首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Isotopologues of molecular gases containing more than one rare isotope (multiply substituted isotopologues) can be analyzed with high precision (1σ <0.1), despite their low natural abundances (∼ ppm to ppt in air), and can constrain geochemical budgets of natural systems. We derive a method for calculating abundances of all such species in a thermodynamically equilibrated population of isotopologues, and present results of these calculations for O2, CO, N2, NO, CO2, and N2O between 1000 and 193 to 77 K. In most cases, multiply substituted isotopologues are predicted to be enriched relative to stochastic (random) distributions by ca. 1 to 2 at earth-surface temperatures. This deviation, defined as Δi for isotopologue i, generally increases linearly with 1/T at temperatures ≤ 500 K. An exception is N2O, which shows complex temperature dependences and 10’s of per-mill enrichments or depletions of abundances for some isotopologues. These calculations provide a basis for discriminating between fractionations controlled by equilibrium thermodynamics and other sorts of isotopic fractionations in the budgets of atmospheric gases. Moreover, because abundances of multiply substituted isotopologues in thermodynamically equilibrated populations of molecules vary systematically with temperature, they can be used as geothermometers. Such thermometers are unusual in that they involve homogeneous rather than heterogeneous equilibria (e.g., isotopic distribution in gaseous CO2 alone, rather than difference in isotopic composition between CO2 and coexisting water). Also, multiple independent thermometers exist for all molecules having more than one multiply substituted isotopologue (e.g., thermometers based on abundances of 18O13C16O and 18O12C18O are independent); thus, temperatures estimated by this method can be tested for internal consistency.  相似文献   

2.
We have developed a quantitative model of CO2 and H2O isotopic mixing between magmatic and hydrothermal gases for the fumarolic emissions of the La Fossa crater (Vulcano Island, Italy). On the basis of isotope balance equations, the model takes into account the isotope equilibrium between H2O and CO2 and extends the recent model of chemical and energy two-end-member mixing by Nuccio et al. (1999). As a result, the H2O and CO2 content and the δD, δ18O, and δ13C isotope compositions for both magmatic and hydrothermal end-members have been assessed. Low contributions of meteoric steam, added at a shallow depth, have been also recognized and quantified in the fumaroles throughout the period from 1988 to 1998. Nonequilibrium oxygen isotope exchange also seems to be occurring between ascending gases and wall rocks along some fumarolic conduits.The δ13CCO2 of the magmatic gases varies around −3 to 1‰ vs. Peedee belemnite (PDB), following a perfect synchronism with the variations of the CO2 concentration in the magmatic gases. This suggests a process of isotope fractionation because of vapor exsolution caused by magma depressurization. The hydrogen isotopes in the magmatic gases (−1 to −‰ vs. standard mean ocean water [SMOW]), as well as the above δ13CCO2 value, are coherent with a convergent tectonic setting of magma generation, where the local mantle is widely contaminated by fluids released from the subducted slab. Magma contamination in the crust probably amplifies this effect.The computed isotope composition of carbon and hydrogen in the hydrothermal vapors has been used to calculate the δD and δ13C of the entire hydrothermal system, including mixed H2O-CO2 vapor, liquid water, and dissolved carbon. We have computed values of about 10‰ vs. SMOW for water and −2 to −6.5‰ vs. PDB for CO2. On these grounds, we think that Mediterranean marine water (δDH2O ≈ 10‰) feeds the hydrothermal system. It infiltrates at depth throughout the local rocks, reaching oxygen isotope equilibrium at high temperatures. Interaction processes between magmatic gases and the evolving seawater also seem to occur, causing the dissolution of isotopically fractionated aqueous CO2 and providing the source for hydrothermal carbon. These results have important implications concerning fluid circulation beneath Vulcano and address the more convenient routine of geochemical surveillance.  相似文献   

3.
The abundance of the doubly substituted CO2 isotopologue, 13C18O16O, in CO2 produced by phosphoric acid digestion of synthetic, inorganic calcite and natural, biogenic aragonite is proportional to the concentration of 13C-18O bonds in reactant carbonate, and the concentration of these bonds is a function of the temperature of carbonate growth. This proportionality can be described between 1 and 50 °C by the function: Δ47 = 0.0592 · 106 · T−2 − 0.02, where Δ47 is the enrichment, in per mil, of 13C18O16O in CO2 relative to the amount expected for a stochastic (random) distribution of isotopes among all CO2 isotopologues, and T is the temperature in Kelvin. This relationship can be used for a new kind of carbonate paleothermometry, where the temperature-dependent property of interest is the state of ordering of 13C and 18O in the carbonate lattice (i.e., bound together vs. separated into different CO32− units), and not the bulk δ18O or δ13C values. Current analytical methods limit precision of this thermometer to ca. ± 2 °C, 1σ. A key feature of this thermometer is that it is thermodynamically based, like the traditional carbonate-water paleothermometer, and so is suitable for interpolation and even modest extrapolation, yet is rigorously independent of the δ18O of water and δ13C of DIC from which carbonate grew. Thus, this technique can be applied to parts of the geological record where the stable isotope compositions of waters are unknown. Moreover, simultaneous determinations of Δ47 and δ18O for carbonates will constrain the δ18O of water from which they grew.  相似文献   

