic precipitation experiments.  相似文献   

11.
We present the first systematic study of Ca isotopes (δ44/40Ca) in Late Triassic to Late Cretaceous dinosaur bones and teeth (enamel and dentin) from sympatric herbivorous and carnivorous dinosaurs. The samples derive from five different localities, and data from embedding sediments are also presented. Additional δ44/40Ca in skeletal tissues from modern reptiles and birds (avian dinosaurs) were measured for comparison in order to examine whether the original Ca isotopic composition in dinosaur skeletal apatite was preserved or might have changed during the diagenesis and fossilization process.δ44/40Ca of fossil skeletal tissues range from −1.62‰ (Tyrannosaurus rex enamel) to +1.08‰ (Brachiosaurus brancai bone), while values in modern archosaur bones and teeth range from −1.63‰ (caiman enamel) to −0.37‰ (ostrich bone). The average δ44/40Ca of the three types of fossil skeletal tissue analyzed - bone, dentin and enamel - show some systematic differences: while δ44/40Ca in bone exhibits the highest values, while δ44/40Ca in enamel has the lowest values, and dentin δ44/40Ca falls in between. Values of δ44/40Ca in the remains of herbivorous dinosaurs (0.1-1.1‰) are generally higher than those of bones of modern mammalian herbivores (−2.6‰ to −0.8‰) and from modern herbivorous archosaurs, which exhibit intermediate δ44/40Ca (−0.8‰ to −0.4‰). These systematic isotopic shifts may reflect physiological differences between dinosaurs, mammals and reptiles representing different taxonomic groups of vertebrates.Systematic offsets in skeletal apatite δ44/40Ca between herbivorous and carnivorous dinosaurs are not obvious, indicating a lack of a clear-cut Trophic Level Effect (TLE) shift between herbivores and carnivores in dinosaurs. This observation can be explained if the carnivorous dinosaurs in this study fed mainly on soft tissues from their prey and did not ingest hard (calcified) tissue to much extent. The most striking indication that the primary δ44/40Ca is actually preserved in most of the fossil teeth is a difference in δ44/40Ca of about 0.35 ± 0.10‰ (1SD) between dentin and enamel, based upon 11 of 16 analyzed dentin-enamel pairs. This difference is close to that found in modern reptiles (0.28 ± 0.05‰), and strongly suggests that this tell-tale signature is a primary feature of the fossilized dinosaur material as well. Furthermore, simple mass balance calculations show that changes of the original δ44/40Ca in bones and teeth by diagenetically-formed calcium-bearing minerals are either small or would require implausible high original δ44/40Ca values in the skeletal apatite.  相似文献   

12.
We present high-precision measurements of Mg and Fe isotopic compositions of olivine, orthopyroxene (opx), and clinopyroxene (cpx) for 18 lherzolite xenoliths from east central China and provide the first combined Fe and Mg isotopic study of the upper mantle. δ56Fe in olivines varies from 0.18‰ to −0.22‰ with an average of −0.01 ± 0.18‰ (2SD, n = 18), opx from 0.24‰ to −0.22‰ with an average of 0.04 ± 0.20‰, and cpx from 0.24‰ to −0.16‰ with an average of 0.10 ± 0.19‰. δ26Mg of olivines varies from −0.25‰ to −0.42‰ with an average of −0.34 ± 0.10‰ (2SD, n = 18), opx from −0.19‰ to −0.34‰ with an average of −0.25 ± 0.10‰, and cpx from −0.09‰ to −0.43‰ with an average of −0.24 ± 0.18‰. Although current precision (∼±0.06‰ for δ56Fe; ±0.10‰ for δ26Mg, 2SD) limits the ability to analytically distinguish inter-mineral isotopic fractionations, systematic behavior of inter-mineral fractionation for both Fe and Mg is statistically observed: Δ56Feol-cpx = −0.10 ± 0.12‰ (2SD, n = 18); Δ56Feol-opx = −0.05 ± 0.11‰; Δ26Mgol-opx = −0.09 ± 0.12‰; Δ26Mgol-cpx = −0.10 ± 0.15‰. Fe and Mg isotopic composition of bulk rocks were calculated based on the modes of olivine, opx, and cpx. The average δ56Fe of peridotites in this study is 0.01 ± 0.17‰ (2SD, n = 18), similar to the values of chondrites but slightly lower than mid-ocean ridge basalts (MORB) and oceanic island basalts (OIB). The average δ26Mg is −0.30 ± 0.09‰, indistinguishable from chondrites, MORB, and OIB. Our data support the conclusion that the bulk silicate Earth (BSE) has chondritic δ56Fe and δ26Mg.The origin of inter-mineral fractionations of Fe and Mg isotopic ratios remains debated. δ56Fe between the main peridotite minerals shows positive linear correlations with slopes within error of unity, strongly suggesting intra-sample mineral-mineral Fe and Mg isotopic equilibrium. Because inter-mineral isotopic equilibrium should be reached earlier than major element equilibrium via chemical diffusion at mantle temperatures, Fe and Mg isotope ratios of coexisting minerals could be useful tools for justifying mineral thermometry and barometry on the basis of chemical equilibrium between minerals. Although most peridotites in this study exhibit a narrow range in δ56Fe, the larger deviations from average δ56Fe for three samples likely indicate changes due to metasomatic processes. Two samples show heavy δ56Fe relative to the average and they also have high La/Yb and total Fe content, consistent with metasomatic reaction between peridotite and Fe-rich and isotopically heavy melt. The other sample has light δ56Fe and slightly heavy δ26Mg, which may reflect Fe-Mg inter-diffusion between peridotite and percolating melt.  相似文献   

