首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
New trace-element data of rutile in kimberlite-borne ~1.85 Ga eclogite and pyroxenite xenoliths from the central Slave craton, as well as ~110 Ma MARID xenoliths from the Kaapvaal craton, provide constraints on the origins of lithospheric and sublithospheric mantle variability in high field strength element ratios. Rutiles in eclogites and pyroxenites have Zr/Hf ranging from 20 to 62 and Nb/Ta ranging from 10 to 40. Rutiles in MARID xenoliths have Zr/Hf from 24 to 33 and Nb/Ta from 10 to 41. Calculated whole-rock Zr/Hf is suprachondritic for eclogites with suggested gabbroic protoliths and subchondritic for boninite-like eclogites; the latter is consistent with cpx-controlled depletion in the protolith source. Within each eclogite type, positive correlations of Zr/Hf with La/Lu and negative correlations with Lu/Hf likely reflect fractionation of cpx and/or plagioclase during crystallisation of the protoliths. Zr/Hf–Nb/Ta relationships of some MARID-type rocks, which are products of lithospheric mantle metasomatism, and eclogite xenoliths plot on a silicate differentiation trend, whereas other samples have higher Nb/Ta at a given Zr/Hf. Fractionation of a few percent rutile from an HFSE-rich mafic melt can generate a trend towards strongly increased Nb/Ta at minimally changed Zr/Hf in the residual melt. Superposition of rutile fractionation on the effects of silicate differentiation, which fractionates Zr/Hf more strongly than Nb/Ta, can explain the Zr/Hf–Nb/Ta relationships of most eclogites from the central Slave craton as well as those of MARID rocks, metasomatised peridotites and group II kimberlites. By contrast, Zr/Hf–Nb/Ta relationships suggest that Group I kimberlites are mixtures between depleted peridotite and carbonatite. Thus, high Nb/Ta is a signature of lithospheric processes and may not be important in deeply subducted eclogites that bypass extended residence in the lithosphere. Conversely, considerable primary Zr/Hf variability was inherited by the eclogites, which is indicative of the compositional diversity of ancient subducted oceanic crust, which is expected to have generated substantial heterogeneity in sublithospheric basalt sources.  相似文献   

2.
In situ trace element analyses of constituent minerals in mantle xenoliths occurring in an alnöite diatreme and in nephelinite plugs emplaced within the central zone of the Damara Belt have been determined by laser ablation ICP-MS. Primitive mantle-normalized trace element patterns of clinopyroxene and amphibole indicate the presence of both depleted MORB-like mantle and variably enriched mantle beneath this region. Clinopyroxenes showing geochemical depletion have low La/Smn ratios (0.02–0.2), whereas those showing variable enrichment have La/Smn ranging up to 3.8 and La/Ybn to 9.1. The most enriched clinopyroxenes coexist with amphibole showing similar REE patterns (La/Smn = 1.3–4.1; La/Ybn = 4.5–9). Primitive mantle-normalized trace element patterns allow further groups to be distinguished amongst the variably enriched clinopyroxenes: one having strong relative depletion in Rb–Ba, Ta–Nb and relative enrichment in Th–U; another with similar characteristics but with additional strong relative depletion in Zr–Hf; and one showing no significant anomalies. Amphiboles show similar normalized trace element patterns to co-existing clinopyroxene. Clinopyroxene and amphiboles showing LREEN enrichment have high Sr and low Nd isotope ratios compared to clinopyroxene with LREE-depleted patterns. Numerical simulation of melt percolation through the mantle via reactive porous flow is used to show that the chromatographic affect associated with such a melt migration process is able to account for the fractionation seen in La–Ce–Nd in cryptically metasomatized clinopyroxenes in Type 1 xenoliths, where melt–matrix interactions occur near the percolation front, whereas REE patterns in clinopyroxenes proximal to the source of metasomatic melt/fluid match those found in modally metasomatized Type 2 xenoliths. The strong fractionation between Rb–Ba, Th–U and Ta–Nb shown by some cryptically metasomatized xenoliths can be also accounted for by reactive porous flow, provided amphibole crystallizes from the percolating melt/fluid close to its source. The presence of amphibole in vein-like structures in some xenoliths is consistent with this interpretation. The strong depletion in Zr–Hf in clinopyroxene and amphibole in some xenoliths cannot be accounted for by melt migration processes and requires metasomatism by a separate carbonate-rich melt/fluid. When taken together with published isotope data on these same xenoliths, the source of metasomatic enrichment of the previously depleted (MORB-like) sub-Damaran lithospheric mantle is attributed to the upwelling Tristan plume head at the time of continental breakup.  相似文献   