4.
Land snails provide a unique opportunity to study terrestrial paleoenvironments because their shells, which are generally highly abundant and well-preserved in the fossil record, contain a temporal record of environmental change in the form of isotope codes. To evaluate the utility of this approach for a low-latitude oceanic setting, 207 modern shells of 18 species of land snail were analyzed for their oxygen and carbon isotope composition along a north and south facing altitudinal gradient (10-2160 m a.s.l.) in Tenerife Island (∼28°N) of the Canary Archipelago.Shells collected at each locality showed a relatively large range in isotope composition which was greater along the south facing transect (drier and hotter), suggesting that the variance in shell isotope values may be related to water-stress. Although pooled isotope values did not generally show strong relationships with environmental variables (i.e., altitude, temperature and precipitation), mean isotope values were strongly associated with some climatic factors when grouped by site. The mean δ18O value of the shell (δ18Oshell) by site displayed a negative correlation with elevation, which is consistent with the positive relationship observed between temperature and the δ18O value of rain (δ18Orain). Calculated δ18O values of the snail body water (δ18Obody) derived from observed temperatures and δ18Oshell values (using the equation of Grossman and Ku [Grossman E. L. and Ku T. L. (1986) Oxygen and carbon isotope fractionation in biogenic aragonite. Chem. Geol. (Isotope Geosci. Sec.)59, 59-74]) displayed a trend with respect to altitude that was similar to measured and hypothetical δ18O values for local rain water. The calculated δ18Obody values from the shell declined 0.17‰ (VSMOW) per 100 m, which is consistent with the “altitude effect” observed for tropical rains in Western Africa, and it correlated negatively with rainfall amount. Accordingly, lower δ18Oshell values indicate lower temperatures, lower δ18Orain values and possibly, higher rainfall totals. A positive correlation between the mean δ13C values of shells (δ13Cshell) and plants by site suggests that shells potentially record information about the surrounding vegetation. The δ13Cshell values varied between −15.7 and −0.6‰ (VPDB), indicating that snails consumed C3 and C4/CAM plants, where more negative δ13Cshell values probably reflects the preferential consumption of C3 plants which are favored under wetter conditions. Individuals with more positive δ13Cshell values consumed a larger percentage of C4 plants (other potential factors such as carbonate ingestion or atmospheric CO2 contribution were unlikely) that were more common at lower elevations of the hotter and drier south facing transect. The relatively wide range of shell isotope values within a single site requires the analysis of numerous shells for meaningful paleoclimatic studies. Although small differences were observed in isotope composition among snail species collected at a single sampling site, they were not significant, suggesting that isotope signatures extracted from multi-taxa snail data sets may be used to infer environmental conditions over a broad range of habitats.  相似文献   

5.
The budget of atmospheric CO2 is widely studied using records of temporal and spatial variations of concentrations, δ13C and δ18O values. However, the number and diversity of sources and sinks prevents these alone from fully constraining the budget. Molecules containing two rare isotopes can serve as additional tracers and potentially provide additional, independent, constraints. We present data documenting seasonal and diurnal variations of CO2 having a mass of 47 u (mostly 13C18O16O) in air from Pasadena, CA. We report these data using the ‘mass 47 anomaly’ (Δ47), which is defined as the deviation of R47(=[47]/[44]) from that expected for a random distribution of isotopologues. Between February 2004 and December 2005, Δ47 showed a seasonal pattern that differed significantly from that expected based on thermodynamic equilibrium. During the year 2004 Δ47 was 0.76‰ in winter, increased to 0.87‰ in summer and gradually decreased through the autumn to 0.81‰ at the end of the year. Δ47 then increased again through the winter and spring of 2005 to 0.97‰ in summer followed by a decrease to 0.88‰ at the end of 2005. The seasonal variations cannot be accounted for by variations in the relative contribution of local fossil fuel sources. Diurnal variations were the combined effect of both fuel combustion and respiration having Δ47 values of 0.41‰ and ca. 0.77‰, respectively. The seasonal cycle may be interpreted as a competition between low Δ47 values in respiration and higher Δ47 values resulting from CO2-water exchange in photosynthesis.  相似文献   

