首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 During the Cenozoic, in the western Paris Basin, atmospheric weathering of the chalks with flints of the Upper Cretaceous led to the creation of clay with flints. A reconstitution of the chalks lost to dissolution is proposed and is based on the determination of the age of the parent chalks of the clay with flints and the quantification of the thickness of dissolved chalk. The chalks affected by weathering range in age from Turonian to Maastrichtian, thus confirming the deposition of calcareous sediments in the western Paris Basin up to the Maastrichtian. Chalk weathering took place in situ, as indicated by the preservation of the stratigraphic succession of the chalk in the clay with flints profiles. Weathering led to the dissolution of 20–200 m of chalk, with regional variations. The weathering rate varies between 2.1 and 14.5 m/Ma. Received: 20 July 1998 / Accepted: 1 July 1999  相似文献   

2.
This study demonstrates that only a combination of a chromous chloride reduction with dual sequential extraction schemes can clearly separate the proportions of Se present in the sulphide versus the organic pools in shales. The data reveals that even small amounts of pyrite outcompete the organic matter for the available Se and pyrite oxidation will control the release of selenium during shale weathering.  相似文献   

3.
Although it is a pelagic sediment, fine-grained calcareous ooze may be mobilized prior to general lithification and redeposited as allochthonous units. Numerous occurrences of allochthonous chalk have been reported in recent years, having been recognized by large-scale bedding features seen in outcrop. Smaller-scale internal features, such as contorted laminae, and larger features, such as smeared burrows and imbricated flint nodules, attest to a significant amount of soft-sediment deformation and synsedimentary slumping in European chalk sections of Late Cretaceous age. Truly autochthonous chalks contain complex, tiered ichnofabrics and in some cases exhibit a diagenetic nodular fabric that is undisturbed by transport. In some situations, such as stagnant water conditions, autochthonous chalks may exhibit primary lamination, although this is very uncommon in European chalk sequences. Different types of redepositional processes produce an array of varied allochthonous fabrics. Glide and slump units, for example, contain internal deformational features produced during sliding. Ooze flow causes plastic deformation of chalk units, internally as well as externally. Resuspension and fluid flow of chalk sediment produces a deposit having a totally new fabric, such as a conglomerate composed of detrital chalk clasts. In this paper, typical macroscopic, sedimentary fabric types are illustrated, and the means of identifying them are discussed in terms of bioturbation features, in situ diagenetic nodules versus detrital clasts, physical deformation structures and development of flints.  相似文献   

4.
In the Upper Cretaceous sequence of the Negev (southern Israel) the organic matter in phosphorites and cherts differs from that associated with oil shales in its higher content of humic substances and lower kerogen content, and in its more intensive microbial alteration. The n-alkane distribution pattern of the oil shales, phosphorites and cherts indicates that marine biota, probably algae, are the main organic precursors of their organic matter. In some of the oil shales, however, some contribution of terrestrial organic matter is also evident. Similar high phytane/pristane ratios indicate that the organic matter in the oil shales as well as in the phosphorites and cherts accumulated under reducing conditions. The main differences in the organic matter composition are attributed to early diagenetic processes rather than to different biotic precursors or to late modifications due to temperature-induced maturation. The depositional model suggested for the sequence involves upwelling conditions at the boundary between the deep Tethys and the shallow shelf, which induced high organic productivity deep into the inner shelf. Bottom water circulation enabled intensive microbial alteration of the organic matter, followed by a winnowing process leading to phosphorite formation. Since humification is considered an oxygen-consuming reaction, these processes favoured the formation of oxygen-enriched humic substances and the oxidation of humic substances already present. These humic substances are relatively resistant to further alteration and their conversion into kerogen is thus retarded. Subsequently, syndepositional tectonic activity resulted in the introduction of less saline water, restriction of bottom-water circulation and the establishment of a density stratification in the water body. Consequently, aeration of the bottom layer and the sediments was inhibited, microbial alteration was reduced and later winnowing processes were prevented. Such conditions favoured the formation of kerogen directly, rather than through humic substances, and also favoured the preservation of most of the organic matter in the form of oil shale deposits instead of phosphorites.  相似文献   