3.
小兴安岭北部二龙山林场辉长岩的主量、微量和稀土元素的测试分析结果显示: 二龙山辉长岩为钙碱性系列、偏铝质岩石; δEu 正异常,Sr 元素含量富集明显,具有堆晶辉长岩特征; Rb /Sr、Nb / Ta、LILE/HFSE、Th /Ta、Nb /U 和Nb /La 比值特征均显示,辉长岩岩浆来自受到俯冲流体交代的地幔源区。Nb /Zr、Th /Nb、Th /Ta 和Ta /Hf 比值特征及对Th /Hf --Ta /Hf 构造环境判别图解投点表明,二龙山辉长岩形成于陆内拉张环境。  相似文献   

4.
Anhydrous and amphibole-bearing mantle peridotite xenoliths from Kapfenstein (Styrian Basin) have been studied with the aim of understanding both the processes responsible for amphibole formation and the nature of metasomatizing agents which affected this portion of lithosphere. This area of the Pannonian Basin underwent a subduction event which was followed after about 15 Ma, by alkaline intraplate magmatism. Primary clinopyroxene (cpx1) in four-phase lherzolite xenoliths is characterized by LREE-depleted to slightly LREE-enriched patterns. LREE-depleted cpx1 have low Th and U contents and Zr (and Hf) anomalies varying from slightly negative to positive. LREE-enriched cpx have high Th and U contents and remarkable positive anomalies of Zr and Hf. Primary clinopyroxenes in amphibole-bearing lherzolites present a comparable compositional variation from LREE (and Th, U, Zr, Hf)-depleted type to LREE (and Th, U, Zr, Hf)-enriched type. LREE-depleted cpx1, with strong negative Zr and Ti anomalies, are also recognized in the peridotite matrix of a composite sample cut by a large amphibole vein. Textural and geochemical evidence indicates that amphibole disseminated within the matrix grew at the expense of primary spinel and clinopyroxene, mimicking the trace element patterns of the latter. As a consequence, the geochemical features of amphibole vary in relation to those of clinopyroxene, from enriched to depleted. On the other hand, the composition of vein amphibole in the composite xenolith compares well with amphibole megacrysts and microphenocrysts, suggesting that it represents a fractionation product of alkaline melt that passed through the lithosphere. Two kinds of metasomatism, superimposed on a slightly depleted lithospheric mantle, were identified. A slab-derived melt (proto-adakite?) metasomatic agent was responsible for the first enrichment in Th, U, Zr and Hf observed in clinopyroxene, whereas an alkaline within-plate metasomatic agent caused the formation of the Nb (and Ta)- rich disseminated amphibole. The final process was the alkaline magmatism, which was responsible for the formation of the large amphibole vein and megacrysts. It is proposed that the Nb-poor and Nb-rich amphiboles record the transition between the suprasubduction slab melt-related and the intraplate alkaline metasomatism.

These geochemical features are consistent with a lithospheric portion enriched in slab melt components which was subsequently metasomatized by alkaline melt. Alternatively an asthenospheric uprising could have scavenged a previously slab melt-enriched region of the lithosphere.  相似文献   


5.
Abundant spinel peridotite xenoliths occur in late Cenozoic alkali basaltic rocks in the Sikhote-Alin region at the Pacific margin of the Asian continent. Major- and trace-element compositions of representative peridotite xenolith are documented for four occurrences located in different structural units of the continental margin. In each locality, the majority of xenoliths have distinctive microstructures, modal and chemical compositions that are typical for a given xenolith suite. Significant textural and compositional differences between the four xenolith suites suggest that the upper mantle beneath the Sikhote-Alin consists of distinct domains with contrasting composition. The inferred large-scale mantle heterogeneities may be due to juxtaposition of lithospheric blocks of different provenance during accretion of the Sikhote-Alin to the Asian continent.