13.
The calcium isotopic compositions (δ44Ca) of 30 high-purity nannofossil ooze and chalk and 7 pore fluid samples from ODP Site 807A (Ontong Java Plateau) are used in conjunction with numerical models to determine the equilibrium calcium isotope fractionation factor (αs−f) between calcite and dissolved Ca2+ and the rates of post-depositional recrystallization in deep sea carbonate ooze. The value of αs−f at equilibrium in the marine sedimentary section is 1.0000 ± 0.0001, which is significantly different from the value (0.9987 ± 0.0002) found in laboratory experiments of calcite precipitation and in the formation of biogenic calcite in the surface ocean. We hypothesize that this fractionation factor is relevant to calcite precipitation in any system at equilibrium and that this equilibrium fractionation factor has implications for the mechanisms responsible for Ca isotope fractionation during calcite precipitation. We describe a steady state model that offers a unified framework for explaining Ca isotope fractionation across the observed precipitation rate range of ∼14 orders of magnitude. The model attributes Ca isotope fractionation to the relative balance between the attachment and detachment fluxes at the calcite crystal surface. This model represents our hypothesis for the mechanism responsible for isotope fractionation during calcite precipitation. The Ca isotope data provide evidence that the bulk rate of calcite recrystallization in freshly-deposited carbonate ooze is 30-40%/Myr, and decreases with age to about 2%/Myr in 2-3 million year old sediment. The recrystallization rates determined from Ca isotopes for Pleistocene sediments are higher than those previously inferred from pore fluid Sr concentration and are consistent with rates derived for Late Pleistocene siliciclastic sediments using uranium isotopes. Combining our results for the equilibrium fractionation factor and recrystallization rates, we evaluate the effect of diagenesis on the Ca isotopic composition of marine carbonates at Site 807A. Since calcite precipitation rates in the sedimentary column are many orders of magnitude slower than laboratory experiments and the pore fluids are only slightly oversaturated with respect to calcite, the isotopic composition of diagenetic calcite is likely to reflect equilibrium precipitation. Accordingly, diagenesis produces a maximum shift in δ44Ca of +0.15‰ for Site 807A sediments but will have a larger impact where sedimentation rates are low, seawater circulates through the sediment pile, or there are prolonged depositional hiatuses.  相似文献   