6.
Understanding the relationships between speleothem stable isotopes (δ13C δ18O) and in situ cave forcing mechanisms is important to interpreting ancient stalagmite paleoclimate records. Cave studies have demonstrated that the δ18O of inorganically precipitated (low temperature) speleothem calcite is systematically heavier than the δ18O of laboratory-grown calcite for a given temperature. To understand this apparent offset, rainwater, cave drip water, groundwater, and modern naturally precipitated calcite (farmed in situ) were grown at multiple locations inside Hollow Ridge Cave in Marianna, Florida. High resolution micrometeorological, air chemistry time series and ventilation regimes were also monitored continuously at two locations inside the cave, supplemented with periodic bi-monthly air gas grab sample transects throughout the cave.Cave air chemistry and isotope monitoring reveal density-driven airflow pathways through Hollow Ridge Cave at velocities of up to 1.2 m s−1 in winter and 0.4 m s−1 in summer. Hollow Ridge Cave displays a strong ventilation gradient in the front of the cave near the entrances, resulting in cave air that is a mixture of soil gas and atmospheric CO2. A clear relationship is found between calcite δ13C and cave air ventilation rates estimated by proxies pCO2 and 222Rn. Calcite δ13C decreased linearly with distance from the front entrance to the interior of the cave during all seasons, with a maximum entrance-to-interior gradient of Δδ13CCaCO3 = −7‰. A whole-cave “Hendy test” at multiple contemporaneous farming sites reveals that ventilation induces a +1.9 ± 0.96‰ δ13C offset between calcite precipitated in a ventilation flow path and calcite precipitated on the edge or out of flow paths. This interpretation of the “Hendy test” has implications for interpreting δ13C records in ancient speleothems. Calcite δ13CCaCO3 may be a proxy not only for atmospheric CO2 or overlying vegetation shifts but also for changes in cave ventilation due to dissolution fissures and ceiling collapse creating and plugging ventilation windows.Farmed calcite δ18O was found to exhibit a +0.82 ± 0.24‰ offset from values predicted by both theoretical calculations and laboratory-grown inorganic calcite. Unlike δ13CCaCO3, oxygen isotopes showed no ventilation effects, i.e. Δδ18OCaCO3 appears to be a function of growth temperature only although we cannot rule out a small effect of (unmeasured) gradients in relative humidity (evaporation) accompanying ventilation. Our results support the findings of other cave investigators that water-calcite fractionation factors observed in speleothem calcite are higher that those measured in laboratory experiments. Cave and laboratory calcite precipitates may differ mainly in the complex effects of kinetic isotope fractionation. Combining our data with other recent speleothem studies, we find a new empirical relationship for cave-specific water-calcite oxygen isotope fractionation across a range of temperatures and cave environments:
1000lnα=16.1(103T-1)-24.6  相似文献   

7.
The Martian meteorite ALH84001 contains ∼1% by weight of carbonate formed by secondary processes on the Martian surface or in the shallow subsurface. The major form of this carbonate is chemically and isotopically zoned rosettes which have been well documented elsewhere. This study concentrates upon carbonate regions ∼200 μm across which possess previously unobserved magnesium rich inner cores, interpreted here as rosette fragments, surrounded by a later stage cement containing rare Ca-rich carbonates (up to Ca81Mg07Fe04Mn07) intimately associated with feldspar. High spatial resolution ion probe analyses of Ca-rich carbonate surrounding rosette fragments have δ18OV-SMOW values as low as −10. These values are not compatible with deposition from a global Martian atmosphere invoked to explain ALH84001 rosettes. The range of δ18O values are also incompatible with a fluid that has equilibrated with the Martian crust at high temperature or from remobilisation of carbonate of rosette isotopic composition. At Martian atmospheric temperatures, the small CO2(gas)-CO2(ice) fractionation makes meteoric CO2 an unlikely source for −10 carbonates. In contrast, closed system Rayleigh fractionation of H2O can generate δ18OH2O −30, as observed at high latitudes on Earth. We suggest that atmospheric transport and precipitation of H2O in a similar fashion to that on Earth provides a source of suitably 18O depleted water for generation of carbonate with δ18OV-SMOW = −10.  相似文献   