Trace-element patterns of the xenoliths and their minerals obtained ICP-MS technique provide evidence of depletion and enrichment events and indicate contrasting behaviour of REE, HFSE and other incompatible trace elements. The HFSE behave non-concordantly, in particular, some xenoliths have highly fractionated Zr/Hf, Ti/Zr, Nb/Ta, La/Nb and U/Th ratios relative to their values in the primitive mantle. The fractionated compositions may be related to the interaction of evolved subduction-related fluids and melts with lithospheric mantle at the Mesozoic-early Cenozoic active continental margin or to metasomatism during later continental rifting.  相似文献   


6.
Seamount volcanism associated with the Xigaze ophiolite, Southern Tibet   总被引:6,自引:0,他引:6  
Basaltic lavas at Renbu, Southern Tibet are associated with the Xigaze ophiolite in the Yarlung-Zangbo suture zone. They are alkaline lavas rich in large ion lithophile elements (LILE, Ba, Rb and Sr) and high field strength elements (HFSE, Nb, Ta, Zr and Hf), but poor in Cr, Co and Ni. All of the rocks have chondrite-normalized REE patterns enriched in light rare earth elements (LREE), comparable to modern basalts of the Society Islands, Kerguelen Plateau and Broken Ridge. Abundances of some immobile or moderately immobile elements (Nb, Ta, Zr, Hf, Y, Ti and REE) are also comparable to Kerguelen alkaline basalts. The Renbu basalts are geochemically similar to oceanic island basalts (OIB) and have some elemental ratios, such as Nb/Ta ratios = 15.7–18.1, Th/Nb =  0.06–0.10, La/Nb = 0.59–0.83 and Th/Ta = 1.03–1.52, similar to the primitive mantle. Their 87Sr/86Sr ratios (0.70453–0.70602) are relatively high, similar to OIB. In the 87Sr/86Sr vs. εNd(t) diagram, the Renbu basalts plot along a trend from N-MORB to EMII (enriched mantle II), suggesting the involvement of at least two mantle sources in their generation. The Renbu basalts represent seamount volcanism associated with the Xigaze ophiolite. They formed from an OIB-type mantle source within the Neo-Tethyan Ocean that had a composition similar to the modern Indian Ocean mantle.  相似文献   

7.
The volcanic rocks of the South Atlantic Ocean islands of Fernando de Noronha and Trindade comprise a diverse magmatic series ranging from nephelinites and basanites to phonolites and, on Fernando de Noronha, trachytes. All rock types are highly silica undersaturated with the exception of Fernando de Noronha trachytes_, and have high abundances of incompatible trace elements and strongly LREE (light rare earth element)-enriched REE patterns. Crystal fractionation of parental basanitic magmas produced evolved phonolites and trachytes which display severe trace-element fractionation, even among trace elements (Nb, Ta, Zr, Hf) which normally behave highly incompatibly during crystallisation of alkaline magmas. Moderately to highly evolved compositions develop strongly MREE (middle REE)-depleted REE patterns, and become increasingly depleted in elements such as Nb and, in particular, Ta. Ratios of Nb/Ta and Zr/Hf are highly fractionated in phonolites (60–65, 64–77 respectively in Fernando de Noronha phonolites) compared to ratios in basanites (14, 45 respectively). The compatibility of Nb, Ta, and the REE, and the strong fractionation of Nb/Ta and Zr/Hf ratios and the MREE, during crystallisation from basanite to phonolite are attributable to the crystallisation of small amounts (<5%) of sphene. Trace-element behaviour is relatively insensitive to the major phenocryst phases, and is controlled by minor phases in highly undersaturated alkaline suites. Incompatible trace-element ratios (e.g. La/Nb, Th/Ta) in nephelinites and basanites from Fernando de Noronha and Trindade are generally comparable with those in basaltic and hawaiitic OIB (ocean island basalt) lavas from other South Atlantic islands, but are distinct from those of Gough and Tristan da Cunha OIB. The mantle source for the highly undersaturated volcanism on Fernando de Noronha and Trindade is similar in trace-element characteristics to the typical OIB source which produces alkaline lavas with significant relative enrichment in Nb and Ta compared to other trace elements (as expressed by low La/Nb, Ba/Nb and Th/Ta ratios). The highly undersaturated nature of the magmas and the slight fractionation of some incompatible-element ratios (elevated Ba/Nb, Ba/Rb, Ba/Th etc.) is consistent with a smaller degree of melting of a typical OIB source, but with residual phlogopite in the source to account for significant K depletion and LIL-element fractionation.  相似文献   