14.
We measured Ca stable isotope ratios (δ44/40Ca) in an ancient (2 My), hyperarid soil where the primary source of mobile Ca is atmospheric deposition. Most of the Ca in the upper meter of this soil (3.5 kmol m−2) is present as sulfates (2.5 kmol m−2), and to a lesser extent carbonates (0.4 kmol m−2). In aqueous extracts of variably hydrated calcium sulfate minerals, δ44/40CaE values (vs. bulk Earth) increase with depth (1.4 m) from a minimum of −1.91‰ to a maximum of +0.59‰. The trend in carbonate-δ44/40Ca in the top six horizons resembles that of sulfate-δ44/40Ca, but with values 0.1-0.6‰ higher. The range of observed Ca isotope values in this soil is about half that of δ44/40Ca values observed on Earth. Linear correlation among δ44/40Ca, δ34S and δ18O values indicates either (a) a simultaneous change in atmospheric input values for all three elements over time, or (b) isotopic fractionation of all three elements during downward transport. We present evidence that the latter is the primary cause of the isotopic variation that we observe. Sulfate-δ34S values are positively correlated with sulfate-δ18O values (R2 = 0.78) and negatively correlated with sulfate δ44/40CaE values (R2 = 0.70). If constant fractionation and conservation of mass with downward transport are assumed, these relationships indicate a δ44/40Ca fractionation factor of −0.4‰ in CaSO4. The overall depth trend in Ca isotopes is reproduced by a model of isotopic fractionation during downward Ca transport that considers small and infrequent but regularly recurring rainfall events. Near surface low Ca isotope values are reproduced by a Rayleigh model derived from measured Ca concentrations and the Ca fractionation factor predicted by the relationship with S isotopes. This indicates that the primary mechanism of stable isotope fractionation in CaSO4 is incremental and effectively irreversible removal of an isotopically enriched dissolved phase by downward transport during small rainfall events.  相似文献   

15.
The calcium isotope ratios (δ44Ca = [(44Ca/40Ca)sample/(44Ca/40Ca)standard −1] · 1000) of Orbulina universa and of inorganically precipitated aragonite are positively correlated to temperature. The slopes of 0.019 and 0.015‰ °C−1, respectively, are a factor of 13 and 16 times smaller than the previously determined fractionation from a second foraminifera, Globigerinoides sacculifer, having a slope of about 0.24‰ °C−1. The observation that δ44Ca is positively correlated to temperature is opposite in sign to the oxygen isotopic fractionation (δ18O) in calcium carbonate (CaCO3). These observations are explained by a model which considers that Ca2+-ions forming ionic bonds are affected by kinetic fractionation only, whereas covalently bound atoms like oxygen are affected by kinetic and equilibrium fractionation. From thermodynamic consideration of kinetic isotope fractionation, it can be shown that the slope of the enrichment factor α(T) is mass-dependent. However, for O. universa and the inorganic precipitates, the calculated mass of about 520 ± 60 and 640 ± 70 amu (atomic mass units) is not compatible with the expected ion mass for 40Ca and 44Ca. To reconcile this discrepancy, we propose that Ca diffusion and δ44Ca isotope fractionation at liquid/solid transitions involves Ca2+-aquocomplexes (Ca[H2O]n2+ · mH2O) rather than pure Ca2+-ion diffusion. From our measurements we calculate that such a hypothesized Ca2+-aquocomplex correlates to a hydration number of up to 25 water molecules (490 amu). For O. universa we propose that their biologically mediated Ca isotope fractionation resembles fractionation during inorganic precipitation of CaCO3 in seawater. To explain the different Ca isotope fractionation in O. universa and in G. sacculifer, we suggest that the latter species actively dehydrates the Ca2+-aquocomplex before calcification takes place. The very different temperature response of Ca isotopes in the two species suggests that the use of δ44Ca as a temperature proxy will require careful study of species effects.  相似文献   

16.
The experiments were conducted in the open CO2 system to find out the equilibrium fractionation between the carbonate ion and CO2(g). The existence of isotopic equilibrium was checked using the two-direction approach by passing the CO2−N2 gases with different δ13C compositions (− 1.5‰ and − 23‰) through the carbonate solution with δ13C = − 4.2‰. The ΔCO3T2−−CO2(g) equilibrium fractionation is given as 6.03 ± 0.17‰ at 25 °C. Discussion is provided about the significance of carbonate complexing in determination of ΔCO3T2−−CO2(g) and ΔHCO3T−CO2(g) fractionations. Finally, an isotope numerical model of flow and kinetics of hydration and dehydroxylation is built to predict the isotopic behaviour of the system with time.  相似文献   