8.
13C/12C and 18O/16O ratios of aragonite shells of modern land snails from the southern Great Plains of North America were measured for samples from twelve localities in a narrow east-west corridor that extended from the Flint Hills in North Central Oklahoma to the foothills of the Sangre de Cristo Mountains in Northern New Mexico, USA. Across the study area, shell δ18O values (PDB scale) ranged from −4.1‰ to 1.2‰, while δ13C values ranged from −13.2‰ to 0.0‰. δ18O values of the shell aragonite were predicted with a published, steady state, evaporative flux balance model. The predicted values differed (with one exception) by less than 1‰ from locality averages of measured δ18O values. This similarity suggests that relative humidity at the time of snail activity is an important control on the δ18O values of the aragonite and emphasizes the seasonal nature of the climatic information preserved in the shells. Correlated δ13C values of coexisting Vallonia and Gastrocopta suggest similar feeding habits and imply that these genera can provide information on variations in southern Great Plains plant ecology. Although there is considerable scatter, multispecies, transect average δ13C values of the modern aragonite shells are related to variations in the type of photosynthesis (i.e., C3, C4) in the local plant communities. The results of this study emphasize the desirability of obtaining isotope ratios representing averages of many shells in a locale to reduce possible biases associated with local variations among individuals, species, etc., and thus better represent the “neighborhood” scale temporal and/or spatial environmental variations of interest in studies of modern and ancient systems.  相似文献   

9.
Atmospheric carbon dioxide is widely studied using records of CO2 mixing ratio, δ13C and δ18O. However, the number and variability of sources and sinks prevents these alone from uniquely defining the budget. Carbon dioxide having a mass of 47 u (principally 13C18O16O) provides an additional constraint. In particular, the mass 47 anomaly (Δ47) can distinguish between CO2 produced by high temperature combustion processes vs. low temperature respiratory processes. Δ47 is defined as the abundance of mass 47 isotopologues in excess of that expected for a random distribution of isotopes, where random distribution means that the abundance of an isotopologue is the product of abundances of the isotopes it is composed of and is calculated based on the measured 13C and 18O values. In this study, we estimate the δ13C (vs. VPDB), δ18O (vs. VSMOW), δ47, and Δ47 values of CO2 from car exhaust and from human breath, by constructing ‘Keeling plots’ using samples that are mixtures of ambient air and CO2 from these sources. δ47 is defined as , where is the R47 value for a hypothetical CO2 whose δ13CVPDB = 0, δ18OVSMOW = 0, and Δ47 = 0. Ambient air in Pasadena, CA, where this study was conducted, varied in [CO2] from 383 to 404 μmol mol−1, in δ13C and δ18O from −9.2 to −10.2‰ and from 40.6 to 41.9‰, respectively, in δ47 from 32.5 to 33.9‰, and in Δ47 from 0.73 to 0.96‰. Air sampled at varying distances from a car exhaust pipe was enriched in a combustion source having a composition, as determined by a ‘Keeling plot’ intercept, of −24.4 ± 0.2‰ for δ13C (similar to the δ13C of local gasoline), δ18O of 29.9 ± 0.4‰, δ47 of 6.6 ± 0.6‰, and Δ47 of 0.41 ± 0.03‰. Both δ18O and Δ47 values of the car exhaust end-member are consistent with that expected for thermodynamic equilibrium at∼200 °C between CO2 and water generated by combustion of gasoline-air mixtures. Samples of CO2 from human breath were found to have δ13C and δ18O values broadly similar to those of car exhaust-air mixtures, −22.3 ± 0.2 and 34.3 ± 0.3‰, respectively, and δ47 of 13.4 ± 0.4‰. Δ47 in human breath was 0.76  ± 0.03‰, similar to that of ambient Pasadena air and higher than that of the car exhaust signature.  相似文献   

10.
Dual isotopic analysis of nitrate (15N/14N and 18O/16O) is increasingly used to investigate the environmental impacts of human-induced elevated atmospheric nitrate deposition. In forested ecosystems, the nitrate found in surface water and groundwater can originate from two sources: (1) atmospheric deposition, and (2) nitrate produced from nitrification in forest soils (microbial nitrate). Application of the dual nitrate isotope technique for determining the relative importance of nitrate sources in forested catchments requires knowledge of the isotopic composition of microbial nitrate. We excluded precipitation inputs to three zero-tension lysimeters installed below the F-horizon (Oe) at the Turkey Lakes Watershed (TLW) in order to measure the isotopic composition of microbial nitrate produced in situ. To our knowledge, this is the first in situ study of the isotopic composition of microbial nitrate in forest soils. Over a 2-week period, nitrate produced by nitrification was periodically flushed to the lysimeters by watering the area with a nitrogen-free solution. Nitrate produced in the forest floor had δ18O values ranging from +3.1‰ to +10.1‰ with a mean of +5.2‰. These values were only slightly higher than from the expected value of +1.0‰ calculated for chemolithoautotrophic nitrification, which depends on the δ18O of available O2 and H2O. In addition to nitrate, we also collected soil gas to determine if soil respiration and O2 diffusion affected soil gas δ18O-O2, which is typically assumed to be identical to atmospheric O2 (+23.5‰) when calculating microbial nitrate δ18O values. No significant difference in δ18O-O2 from atmospheric O2 was found in forest soils to a depth of 55 cm, and therefore 18O-enrichment of soil gas O2 could not explain the modest enrichment of nitrate 18O. Evaporative 18O-enrichment of soil water available to nitrifiers in the forest floor is a plausible mechanism for slightly elevated nitrate δ18O values. However, the observed nitrate δ18O values could also be explained by a minor contribution of nitrate from heterotrophic nitrifiers. The δ15N of nitrate produced ranged from −10.4 to −7.3‰ and, as expected, was depleted in 15N relative to soil organic nitrogen. Microbial nitrate produced in the forest floor was also significantly depleted in 15N relative to microbial nitrate exported in groundwater and headwater streams at the TLW. We hypothesize that 15N-depleted forest floor nitrate is not detected in groundwaters largely because of: (1) the immobilization of forest floor nitrate in the mineral soil and (2) the mixing of the remaining forest floor nitrate with nitrate generated in the mineral soil, which is expected to have higher δ15N values. This study demonstrates that current methods of calculating a priori the δ18O of microbial nitrate provide a reasonable value for nitrate produced by nitrification at the TLW.  相似文献   