8.
Geochemical and isotopic studies showed that the Late Cretaceous-Early Paleocene magmatic rocks of northern Kamchatka were formed in different geodynamic zones of a Late Cretaceous-Early Paleocene suprasubduction system: from a volcanic front to a back-arc rift basin. Suprasubduction magmas were derived from upper mantle garnet or spinel lherzolites variably depleted in terms of Nd isotopic composition or enriched in HFSE and showing varying Th/La, Th/Ta, Zr/Nb, and Nb/U ratios. Subduction-related fluids played an active role in this process. The suprasubduction mantle melts were not contaminated by crustal materials enriched in radiogenic Nd. A weak imprint of contamination was identified only in the lavas of Karaginsky Island.  相似文献   

9.
Many objections have been raised as to the ability of subcontinental lithospheric mantle to produce voluminous amounts of basalt, because this upper part of the mantle is thought to be refractory, and the geotherm is rarely above the peridotite solidus at these depths under continents. However, in the Pacific Northwest of the USA during the Neogene, the subcontinental lithospehric mantle has been proposed as a key source for basalts erupted within the northern Basin and Range, and for the Columbia River flood basalts erupted on the Columbia Plateau. An alternative explanation to melting in the subcontinental lithospheric mantle, which equally well explains the chemical compositions thought to originate there, is that these magmas were contaminated by crust of varying ages. Calc-alkaline lavas, which occupy the Blue Mountains in the center of this region, hold clues to the latter process. Their elevated trace element ratios (e.g., Ba/Zr, K2O/P2O5), coupled with differentiation indicators such as Mg? [molar Mg/(Mg?+?Fe)], and Sr, Nd, and Pb isotopic compositions, can most reasonably be explained by crustal contamination. Appraisal of continental peridotite xenolith data indicates that high trace element ratios such as Ba/Zr in continental basalts cannot result from melting in the subcontinental lithospheric mantle. Instead, as with the calc-alkaline lavas, these high ratios in the tholeiites most likely indicate crustal contamination. Furthermore, the peridotite xenoliths do not have a relative depletion in Nb and Ta that is observed in most of the lavas within the region. Relatively minor volumes of tholeiites erupted in late Neogene times in the northern Basin and Range (Hi-Mg olivine tholeiites) and Columbia Plateau (Saddle Mountains basalts), are the only lavas which have trace element and isotopic compositions consistent with being derived from, or largely interacting with a subcontinental lithospheric mantle in the Pacific Northwest. In contrast to the prior studies, we suggest that the mantle sources for most of the basalts in this region were ultimately beneath the lithospheric mantle.  相似文献   