17.
Isotopic and chemical composition of groundwater from wells and springs, and surface water from the basalt-dominated Axum area (northern Ethiopia) provides evidence for the origin of water and dissolved species. Shallow (depth < 40 m) and deep groundwater are distinguished by both chemical and isotopic composition. Deep groundwater is significantly enriched in dissolved inorganic carbon up to 40 mmol l−1 and in concentrations of Ca2+, Mg2+, Na+ and Si(OH)4 compared to the shallow type.The δ2H and δ18O values of all solutions clearly indicate meteoric origin. Shifts from the local meteoric water line are attributed to evaporation of surface and spring water, and to strong water–rock interaction. The δ13CDIC values of shallow groundwater between −12 and −7‰ (VPDB) display the uptake of CO2 from local soil horizons, whereas δ13CDIC of deep groundwater ranges from −5 to +1‰. Considering open system conditions with respect to gaseous CO2, δ13CDIC = +1‰ of the deep groundwater with highest PCO2 = 10−0.9 atm yields δ13CCO2(gas) ≈ −5‰, which is close to the stable carbon isotopic composition of magmatic CO2. Accordingly, stable carbon isotope ratios within the above range are referred to individual proportions of CO2 from soil and magmatic origin. The uptake of magmatic CO2 results in elevated cations and Si(OH)4 concentrations. Weathering of local basalts is documented by 87Sr/86Sr ratios of the groundwater from 0.7038 to 0.7059. Highest values indicate Sr release from the basement rocks. Besides weathering of silicates, neoformation of solids has to be considered, which results in the formation of, e.g., kaolinite and montmorillonite. In several solutions supersaturation with respect to calcite is reached by outgassing of CO2 from the solution leading to secondary calcite formation.  相似文献   

18.
The oxygen three-isotope systematics of 36 chondrules from the Allende CV3 chondrite are reported using high precision secondary ion mass spectrometer (CAMECA IMS-1280). Twenty-six chondrules have shown internally homogenous Δ17O values among olivine, pyroxene, and spinel within a single chondrule. The average Δ17O values of 19 FeO-poor chondrules (13 porphyritic chondrules, 2 barred olivine chondrules, and 4 chondrule fragments) show a peak at −5.3 ± 0.6‰ (2SD). Another 5 porphyritic chondrules including both FeO-poor and FeO-rich ones show average Δ17O values between −3‰ and −2‰, and 2 other FeO-poor barred olivine chondrules show average Δ17O values of −3.6‰ and 0‰. These results are similar to those for Acfer 094 chondrules, showing bimodal Δ17O values at −5‰ and −2‰. Nine porphyritic chondrules contain olivine grains with heterogeneous Δ17O values as low as −18‰, indicating that they are relict olivine grains and some of them were derived from precursors related to refractory inclusions. However, most relict olivine grains show oxygen isotope ratios that overlap with those in homogeneous chondrules. The Δ17O values of four barred olivine chondrules range from −5‰ to 0‰, indicating that not all BO chondrules plot near the terrestrial fractionation line as suggested by previous bulk chondrule analyses. Based on these data, we suggest the presence of multiple oxygen isotope reservoirs in local dust-rich protoplanetary disk, from which the CV3 parent asteroid formed.A compilation of 225 olivine and low-Ca pyroxene isotopic data from 36 chondrules analyzed in the present study lie between carbonaceous chondrite anhydrous mineral (CCAM) and Young and Russell lines. These data define a correlation line of δ17O = (0.982 ± 0.019) × δ18O − (2.91 ± 0.10), which is similar to those defined by chondrules in CV3 chondrites and Acfer 094 in previous studies. Plagioclase analyses in two chondrules plot slightly below the CCAM line with Δ17O values of −2.6‰, which might be the result of oxygen isotope exchange between chondrule mesostasis and aqueous fluid in the CV parent body.  相似文献   