11.
Paleothermometry is an essential tool for understanding past changes in climate. The ‘carbonate clumped isotope thermometer’ is a temperature proxy related to ordering of 13C and 18O in the carbonate lattice (based on measurements of 13C18O16O in CO2 produced by acid digestion of carbonate). This thermometer has been previously calibrated for inorganic calcite and aragonitic corals [Ghosh P., Adkins J., Affek H., Balta B., Guo W. F., Schauble E. A., Schrag D., and Eiler J. M. (2006) C-13-O-18 bonds in carbonate minerals: a new kind of paleothermometer. Geochim. Cosmochim. Acta70 (6), 1439-1456]. Here we determine the relationship between growth temperatures of aragonitic fish otoliths and abundances of 13C18O16O produced by acid digestion of those otoliths. Our calibration is based on analyses of otoliths from six species from four genera of modern fish sampled from a latitudinal transect of the Atlantic Ocean between 54° S and 65° N, plus one species from the tropical western Pacific. The temperatures at which fish otoliths precipitated were estimated by the mean temperature in the waters in which they lived, averaged over their estimated lifetimes. Estimated growth temperatures of our samples vary between 2 and 25 °C. Our results show that the abundance of 13C18O16O in CO2 produced by acid digestion of fish otolith aragonite is a function of growth temperature, following the relationship: , where Δ47 is the enrichment, in per mil, of 13C18O16O in CO2 relative to the amount expected for a stochastic (random) distribution of isotopes among all CO2 isotopologues, and T is the temperature in Kelvin. This relationship closely approaches that previously documented for inorganic calcite and aragonitic coral (Ghosh et al., 2006).  相似文献   

12.
“Plateau” δ18O values of CO2 that evolved from the Fe(CO3)OH component during isothermal vacuum dehydrations (200-230 °C) of 18 natural goethites range from 8.2 to 28.1‰. In contrast, the measured δ18O values of the goethite structural oxygen range from −11.3 to 1.7‰. The results of this study indicate that the apparent oxygen isotope fractionation factor (18αapp) between plateau CO2 and initial goethite is systematically related to the rate of isothermal vacuum dehydration. The nonlinear correlation and the magnitudes of the 18αapp values are predicted by a relatively simple mass balance model with the following assumptions: (1) the rate of isothermal vacuum dehydration of goethite (for the interval from 0 to ∼60 to 80% loss of structural hydroxyl hydrogen) can be reasonably well represented by first-order kinetics and (2) isotopic exchange between evolving H2O vapor and solid occurs only in successive, local transition states. The generally good correspondence between the model predictions and the experimental data seems to validate these assumptions. Thus, the 18O/16O ratios of the evolved CO2 can act as probes into the transient processes operating at the molecular level during the solid-state goethite-to-hematite phase transition. For example, the activation energy for the rate constant associated with the transition state, oxygen isotopic exchange between solid and H2O vapor, is tentatively estimated as 28 ± 11 KJ/mol. Such knowledge may be of consequence in understanding the significance of 18O/16O ratios in hematites from some natural environments (e.g., Mars?).Kinetic data and δ18O values of CO2 are routinely obtained in the course of measurements of the abundance and δ13C values of the Fe(CO3)OH in goethite. The observed correlation between 18αapp and dehydration rates suggests that plateau δ18O values of evolved CO2 may provide complementary estimates of the δ18O values of total goethite structural oxygen (O, OH, CO2) with an overall precision of about ±1‰. However, because of isotopic exchange during the dehydration process, δ18O values of the evolved CO2 do not reflect the original δ18O values of the CO2 that was occluded as Fe(CO3)OH in goethite.  相似文献   