10.
李婷  李猛  胡朝斌  李瑶  孟杰  高晓峰  查显锋 《地球科学》2018,43(12):4350-4363
祁漫塔格地区岩浆岩的成岩时代和形成环境的确定能对东昆仑造山带加里东期构造演化时限加以约束.对祁漫塔格西北部阿确墩地区石英闪长岩和二长花岗岩进行了年代学和岩石地球化学研究,结果显示,石英闪长岩属准铝质-弱过铝质钙碱性系列岩石;轻重稀土分馏明显,具中等-轻微铕负异常(δEu=0.79~0.90);相对富集Rb、K、Hf、Zr、Tb、Nd等元素,不同程度地亏损Ba、P、Ti、Nd、Ta、Y;具有I型花岗岩类特征.二长花岗岩属弱过铝质钙碱性系列岩石;轻重稀土分异程度极大,具明显铕负异常(δEu=0.42~0.45);富集大离子亲石元素(如Rb、K、La、Ce、Nd、Tb等),亏损高场强元素(P、Ti、Nd、Ta)和Ba、Sr、U等元素;为高分异I型花岗岩.Nd/Th、Nb/Ta、Mg#值等指标显示石英闪长岩为壳源特征且受到幔源岩浆的影响,推测是幔源岩浆底侵地壳物质发生部分熔融形成的;二长花岗岩则是壳源的,可能与幔源岩浆底侵诱发的上地壳物质部分熔融有关,且经历了强烈的结晶分离作用.石英闪长岩和二长花岗岩的LA-ICP-MS锆石U-Pb年龄分别为448.8±3.9 Ma和405.2±3.6 Ma,代表其形成时代.石英闪长岩总体显示出与俯冲消减作用有关的岛弧岩浆岩地球化学特征;二长花岗岩在构造环境图解中显示为碰撞背景,但微量元素与同碰撞花岗岩典型特征不符,综合分析认为形成于后碰撞构造背景下.结合区域构造演化,推测东昆仑祁漫塔格地区在晚奥陶世持续处于俯冲消减环境中,早泥盆世之前进入后碰撞造山阶段.   相似文献   

11.
桂东北牛庙和同安岩体分别由闪长岩和石英二长岩组成。锆石的SHRIMP U-Pb年龄分别为163±4Ma和160± 4Ma。岩石以富铝、富碱、高钾、富含Rb、Ba、Th、U、Pb、Sr等大离子半径亲石元素(LILE)及富含REE、Nb、Ta、Zr、Hf等高场强元素(HFSE)为主要特征,属富钾系列或钾玄岩系列。其不相容元素的分布特征为亲OIB型,主要来源于富集的岩石圈地幔的熔融。两岩体的常量元素、微量元素和Sr-Nd同位素组成特征,反映了它们的原始岩浆经历过相当充分的分离结晶和相当程度的地壳混染,即通过AFC方式而形成。岩体中广泛分布的微细粒状暗色包体是共存的更偏基性的岩浆与寄主岩浆不完全混合的残留,其成分的多样性和相互过渡关系,反映了不同包体母岩浆在形成和演化途径等方面的差异性。岩体形成于燕山早期华南后造山阶段大陆地壳拉张减薄的构造环境,软流圈地幔沿超岩石圈深断裂的上涌和底侵,是造成富集的岩石圈地幔和中下地壳熔融并形成本区闪长质和花岗质岩浆的主要机制。  相似文献   

12.
对西天山伊宁县北琼阿希河谷出露的火山岩进行了地球化学特征研究,结果表明,该地区火山岩属于钙碱性火山岩系列,LREE强烈富集[(La/Yb)N介于2.76~7.03之间],具有弱的Eu负异常,样品的强不相容元素(Cs、Rb、Ba、Th、U)LILE均明显富集,总体在原始地幔的10倍以上,显示了岛弧火山岩的Nb-Ta负异常特征。但是,其(Th/Nb)N、(La/Nb)N的比值远远大于1,Ba/Nb、La/Nb的变化范围较大,Zr/Nb、Zr/Hf接近N-MORB的比值,Ta/Nb却接近上地壳的比值,暗示该地区的火山岩岩浆在上升过程中受到一定程度的地壳混染,所有样品均显示为中钾-高钾系列,这种钾质类型的优势地位也反映了陆壳基质在岩浆活动中占有重要的地位。样品的Zr均大于300、Zr/Y均大于4,显示了板内玄武岩的成分特征,在Zr-Zr/Y判别图解中,大多数样品投到板内玄武岩的构造环境区域内。结合区域上的地质特征,认为该地区在泥盆世一直处于抬升阶段,在石炭纪时碰撞结束并进入碰撞后伸展阶段,局部地区产生一定的裂谷化特征。琼阿希河谷的火山岩的Nb-Ta负异常特征应为地壳混染引起,火山岩的形成环境为碰撞后伸展的构造环境。  相似文献   