5.
Late Cretaceous shales of the Fika Formation in the Chad (Bornu) Basin, northeastern Nigeria, were analysed to define paleoenvironment and source of the organic matter, and their relation to tectonic setting. The organic carbon and sulphur contents of Fika shale samples are in the range of 0.51–2.13 and 0.31–1.65 wt.%, respectively, pointing that these shales were deposited in suboxic-anoxic marine conditions. The biomarker and chemical compositions provide evidence for a major contribution of aquatic algae and microorganisms with minor terrigenous organic matter input. Moderate salinity stratification and relatively anoxic-suboxic bottom water conditions are also likely in the Fika shales. Therefore, stratified water column with moderate salinity and relatively anoxic-suboxic bottom water conditions have contributed to organic matter (OM) preservation in the Fika shale layer. Fika shale samples are rich in SiO2 (54.80 wt.%), followed by Al2O3 (23.75 wt.%) and Fe2O3 (10.19 wt.%). Compared with average shale, the analysed shale samples are obviously enriched in Al2O3 (23.75 wt.%), TiO2 (1.34 wt.%), and P2O5 (0.30 wt.%), indicating that these sediments are rich in clay minerals and represent a good possibility for enhanced organic matter production and enrichment.Plots of Fika shale on bivariate discriminant function diagram suggest an active continental margin setting for the provenance. The inferred tectonic setting for the late Cretaceous shales of the Fika Formation of the Chad (Bornu) Basin is in agreement with the tectonic evolutionary history of the west and central Africa during the Cretaceous period.  相似文献   

6.
Hydrocarbons occur in two regional, Upper Cretaceous limestone units—the Turonian-Coniacian Petrel Member, and the Santonian-Maastrichtian Wyandot Formation. The units form important seismic markers beneath the Scotian Shelf and the Grand Banks of Eastern Canada. They mainly consist of bioturbated chalk and minor amounts of calcareous mudstone. A search for source rock using the Δ log R technique showed intervals with source potential, but testing of core and cuttings by Rock-Eval analysis showed no source potential. Three issues are the main cause for the inconsistency: (1) unconsolidated shales that likely included organic material were lost during sample washing; (2) severe contamination by mud additives; and (3) presence of gas. The organic matter found on the shelf has been strongly oxidised, but the distal facies of these limestone units and condensed shale units above and below may yet have potential to form source rock, beyond the studied areas.  相似文献   

7.
Shale gas is considered by many to have the potential to provide the UK with greater energy security, economic growth and jobs. However, development of a shale gas industry is highly contentious due to environmental concerns including the risk of groundwater pollution. Evidence suggests that the vertical separation between exploited shale units and aquifers is an important factor in the risk to groundwater from shale gas exploitation. A methodology is presented to assess the vertical separation between different pairs of aquifers and shales that are present across England and Wales. The application of the method is then demonstrated for two of these pairs—the Cretaceous Chalk Group aquifer and the Upper Jurassic Kimmeridge Clay Formation, and the Triassic sandstone aquifer and the Carboniferous Bowland Shale Formation. Challenges in defining what might be considered criteria for ‘safe separation’ between a shale gas formation and an overlying aquifer are discussed, in particular with respect to uncertainties in geological properties, aquifer extents and determination of socially acceptable risk levels. Modelled vertical separations suggest that the risk of aquifer contamination from shale exploration will vary greatly between shale–aquifer pairs and between regions and this will need to be considered carefully as part of the risk assessment and management for any shale gas development.  相似文献   

8.
吕大火房剖面位于松嫩平原东部,是研究松嫩平原富硒土壤带中硒来源的典型自然剖面.在白垩系嫩江组(K2n)两条垂直剖面上共采集了33件样品,分析了硒及其赋存的7种形态、总有机碳(TOC)、pH等理化指标.结果表明,所采集的样品硒含量在0.01×10-6~3.05×10-6之间,平均含量0.56×10-6,不同层位样品硒含量差异较大;剖面样品中硒以残渣态硒为主要赋存形式,残渣态硒平均含量0.092×10-6,所占比例为51.98%.剖面样品硒含量主要受成土母质(油页岩)影响,相关分析结果表明,TOC和pH对剖面硒含量分布有一定的影响,TOC与强有机结合态硒、腐殖酸结合态硒、离子交换态硒、水溶态硒呈正相关关系,pH与各形态硒均呈负相关关系.  相似文献   