13.
Phosphoric acid digestion has been used for oxygen- and carbon-isotope analysis of carbonate minerals since 1950, and was recently established as a method for carbonate ‘clumped isotope’ analysis. The CO2 recovered from this reaction has an oxygen isotope composition substantially different from reactant carbonate, by an amount that varies with temperature of reaction and carbonate chemistry. Here, we present a theoretical model of the kinetic isotope effects associated with phosphoric acid digestion of carbonates, based on structural arguments that the key step in the reaction is disproportionation of H2CO3 reaction intermediary. We test that model against previous experimental constraints on the magnitudes and temperature dependences of these oxygen isotope fractionations, and against new experimental determinations of the fractionation of 13C-18O-containing isotopologues (‘clumped’ isotopic species). Our model predicts that the isotope fractionations associated with phosphoric acid digestion of carbonates at 25 °C are 10.72‰, 0.220‰, 0.137‰, 0.593‰ for, respectively, 18O/16O ratios (1000 lnα) and three indices that measure proportions of multiply-substituted isotopologues . We also predict that oxygen isotope fractionations follow the mass dependence exponent, λ of 0.5281 (where ). These predictions compare favorably to independent experimental constraints for phosphoric acid digestion of calcite, including our new data for fractionations of 13C-18O bonds (the measured change in Δ47 = 0.23‰) during phosphoric acid digestion of calcite at 25 °C.We have also attempted to evaluate the effect of carbonate cation compositions on phosphoric acid digestion fractionations using cluster models in which disproportionating H2CO3 interacts with adjacent cations. These models underestimate the magnitude of isotope fractionations and so must be regarded as unsucsessful, but do reproduce the general trend of variations and temperature dependences of oxygen isotope acid digestion fractionations among different carbonate minerals. We suggest these results present a useful starting point for future, more sophisticated models of the reacting carbonate/acid interface. Examinations of these theoretical predictions and available experimental data suggest cation radius is the most important factor governing the variations of isotope fractionation among different carbonate minerals. We predict a negative correlation between acid digestion fractionation of oxygen isotopes and of 13C-18O doubly-substituted isotopologues, and use this relationship to estimate the acid digestion fractionation of for different carbonate minerals. Combined with previous theoretical evaluations of 13C-18O clumping effects in carbonate minerals, this enables us to predict the temperature calibration relationship for different carbonate clumped isotope thermometers (witherite, calcite, aragonite, dolomite and magnesite), and to compare these predictions with available experimental determinations. The success of our models in capturing several of the features of isotope fractionation during acid digestion supports our hypothesis that phosphoric acid digestion of carbonate minerals involves disproportionation of transition state structures containing H2CO3.  相似文献   

14.
Recent studies show that oxygen three isotope measurement (16O, 17O, and 18O) of water provides additional information for investigating the hydrological cycle and paleoclimate. For determining the 18O/16O value of water, a conventional CO2-water equilibration method involves measurement of the ratios of CO2 isotopologues which were equilibrated with water. However, this long-established technique was not intended to measure the 17O/16O ratio, primarily because the historic ion correction scheme does not allow for possible deviations from a fixed (and mass-dependent) relationship between 17O/16O and 18O/16O isotope ratios. Here, we propose an improved method for obtaining the 17O/16O isotope ratio of fresh water by the equilibration method and measurement of the 45/44 CO2 ion abundance ratio. Equations which we formulated for 17O/16O measurement have two features: first, instead of absolute isotope ratio (R), all equations are formulated in δ values, measured by isotope ratio mass spectrometry. Second, we include two “assigned” δ values of water standards in the equations, because the δ18O are commonly measured against two working standards to normalize the span of the δ scale. This approach clarifies that the contribution from 17O (12C16O17O+) to the molecular ion current at mass-to-charge ratio m/z 45 signal depends not on the absolute 13C/12C ratio, but on the relative δ13C differences between the working standards and the sample. The pH value of water affects δ17O estimation because δ13C of CO2 was changed in the water-CO2 system. We reevaluated this effect using a set of equations, which explicitly includes CO2 partial pressure effect on pH value. Our new estimation of pH effect is significantly smaller than previously reported value, but it does not alter the main conclusions in the previous study. The method was verified by δ17O measurements of an international standard reference water (GISP) provided by the IAEA. We applied the method to investigate 17O-excess of the ice core drilled at the Dome Fuji station, Antarctica. A total of 1320 samples from a 130 m section around Marine Isotope Stage 9.3 (∼330,000 years before present) were measured. The error of a measurement for δ17O is 0.175‰ and that of 17O-excess is 184 per meg. Although these analytical uncertainties hampered accurate estimation of the changes in 17O-excess, the averaged data indicate that 17O-excess around MIS 9.3 was higher than during the subsequent glacial period. This approach can be applied only to fresh water samples, and additional improvements will be needed to measure samples which contains significant amount of carbonate minerals.  相似文献   