13.
We report the results of LA-ICP-MS analyses of rock forming minerals in clinopyroxene-apatite-K feldspar-phlogopite (CAKP) metasomatic xenoliths and primary carbonatite melt inclusions (CMI) hosted in apatite (Ap) and K feldspar (Kfs). The xenoliths are from the Cretaceous lamprophyre dikes of the Transdanubian Central Range, Hungary. The CMI in Ap have phosphorus dolomitic composition as opposed to CMI in Kfs, which display dolomitic alkali-aluminosiliceous character. The melts found in CMI in Ap and in Kfs likely formed by liquid-liquid separation from an originally carbonate- and phosphorous-rich melt. Primitive mantle (PM) normalized trace element distributions of both Ap- and Kfs-hosted CMI (n = 60 and 20, respectively) reveal a strong negative Ti-anomaly, and an extreme enrichment in incompatible elements (U, Th, LILE and LREE) relative to HREE, Sc, V, Ni and Cr. Rarely, apatites contain unique CMI, which show major- and trace-element signature transitional to K feldspar-hosted CMI. This is due to heterogeneous entrapment of an immiscible phosphorous-bearing carbonatite melt and a carbonate-bearing alkali aluminosiliceous melt, which is a further evidence for their co-existence. CMI reveal that U, Th, Pb, Nb, Ta, P, Sr, Y and REE partitioned into the phosphorous-bearing carbonatite melt, whereas Cs, Rb, Na, K, B, Al, Zr and Hf preferred the silicate-bearing liquid.PM normalized REE pattern (high LREE/HREE), elevated Zr and Hf contents and negative Ti anomaly of clinopyroxene (Cpx) indicate that its formation is genetically linked to carbonatite metasomatism attested by CMI. Trace element partitioning between the studied Cpx and CMI is in accordance with experimentally determined trace element distributions between Cpx and carbonatite melt. Cpx, which occur in samples with high modal proportion of apatite represent mantle section, which interacted with a higher amount of “initial” carbonatite melt than Cpx from apatite-poor xenoliths. This is confirmed by higher Cr, Ni, V, Sc, Ti and lower Zr, as well as Hf concentration in Cpx from xenoliths with low modal abundance of Ap. CMI reveal that Ti, V, Ni and Cr were in lower concentration in the “initial” carbonatite melt than in PM. Contrarily, Zr and Hf were more abundant in this melt than in PM. Consequently, a continuously migrating “initial” carbonatite melt, increased Zr and Hf concentration, and decreased Ti, Sc, V, Ni and especially Cr in the clinopyroxenes. Our findings suggest that the studied CAKP rocks were formed by carbonatite melt metasomatism, which occurred in an open system in the upper mantle.  相似文献   

14.
In this paper, we present data on major and trace elements in highly metamorphosed mafic rocks from the granulite-gneiss complex of the Angara-Kan block (southwestern Siberian craton), identify igneous protoliths of the metabasites, and assess the mobility of elements during metamorphism. Two types of rocks with different geologic relations and compositions were recognized. Garnet-bearing two-pyroxene granulites (Cpx + Pl + Grt + Opx) occur as sheet- and boudin-like bodies, which were folded and deformed with their host paragneisses. Dikes, which in most cases underwent only brittle deformation, are composed of metabasites characterized by the assemblage Cpx + Hbl + Pl + Grt. The major element compositions of igneous protoliths for the mafic granulites and metabasite dykes correspond to variously differentiated basaltic magmas. The protoliths of the metabasites are depleted in K2O, LILE, Zr, Nb, and LREE and were derived from a depleted mantle source. The major and trace element compositions of the dike metabasites are similar to those of low-K tholeiitic basalts of oceanic island arcs. Continental intraplate basalts derived from an enriched mantle source are possible igneous protoliths for the mafic granulites enriched in Ba, LREE, Nb, Ta, Zr, and Hf. It is assumed that lower Rb, Th, and U contents in the mafic granulites compared with continental flood basalts, high K/Rb and La/Th, and moderate Th/U ratios reflect the loss of Rb, Th and U during granulite-facies metamorphism.  相似文献   