9.
Soils derived from black shale can accumulate high concentrations of elements of environmental concern, especially in regions with semiarid to arid climates. One such region is the Colorado River basin in the southwestern United States where contaminants pose a threat to agriculture, municipal water supplies, endangered aquatic species, and water-quality commitments to Mexico. Exposures of Cretaceous Mancos Shale (MS) in the upper basin are a major contributor of salinity and selenium in the Colorado River. Here, we examine the roles of geology, climate, and alluviation on contaminant cycling (emphasis on salinity and Se) during weathering of MS in a Colorado River tributary watershed. Stage I (incipient weathering) began perhaps as long ago as 20 ka when lowering of groundwater resulted in oxidation of pyrite and organic matter. This process formed gypsum and soluble organic matter that persist in the unsaturated, weathered shale today. Enrichment of Se observed in laterally persistent ferric oxide layers likely is due to selenite adsorption onto the oxides that formed during fluctuating redox conditions at the water table. Stage II weathering (pedogenesis) is marked by a significant decrease in bulk density and increase in porosity as shale disaggregates to soil. Rainfall dissolves calcite and thenardite (Na2SO4) at the surface, infiltrates to about 1 m, and precipitates gypsum during evaporation. Gypsum formation (estimated 390 kg m−2) enriches soil moisture in Na and residual SO4. Transpiration of this moisture to the surface or exposure of subsurface soil (slumping) produces more thenardite. Most Se remains in the soil as selenite adsorbed to ferric oxides, however, some oxidizes to selenate and, during wetter conditions is transported with soil moisture to depths below 3 m. Coupled with little rainfall, relatively insoluble gypsum, and the translocation of soluble Se downward, MS landscapes will be a significant nonpoint source of salinity and Se to the Colorado River well into the future. Other trace elements weathering from MS that are often of environmental concern include U and Mo, which mimic Se in their behavior; As, Co, Cr, Cu, Ni, and Pb, which show little redistribution; and Cd, Sb, V, and Zn, which accumulate in Stage I shale, but are lost to varying degrees from upper soil intervals. None of these trace elements have been reported previously as contaminants in the study area.  相似文献   

10.
黑色页岩的资源功能和环境效应   总被引:15,自引:2,他引:13  
利用ICP—MS等分析技术对典型黑色页岩的微量元素及P、S等组分进行了分析,探讨了黑色页岩的化学特征、风化机制和微量元素富集特征,阐明了黑色页岩的资源功能和环境效应。结果表明,黑色页岩不但富含多种矿产资源,产有大型、超大型多金属矿床,而且可用作复合化肥以改良土壤。同时,黑色页岩因风化分解释放CO2、产生酸性矿排水、释出重金属元素等而可能对环境产生严重影响,引起环境问题。开发利用黑色页岩不但要充分认识其资源功能特征,拓宽其应用途径,而且要特别注意其可能引发的环境问题。  相似文献   

11.
以金衢盆地白垩系金华组为研究对象,在钻井资料分析的基础上,结合区域沉积背景,通过分析暗色泥页岩有机质丰度、厚度和分布范围,研究和探索了金衢盆地上白垩统金华组湖相页岩油气地质特征。金衢盆地金华组湖相暗色泥页岩样品的有机质丰度特征表明,TOC值一般小于0.5%,属于非烃源岩,个别样品达到1.57%,属于优质烃源岩; 富有机质层段以富砂夹泥型或富泥夹砂型为主,具多产层特征,盆地北部凹陷具备一定的页岩油气勘探潜力。金华组湖相暗色泥页岩主要发育在西北部衢州—龙游沉积中心区,区域较为局限,厚度不均,范围5~100 m,平均孔隙度3.867%,平均最大渗透率0.087 2×10-3 μm2,属于典型的致密型储层。将富有机质层段砂泥地层作为一个整体进行页岩油气勘探,源储一体是今后陆相页岩油气的重要勘探思路。  相似文献   