15.
Well-preserved aragonitic land snail shells (Vallonia) from late Pleistocene Eolian sediment in the Folsom archaeological site in New Mexico exhibit an overall decrease of δ18OPDB from maximum values of +2.7‰ (more positive than modern) to younger samples with lower average values of about −3.6‰ (within the modern range). The age of the samples (approximately 10,500 14C yr B.P.) suggests that the decrease in δ18O may manifest climatic changes associated with the Younger Dryas. Some combination of increased relative humidity and cooler temperatures with decreased δ18O of precipitation during the times of snail activity can explain the decrease in shell δ18O. A well-known Paleoindian bison kill occurred at the Folsom site during this inferred environmental transition.Average δ13C values of the aragonite shells of the fossil Vallonia range from −7.3 to −6.0‰ among different archaeological levels and are not as negative as modern values. This suggests that the proportion of C4 vegetation at the Folsom site approximately 10,500 14C yr B.P. was greater than at present; a result which is consistent with other evidence for higher proportions of C4 plants in the region at that time.  相似文献   

16.
Bacterial sulfate reduction is one of the most important respiration processes in anoxic habitats and is often assessed by analyzing the results of stable isotope fractionation. However, stable isotope fractionation is supposed to be influenced by the reduction rate and other parameters, such as temperature. We studied here the mechanistic basics of observed differences in stable isotope fractionation during bacterial sulfate reduction. Batch experiments with four sulfate-reducing strains (Desulfovibrio desulfuricans, Desulfobacca acetoxidans, Desulfonatronovibrio hydrogenovorans, and strain TRM1) were performed. These microorganisms metabolize different carbon sources (lactate, acetate, formate, and toluene) and showed broad variations in their sulfur isotope enrichment factors. We performed a series of experiments on isotope exchange of 18O between residual sulfate and ambient water. Batch experiments were conducted with 18O-enriched (δ18Owater = +700‰) and depleted water (δ18Owater = −40‰), respectively, and the stable 18O isotope shift in the residual sulfate was followed. For Desulfovibrio desulfuricans and Desulfonatronovibrio hydrogenovorans, which are both characterized by low sulfur isotope fractionation (εS > −13.2‰), δ18O values in the remaining sulfate increased by only 50‰ during growth when 18O-enriched water was used for the growth medium. In contrast, with Desulfobacca acetoxidans and strain TRM1 (εS < −22.7‰) the residual sulfate showed an increase of the sulfate δ18O close to the values of the enriched water of +700‰. In the experiments with δ18O-depleted water, the oxygen isotope values in the residual sulfate stayed fairly constant for strains Desulfovibrio desulfuricans, Desulfobacca acetoxidans and Desulfonatronovibrio hydrogenovorans. However, strain TRM1, which exhibits the lowest sulfur isotope fractionation factor (εS < −38.7‰) showed slightly decreasing δ18O values.Our results give strong evidence that the oxygen atoms of sulfate exchange with water during sulfate reduction. However, this neither takes place in the sulfate itself nor during formation of APS (adenosine-5′-phosphosulfate), but rather in intermediates of the sulfate reduction pathway. These may in turn be partially reoxidized to form sulfate. This reoxidation leads to an incorporation of oxygen from water into the “recycled” sulfate changing the overall 18O isotopic composition of the remaining sulfate fraction. Our study shows that such incorporation of 18O is correlated with the stable isotope enrichment factor for sulfur measured during sulfate reduction. The reoxidation of intermediates of the sulfate reduction pathway does also strongly influence the sulfur stable isotope enrichment factor. This aforesaid reoxidation is probably dependent on the metabolic conversion of the substrate and therefore also influences the stable isotope fractionation factor indirectly in a rate dependent manner. However, this effect is only indirect. The sulfur isotope enrichment factors for the kinetic reactions themselves are probably not rate dependent.  相似文献   

17.
Stable isotopes were measured in the carbonate and organic matter of palaeosols in the Somma–Vesuvius area, southern Italy in order to test whether they are suitable proxy records for climatic and ecological changes in this area during the past 18000 yr. The ages of the soils span from ca. 18 to ca. 3 kyr BP. Surprisingly, the Last Glacial to Holocene climate transition was not accompanied by significant change in δ18O of pedogenic carbonate. This could be explained by changes in evaporation rate and in isotope fractionation between water and precipitated carbonate with temperature, which counterbalanced the expected change in isotope composition of meteoric water. Because of the rise in temperature and humidity and the progressive increase in tree cover during the Holocene, the Holocene soil carbonates closely reflect the isotopic composition of meteoric water. A cooling of about 2°C after the Avellino eruption (3.8 ka) accounts for a sudden decrease of about 1‰ in δ18O of pedogenic carbonate recorded after this eruption. The δ13C values of organic matter and pedogenic carbonate covary, indicating an effective isotope equilibrium between the organic matter, as the source of CO2, and the pedogenic carbonate. Carbon isotopes suggest prevailing C3 vegetation and negligible mixing with volcanogenic or atmospheric CO2. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