15.
山东五莲七宝山地区早白垩世的碱性侵入岩位于火山机构的中央部位,该岩体具有高Ba-Sr含量、高Nb/Ta和Zr/Hf比、低Ti/Eu比等特征,前人的研究指出其起源于岩石圈地幔。然而,该侵入体中的岩性与成分变化所反映的深部动力学过程尚未理清。本文对七宝山二长辉长岩和两类辉石二长岩开展了详细的矿物学和岩石地球化学研究,识别出钠质和钾质两类钾玄质岩石系列。该套碱性中基性侵入岩具有富碱、富轻稀土和富大离子亲石元素的特征,同时具有高的(La/Yb)N和(Gd/Yb)N值。碱性侵入岩中两类单斜辉石和两类斜长石作为再循环晶,记录了不同批次岩浆/熔体的混合,这些矿物组分和全岩成分共同约束了岩浆的起源与演化过程。结合前人的地球化学资料,本文指出七宝山碱性侵入岩的源区是曾受到沉积物交代的富集地幔,源区存在金云母脉体和角闪石脉体。上述脉体连同周围的地幔橄榄岩共同发生部分熔融,形成原生的碱性熔体。七宝山碱性侵入岩显示高的Nb/Ta和Zr/Hf比、低的Ti/Eu比,同时在微量元素蜘蛛图上呈现Ti*和Hf*的负异常,结合高稀土单斜辉石平衡熔体的属性,共同指示了碳酸盐熔体组分对该套碱性侵入岩的形成发挥了重要作用。钠质系列与钾质系列岩石反映了源区富碱矿物相类型相对贡献量的差异,即钠质为主的碱性岩反映源区角闪石的贡献更大,而钾质为主的碱性岩反映源区金云母的贡献占优势。此外,碱性侵入岩中的钾质系列具有异常高的Rb-Zr-Hf-U含量,很可能反映了源区在部分熔融过程中热液锆石熔解后形成的熔体加入到了钾质岩浆房内。本研究强调了碳酸盐熔体组分对高Nb/Ta碱性中基性的形成发挥着重要作用,亦强调了热液锆石的熔解加入导致岩浆具有高Zr-Hf-U含量的特征。  相似文献   

16.
桂西田阳堆积型铝土矿矿物学及地球化学   总被引:1,自引:0,他引:1  
蔡书慧 《地质与勘探》2012,48(3):460-470
[摘 要]桂西田阳堆积型铝土矿产于第四纪红土层中。本文通过对桂西田阳第四系堆积型铝土矿进行一系列矿物学与地球化学研究,探索铝土矿的物质来源。矿物学分析显示铝土矿石中主要矿物为硬水铝石、赤铁矿和锐钛矿,含有少量高岭石、鲕绿泥石、三水铝石、针铁矿、金红石、伊利石、蒙脱石和石英等。地球化学分析显示,组成铝土矿石的主要化学组分有Al2O3、Fe2O3、SiO2、TiO2、FeO 和H2O+;微量元素分析显示,铝土矿石相对地壳和原始地幔富集B、Li、Ga、Zr、Hf、Nb、Ta、W、Th、U 等元素,而亏损Ni、Cr 等元素。矿石中明显富集稀土元素,稀土总量变化大,轻重稀土分异明显,轻稀土元素富集明显;矿石具有明显的铈异常和铕异常,且铕异常相对稳定,为一致的负异常。元素相关性分析显示常量元素间相关性较差;部分微量元素如Zr、Hf、Nb 和Ta 间呈现出较高的正相关性。通过Zr/ Hf、Nb/ Ta 图解、Eu/ Eu* - TiO2/ Al2O3图解和Zr-Cr-Ga 图解综合分析显示铝土矿物质来源复杂,底板碳酸盐岩和周围火成岩都为铝土矿提供物源。  相似文献   