12.
藏南聂拉木县、岗巴县的古错-岗巴盆地呈东西向展布,位于北喜马拉雅构造分区。早白垩世沉积以碎屑物质为主,其黑色页岩主要集中于下白垩统古错四组、古错五组和东山组。黑色页岩沉积物颗粒微细,以泥质、粘土质组分为主,砂/泥比值低,局部夹有海底扇沉积的细砂岩、粉砂岩等韵律层,富含菱铁矿、钙质结核,少见菊石等生物化石。其沉积环境应为相变缓慢、水体低能且较为特殊(受火山活动影响)的海相还原环境。黑色页岩中的粘土质所反映出的稀土配分模式与玄武岩标准模式极为接近,显示出当时的沉积可能伴随有火山活动及基性物质的介入。综合地质特征显示出本区下白垩统黑色页岩厚度巨大,构造简单,具有较好的成烃条件,虽然有机质成熟度较高,但黑色页岩仍是未来本区油气资源潜力评价中值得重视的积极因素之一。  相似文献   

13.
Black shales of the late Neoproterozoic Gwna Group (570–580 Ma), UK, contain enrichments of tellurium (Te), selenium (Se) and cobalt (Co) relative to average shale compositions. The Te and Co enrichments bear comparison with those of ferromanganese crusts in the modern deep ocean. Gwna Group deposition coincides with the Second Great Oxidation Event, which had a significant effect on trace element fixation globally. Selenium and Te concentrations within these black shales indicate increased continental weathering rates, high biological productivity and corresponding increases in atmospheric O2 concentrations. Cobalt, nickel (Ni) and arsenic (As) enrichments in this succession are secondary mineralisation phases. Demand for many of the trace elements found enriched in the Gwna Group black shales make their mechanisms of accumulation, and variations through the geological record, important to understand, and suggests that new resources may be sought based on black shale protoliths from this period.  相似文献   

14.
渝东北黑色页岩元素迁移特征及化学风化程度   总被引:1,自引:0,他引:1       下载免费PDF全文
黑色页岩是富含有机质和硫化矿物的特殊沉积岩,但人们对其风化过程的元素活动性及矿物风化机制关注较少.为探讨不同地形位置的黑色页岩化学风化过程,采集了渝东北城口某山脊 (A)、近山顶 (B) 和沟谷 (C) 的下寒武统水井沱组黑色页岩风化剖面岩样,利用XRD、XRF和化学分析手段对采集样品的矿物成分、主量元素进行测定分析.元素和矿物的质量迁移系数 (τ) 和质量迁移通量 (Mj, flux) 的计算结果表明,黑色页岩风化过程中Ca、Mg和Na元素具有明显的贫化现象,近地表处存在Al元素的富集现象;矿物成分方面,黄铁矿和有机质氧化后形成的酸性水环境,造成方解石、白云石、斜长石等不稳定矿物溶解,并生成含水石膏、铁质氧化物、黏土矿物等次生矿物.不同赋存位置的黑色页岩风化程度有所差异,Na/K-CIA、K/Ca*-Al/Na、A-CN-K和A-CNK-FM图解显示:A剖面处于脱Ca过程的初级风化阶段,B剖面处于脱Ca、Na初期的初等-中等风化阶段,C剖面已发生脱Ca、Na过程,并伴随脱Si作用的中等-强烈风化阶段,结合不同风化指数 (如:CIA、CIW、PIA、MWPI等),得出各剖面的化学风化强弱程度依次为C>B>A.   相似文献   

15.
Chalks originate as Cretaceous to Recent pelagic or hemipelagic calcareous ooze, which indurate via burial diagenesis to chalk and limestone. Because they accumulate in pelagic settings with high environmental continuity, chalks may form thick formations and even groups. For this reason, and because chalks have a simple mineralogy (low magnesium calcite, silica and clays), they are ideal for the study of diagenetic processes including the depth-related decrease of porosity. It is the aim of this study to illustrate how the evaluation of in situ elastic strain can help in understanding these processes including the interplay between stress-controlled diagenetic processes and processes furthered by thermal energy. Petrophysical core and well data can be used for analyses of how porosity reduction via pore collapse and pressure dissolution is related to in situ elastic strain. The data in question are: depth, density of overburden, pore pressure, ultrasonic P-wave velocity and dry density/porosity. The analysis reveals that the transition from ooze to chalk is associated with high elastic strain and consequent pressure dissolution at calcite–particle contacts causing contact cementation. The transition from chalk to limestone is also associated with high elastic strain, especially at clay–calcite interphases causing development of stylolites via pressure dissolution, and consequent pore-filling cementation. Following each transformation the elastic strain drops rapidly. The observation of this diagenesis-related pattern in elastic strain of the sedimentary rock is novel and should not only be helpful in understanding the porosity development in sedimentary basins, but also add basic scientific insight.  相似文献   