19.
In the Czech-German border region of the Vogtland and NW Bohemia (western Eger rift, Central Europe), chemical and isotopic compositions (C, N, He, Ar) of free gas from a thermal water escape (fluorite mine, Schönbrunn), two mineral springs (“Eisenquelle,” Bad Brambach; “Sprudel III,” Bad Elster) and a mofette (Bublak) located along an ∼40-km long traverse are reported. The gases of Bublak and Bad Brambach are CO2-rich (>99 vol.%) and have δ13C values of −1.95 and −4.29‰, respectively. With distance from the center of CO2 degassing (Bublak) the δ13C values decrease, most likely due to physico-chemical fractionation of CO2 between gaseous and aqueous phases rather than to admixture of organic/biogenic CO2. The δ15N values range between −3.2 and −0.6‰, compared to an upper mantle value of −4.0 ± 1.0‰. The four locations are characterized by 3He/4He ratios decreasing from 5.9 Ra in the center (Bublak) to 0.8 Ra in the periphery (Schönbrunn) and give evidence for mixing of He from a deep-seated magmatic source with a crustal source. The location with the highest 3He/4He ratio (5.9 Ra) is accompanied by the highest 40Ar/36Ar (550). We argue that the nitrogen of the Bublak mofette gas is a mixture of predominantly atmospheric and mantle-derived components, whereas at the other three locations crustal nitrogen may also be present. The Bublak δ15N value of ≈−4.5 ± 1.0‰ represents the first free gas δ15N reference from the European subcontinental mantle (ESCM) and indicates that, in contrast to the 3He/4He ratios, the δ15N values are equal for ESCM and MORB, respectively.  相似文献   

20.
Graphite in deep crustal enderbitic (orthopyroxene + garnet + plagioclase + quartz) granulites (740°C, 8.9 kb) of Nilgiri hills, southern India were investigated for their spectroscopic and isotopic characteristics. Four types of graphite crystals were identified. The first type (GrI), which is interstitial to other mineral grains, can be grouped into two subtypes, GrIA and GrIB. GrIA is either irregular in shape or deformed, and rough textured with average δ13C values of −12.7 ± 0.4‰ (n = 3). A later generation of interstitial graphite (GrIB) shows polygonal crystal shapes and highly reflecting smooth surface features. These graphite grains are more common and have δ13C values of −11.9 ± 0.3‰ (n = 14). Both subtypes show well-defined Raman shifts suggesting a highly crystalline nature. Cores of interstitial graphite grains have, on average, lower δ13C values by ∼0.5‰ compared to that of the rim. The second type of graphite (GrII) occurs as solid inclusions in silicate minerals, commonly forming regular hexagonal crystals with a slightly disordered structure. The third type of graphite (GrIII) is associated with solid inclusions (up to 100 μm) that have decrepitation halos of numerous small (<15 μm) satellite fluid inclusions of pure CO2 with varying density (1.105 to 0.75 g/cm3). The fourth type of graphite (GrIV) is found as daughter crystals within primary type CO2-fluid inclusions in garnet and quartz. These fluid inclusions have a range of densities (1.05 to 0.90 g/cm3), but in general are significantly less dense than graphite-free primary, pure CO2 fluid inclusions (1.12 g/cm3). Raman spectral characteristics of graphite inside fluid inclusions suggest graphite crystallization at low temperature (∼ 500°C). The precipitation of graphite probably occurred during the isobaric cooling of CO2-rich peak metamorphic fluid as a result of oxyexsolution of oxide phases. The oxyexsolution process is evidenced by the magnetite-ilmenite granular exsolution textures and the systematic presence of numerous micron-sized rutile and other oxide inclusions in association with fluid inclusions within garnet, plagioclase, and quartz.The carbon isotope compositions of coexisting CO2 (in fluid inclusions) and graphite show a fractionation (α2CO−gr) of ∼6‰ in garnet, consistent with the existing theoretical estimates of α2CO−gr at 800°C. A subsequent generation of CO2 inclusions trapped in matrix quartz and quartz segregation have higher δ13C values, −4‰ and −2.9‰ respectively. Graphite in quartz segregations also has higher δ13C values (−9.8‰) than those in enderbite (−12.7‰). Micro-graphite crystals included in garnet, quartz (enderbite), and quartz (segregation) have average δ13C values of −11.1, −10.4, and −8.7‰ respectively, indicating progressive enrichment in 13C with a decrease in temperature of recrystallization of respective minerals. This progressive enrichment is also observed in carbon isotope compositions of fluid inclusion CO2, suggesting isotopic equilibrium during graphite precipitation from CO2 fluids. Thus, the carbon isotope record preserved in these rocks by the interstitial graphite, CO2 fluid in enderbite, graphite microcrystals, graphite in quartz segregation, and CO2 fluid in quartz segregation, suggests a temperature-controlled isotopic evolution. This evolution is in accordance with a closed system Rayleigh-type graphite precipitation process which progressively enriched residual CO2 in 13C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号