18.
Traditionally, the application of stable isotopes in Carbon Capture and Storage (CCS) projects has focused on δ13C values of CO2 to trace the migration of injected CO2 in the subsurface. More recently the use of δ18O values of both CO2 and reservoir fluids has been proposed as a method for quantifying in situ CO2 reservoir saturations due to O isotope exchange between CO2 and H2O and subsequent changes in δ18OH2O values in the presence of high concentrations of CO2. To verify that O isotope exchange between CO2 and H2O reaches equilibrium within days, and that δ18OH2O values indeed change predictably due to the presence of CO2, a laboratory study was conducted during which the isotope composition of H2O, CO2, and dissolved inorganic C (DIC) was determined at representative reservoir conditions (50 °C and up to 19 MPa) and varying CO2 pressures. Conditions typical for the Pembina Cardium CO2 Monitoring Pilot in Alberta (Canada) were chosen for the experiments. Results obtained showed that δ18O values of CO2 were on average 36.4 ± 2.2‰ (1σ, n = 15) higher than those of water at all pressures up to and including reservoir pressure (19 MPa), in excellent agreement with the theoretically predicted isotope enrichment factor of 35.5‰ for the experimental temperatures of 50 °C. By using 18O enriched water for the experiments it was demonstrated that changes in the δ18O values of water were predictably related to the fraction of O in the system sourced from CO2 in excellent agreement with theoretical predictions. Since the fraction of O sourced from CO2 is related to the total volumetric saturation of CO2 and water as a fraction of the total volume of the system, it is concluded that changes in δ18O values of reservoir fluids can be used to calculate reservoir saturations of CO2 in CCS settings given that the δ18O values of CO2 and water are sufficiently distinct.  相似文献   

19.
The Western Slope of the Songliao Basin is rich in heavy oil resources (>70 × 108 bbl), around which there are shallow gas reservoirs (∼1.0 × 1012 m3). The gas is dominated by methane with a dryness over 0.99, and the non-hydrocarbon component being overwelmingly nitrogen. Carbon isotope composition of methane and its homologs is depleted in 13C, with δ13C1 values being in the range of −55‰ to −75‰, δ13C2 being in the range of −40‰ to −53‰ and δ13C3 being in the range of −30‰ to −42‰, respectively. These values differ significantly from those solution gases source in the Daqing oilfield. This study concludes that heavy oils along the Western Slope were derived from mature source rocks in the Qijia-Gulong Depression, that were biodegraded. The low reservoir temperature (30–50 °C) and low salinity of formation water with neutral to alkaline pH (NaHCO3) appeared ideal for microbial activity and thus biodegradation. Natural gas along the Western Slope appears mainly to have originated from biodegradation and the formation of heavy oil. This origin is suggested by the heavy δ13C of CO2 (−18.78‰ to 0.95‰) which suggests that the methane was produced via fermentation as the terminal decomposition stage of the oil.  相似文献   

20.
The toxodont megaherbivores Toxodon and Mixotoxodon were endemic to South and Central America during the late Quaternary. Isotopic signatures of 47 toxodont teeth were analyzed to reconstruct diet and ancient habitat. Tooth enamel carbon isotope data from six regions of South and Central America indicate significant differences in toxodont diet and local vegetation during the late Quaternary. Toxodonts ranged ecologically from C3 forest browsers in the Amazon (mean δ13C = −13.4‰), to mixed C3 grazers and/or browsers living either in C3 grasslands, or mixed C3 forested and grassland habitats in Honduras (mean δ13C = −9.3‰), Buenos Aires province, Argentina (δ13C = −8.7‰), and Bahia, Brazil (mean δ13C = −8.6‰), to predominantly C4 grazers in northern Argentina (δ13C = −4.4‰), to specialized C4 grazers in the Chaco of Bolivia (δ13C = −0.1‰). Although these toxodonts had very high-crowned teeth classically interpreted for grazing, the isotopic data indicate that these megaherbivores had the evolutionary capacity to feed on a variety of dominant local vegetation. In the ancient Amazon region, carbon isotope data for the toxodonts indicate a C3-based tropical rainforest habitat with no evidence for grasslands as would be predicted from the Neotropical forest refugia hypothesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号