16.
We use reactive transport modeling to better understand the kinetics of chemical weathering in the Cretaceous Middendorf aquifer of South Carolina, USA, and the relationship of this process to subsurface microbial activity. We constructed a model accounting for the kinetics of mineral dissolution and precipitation, ion exchange, and the CO2 and bicarbonate produced by iron reducing and sulfate reducing bacteria in the aquifer. We then fit the model to observed trends in the chemical composition of groundwater along the aquifer by adjusting the rate constants for the kinetic reactions considered. The modeling portrays weathering in the Middendorf as a slow process by which groundwater gradually reacts toward equilibrium with minerals in the aquifer. The rate constants predicted are 6 to 7 orders of magnitude smaller than measured in laboratory experiments and 3 to 4 orders of magnitude less than those inferred from weathering rates in soils. The rate constants are smaller even than expected by projecting observed trends with the duration of weathering to the geologic age of the Middendorf. Weathering is driven largely by biological activity: about half the acid consumed is CO2 derived from the recharge area, and about half is supplied by iron reducing bacteria in the aquifer; only about 1% of the acid is of atmospheric origin, from CO2 dissolved in rainwater.  相似文献   

17.
松辽盆地农安地区上白垩统油页岩含油率影响因素   总被引:3,自引:0,他引:3  
农安油页岩含矿区地处松辽盆地东南隆起区,主要发育于上白垩统青山口组一段、嫩江组一、二段。油页岩有机质的干酪根类型为Ⅰ-Ⅱ1型,质量较好,处于成岩的未成熟阶段。油页岩含油率与有机碳和氢元素含量间存在明显的线性正相关关系,当有机碳质量分数>6%或氢质量分数>1%时构成油页岩。此外,有机质干酪根的显微组分可以反映有机质的类型,与含油率之间也存在一定的相关性。青山口-嫩江组沉积时期,该区温暖湿润的古气候条件、大规模的海侵和缺氧事件影响了油页岩中有机质的丰度和类型,从而影响了油页岩的含油率。  相似文献   

18.
Geology of the Devonian black shales of the Appalachian Basin   总被引:1,自引:0,他引:1  
Black shales of Devonian age in the Appalachian Basin are a unique rock sequence. The high content of organic matter, which imparts the characteristic lithology, has for years attracted considerable interest in the shales as a possible source of energy. The recent energy shortage prompted the U.S. Department of Energy through the Eastern Gas Shales Project of the Morgantown Energy Technology Center to underwrite a research program to determine the geologic, geochemical, and structural characteristics of the Devonian black shales in order to enhance the recovery of gas from the shales. Geologic studies by Federal and State agencies and academic institutions produced a regional stratigraphic network that correlates the 15 ft black shale sequence in Tennessee with 3000 ft of interbedded black and gray shales in central New York. These studies correlate the classic Devonian black shale sequence in New York with the Ohio Shale of Ohio and Kentucky and the Chattanooga Shale of Tennessee and southwestern Virginia. Biostratigraphic and lithostratigraphic markers in conjunction with gamma-ray logs facilitated long-range correlations within the Appalachian Basin. Basinwide correlations, including the subsurface rocks, provided a basis for determining the areal distribution and thickness of the important black shale units. The organic carbon content of the dark shales generally increases from east to west across the basin and is sufficient to qualify as a hydrocarbon source rock. Significant structural features that involve the black shale and their hydrocarbon potential are the Rome trough, Kentucky River and Irvine-Paint Creek fault zone, and regional decollements and ramp zones.  相似文献   