17.
滇东南地区晚二叠世铝土矿属典型的喀斯特型铝土矿,矿体赋存于上二叠统吴家坪组(龙潭组),分析其地球化学特征对研究其物质来源具有重要意义。全岩分析显示铝土矿石成分以Al2O3、Fe2O3、SiO2和TiO2为主,其中Al2O3与Fe2O3 、SiO2具有较好的负相关关系。微量元素Cr、Zr、 Hf、Ta、Th、U和稀土元素在铝土矿矿化过程中不断富集,元素Zr-Hf、Nb-Ta之间具有明显的正相关关系。lgCr-lgNi图解、稳定元素比值(Zr/Hf)及稀土元素配分模式等地球化学特征说明峨眉山玄武岩为铝土矿的形成提供了主要的物质来源,同时下伏碳酸盐岩也提供了部分成矿物质。  相似文献   

18.
The Late Cenozoic volcanics of the Lesser Caucasus have similar trace-element and REE patterns with negative anomalies of Nb, Ta, Hf, and Zr. They are highly enriched in Rb, Ba, Th, and La and depleted in Ti, Yb, and Y with respect to N-MORB, which indicates their formation from the subduction-metasomatized lithospheric mantle. Partial melting of the subcontinental mantle lithosphere and crustal assimilation and fractional crystallization controlled the magma evolution in the collisional magmatic belts.  相似文献   

19.
ABSTRACT

Tongling, in eastern China, is an area well-known for intra-plate adakites. Here, we present the mineral chemistry and zircon U–Pb ages for amphibole cumulate xenoliths, the mineral chemistry of amphibole megacrysts, and the whole–rock chemistry, zircon U–Pb age and Sr–Nd isotopic compositions of host gabbros from Tongling. Zircon U–Pb dating yields a crystallization age of 120.6 ± 1.2 Ma (MSWD = 4.2) for the host gabbros, which are characteristically depleted in high field strength elements (Nb, Ta, and Ti) and enriched in large ion lithophile elements (Ba and Sr), with εNd (t) of ?3.00 to ?4.52 and initial 87Sr/86Sr ratios of 0.7068–0.7072, suggesting an enriched mantle source. Parental melts, as estimated from average amphibole megacryst and cumulate compositions, have Mg# values of 26–33, are enriched in Ba, Th, U, and Nd, and depleted in Nb, Ta, Zr, Hf, and Ti, similar to 136 Ma mafic magmas in Tongling. Zircon U–Pb dating yields a crystallization age of 135.4 ± 1.0 Ma (MSWD = 1.6) for the amphibole cumulates. It is concluded that the Tongling adakitic rocks were formed by polybaric crystallization involving early high-pressure intracrustal fractional crystallization of cumulates comprising hornblende and clinopyroxene, and late low-pressure fractional crystallization of hornblende and plagioclase phenocrysts. The flat subduction of Pacific plate and its subsequent foundering during the Cretaceous may have triggered the generation of extensive adakitic magmas and lithospheric thinning in the Lower Yangtze Region.  相似文献   

20.
青藏高原南部中国境内是否存在寒武纪地层一直是地质界关注的焦点。研究表明.冈底斯北缘西藏尼玛县控错南帮勒村一带,原划的前震旦纪念青唐古拉岩群为一套浅变质的拉斑系列双峰式火山岩。通过高精度LA—ICP—MS(激光剥蚀等离子体质谱)锆石微区原位u—Pb同位素测年,获得其中变流纹岩“Pb/“u年龄加权平均值为(536.4±3.6)Ma,确定该套火山岩形成于 旱寒武世。地球化学分析表明,变玄武岩富集LREE、L1LE、部分HFSE,Nb、Ta、Zr、Hf等亏损,Zr/Nb比值(2.53~3.61)低;变流纹岩明显富集LREE、LILE、Th、HFSE,具有Eu负异常和sr、Nb、Ta、Ti负异常。同时,变玄武岩的gNd(t)为负值(一2.80~一4.56)。源区为富集地幔端元EMll。反映其源区为岩石圈和软流圈相互作用的产物,并遭受了地壳物质的混染。综合分析认为该套火山岩形成于陆缘裂谷环境.为冈底斯北缘存在寒武纪裂解作用提供了佐证。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号