19.
Chalk deformation and large-scale migration of calcium carbonate   总被引:2,自引:0,他引:2  
Y. MIMRAN 《Sedimentology》1977,24(3):333-360
Sixty Upper Cretaceous chalk exposures were examined and sampled in Dorset, the Isle of Wight and Guildford, South England, in order to investigate the effects of tectonic deformation on the chalk fabric. Light and scanning-electron microscopes were used extensively, and chemical, mineralogical and isotopic analyses ware carried out. Two types of fabric modification were distinguished. The first type involves more than 90% volume loss by mechanical compaction at the early stages of deformation followed by dissolution and removal of calcium carbonate in the advanced stages of deformation. Chalks which have undergone this type of fabric modification are dense and consist of well rounded 0.5–3 μ calcite crystals with well developed pressure-solution contacts. These chalks contain a high proportion of calcispheres (many of which are plastically deformed) but very few well preserved planktonic foraminifera and coccoliths. They are relatively enriched in insoluble constituents and depleted in strontium. The second type of fabric modification involves introduction of calcium carbonate into the pore spaces. Chalks which have undergone this type of modification are dense and contain a high proportion of 3–5 μ polygonal interlocking calcite crystals. Fossils are virtually never deformed, and delicate foraminifera and coccoliths are well preserved. Insoluble constituents similar to those found in the unmodified chalks occur in low concentrations. Removal of calcium carbonate at crystal contacts has taken place in chalks which have been subjected to high effective tectonic stresses and at crystal peripheries in chalks which have been subjected to high pore fluid pressure. Dissolution at crystal peripheries is responsible for the extensive calcium carbonate losses, and it is termed herein ‘confining pressure solution’. Introduction of calcium carbonate occurs in rocks which were under low tectonic stresses. During deformation calcium carbonate migrates from chalks under high stresses towards those under tow stresses, while some goes into solution in sea water. Well developed joints and high pore fluid pressure might increase the rate of calcium carbonate removal by three orders of magnitude. Petrographic and isotopic data suggest-that all fabric modifications studied took place in meteoric water.  相似文献   

20.
During weathering, elements enriched in black shale are dispersed in the environment by aqueous and mechanical transport. Here a unique evaluation of the differential release, transport, and fate of Fe and 15 trace elements during progressive weathering of the Devonian New Albany Shale in Kentucky is presented. Results of chemical analyses along a weathering profile (unweathered through progressively weathered shale to soil) describe the chemically distinct pathways of the trace elements and the rate that elements are transferred into the broader, local environment. Trace elements enriched in the unweathered shale are in massive or framboidal pyrite, minor sphalerite, CuS and NiS phases, organic matter and clay minerals. These phases are subject to varying degrees and rates of alteration along the profile. Cadmium, Co, Mn, Ni, and Zn are removed from weathered shale during sulfide-mineral oxidation and transported primarily in aqueous solution. The aqueous fluxes for these trace elements range from 0.1 g/ha/a (Cd) to 44 g/ha/a (Mn). When hydrologic and climatic conditions are favorable, solutions seep to surface exposures, evaporate, and form Fe-sulfate efflorescent salts rich in these elements. Elements that remain dissolved in the low pH (<4) streams and groundwater draining New Albany Shale watersheds become fixed by reactions that increase pH. Neutralization of the weathering solution in local streams results in elements being adsorbed and precipitated onto sediment surfaces, resulting in trace element anomalies.Other elements are strongly adsorbed or structurally bound to solid phases during weathering. Copper and U initially are concentrated in weathering solutions, but become fixed to modern plant litter in soil formed on New Albany Shale. Molybdenum, Pb, Sb, and Se are released from sulfide minerals and organic matter by oxidation and accumulate in Fe-oxyhydroxide clay coatings that concentrate in surface soil during illuviation. Chromium, Ti, and V are strongly correlated with clay abundance and considered to be in the structure of illitic clay. Illite undergoes minimal alteration during weathering and is concentrated during illuvial processes. Arsenic concentration increases across the weathering profile and is associated with the succession of secondary Fe(III) minerals that form with progressive weathering. Detrital fluxes of particle-bound trace elements range from 0.1 g/ha/a (Sb) to 8 g/ha/a (Mo). Although many of the elements are concentrated in the stream sediments, changes in pH and redox conditions along the sediment transport path could facilitate their release for aqueous transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号