首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High-pressure (HP) metamorphic rocks, including garnet peridotite, eclogite, HP granulite, and HP amphibolite, are important constituents of several tectonostratigraphic units in the pre-Alpine nappe stack of the Getic–Supragetic (GS) basement in the South Carpathians. A Variscan age for HP metamorphism is firmly established by Sm–Nd mineral–whole-rock isochrons for garnet amphibolite, 358±10 Ma, two samples of eclogite, 341±8 and 344±7 Ma, and garnet peridotite, 316±4 Ma.

A prograde history for many HP metamorphic rocks is documented by the presence of lower pressure mineral inclusions and compositional zoning in garnet. Application of commonly accepted thermobarometers to eclogite (grt+cpx±ky±phn±pg±zo) yields a range in “peak” pressures and temperatures of 10.8–22.3 kbar and 545–745 °C, depending on tectonostratigraphic unit and locality. Zoisite equilibria indicate that activity of H2O in some samples was substantially reduced, ca. 0.1–0.4. HP granulite (grt+cpx+hb+pl) and HP amphibolite (grt+hbl+pl) may have formed by retrogression of eclogites during high-temperature decompression. Two types of garnet peridotite have been recognized, one forming from spinel peridotite at ca. 1150–1300 °C, 25.8–29.0 kbar, and another from plagioclase peridotite at 560 °C, 16.1 kbar.

The Variscan evolution of the pre-Mesozoic basement in the South Carpathians is similar to that in other segments of the European Variscides, including widespread HP metamorphism, in which PTt characteristics are specific to individual tectonostratigraphic units, the presence of diverse types of garnet peridotite, diachronous subduction and accretion, nappe assembly in pre-Westphalian time due to collision of Laurussia, Gondwana, and amalgamated terranes, and finally, rapid exhumation, cooling, and deposition of eroded debris in Westphalian to Permian sedimentary basins.  相似文献   


2.
Mineral exploration drillholes and geoelectric prospecting provide for the first time evidence for thrusting of the South Carpathian Paleozoic basement over northerly adjacent Middle Miocene sediments. Investigations were carried out in two locations, 30 km apart, along the northern margin of the Poiana Rusca Mountains, Romania, southwestern Carpathians. Drill holes in both locations encountered weakly consolidated Middle Miocene clay, sand, and fine gravel below Paleozoic low-grade metamorphic rocks. Intersections from various drill holes demonstrate the presence of low-angle thrusting. Kinematic indicators are so far lacking, but with a thrust direction oriented roughly normal to strike of the Poiana Rusca Mountains, minimum displacement is 1–1.4 km in northwestern or northern direction, respectively. Thrusting occurred most likely during the Late Miocene–Pliocene, whereafter Quaternary regional uplift dissected the thrust plane. In the tectonic framework of Neogene dextral translation of the Tisza–Dacia Block against the southerly adjacent Moesian Platform, transtension appears responsible for Middle Miocene basin formation along the northern margin of the Poiana Rusca region. Proceeding collision of the Tisza–Dacia Block with the East European Craton introduced stronger impingement of the Tisza–Dacia Block against the Moesian Platform, leading to a Late Miocene–Pliocene transpressional regime, in which the northern Poiana Rusca basement was thrust over its adjacent Middle Miocene sediments.  相似文献   

3.
Twenty-four new zircon and apatite fission track ages from the Getic and Danubian nappes in the South Carpathians are discussed in the light of a compilation of published fission track data. A total of 101 fission track ages indicates that the Getic nappes are generally characterized by Cretaceous zircon and apatite fission track ages, indicating cooling to near-surface temperatures of these units immediately following Late Cretaceous orogeny.The age distribution of the Danubian nappes, presently outcropping in the Danubian window below the Getic nappes, depends on the position with respect to the Cerna-Jiu fault. Eocene and Oligocene zircon and apatite central ages from the part of the Danubian core complex situated southeast of this fault monitor mid-Tertiary tectonic exhumation in the footwall of the Getic detachment, while zircon fission track data from northwest of this fault indicate that slow cooling started during the Latest Cretaceous. The change from extension (Getic detachment) to strike-slip dominated tectonics along the curved Cerna-Jiu fault allowed for further exhumation on the concave side of this strike-slip fault, while exhumation ceased on the convex side. The available fission track data consistently indicate that the change to fast cooling associated with tectonic denudation by core complex formation did not occur before Late Eocene times, i.e. long after the cessation of Late Cretaceous thrusting.Core complex formation in the Danubian window is related to a larger-scale scenario that is characterized by the NNW-directed translation, followed by a 90° clockwise rotation of the Tisza-Dacia “block” due to roll-back of the Carpathian embayment. This led to a complex pattern of strain partitioning within the Tisza-Dacia “block” adjacent to the western tip of the rigid Moesian platform. Our results suggest that the invasion of these southernmost parts of Tisza-Dacia started before the Late Eocene, i.e. significantly before the onset of Miocene-age rollback and associated extension in the Pannonian basin.  相似文献   

4.
The Tatricum, an upper crustal thrust sheet of the Central Western Carpathians, comprises pre-Alpine crystalline basement and a Late Paleozoic-Mesozoic sedimentary cover. The sedimentary record indicates gradual subsidence during the Triassic, Early Jurassic initial rifting, a Jurassic-Early Cretaceous extensional tectonic regime with episodic rifting events and thermal subsidence periods, and Middle Cretaceous overall flexural subsidence in front of the orogenic wedge prograding from the hinterland. Passive rifting led to the separation of the Central Carpathian realm from the North European Platform. A passive margin, rimmed by peripheral half-graben, was formed along the northern Tatric edge, facing the Vahic (South Penninic) oceanic domain. The passive versus active margin inversion occurred during the Senonian, when the Vahic ocean began to be consumed southwards below the Tatricum. It is argued that passive to active margin conversion is an integral part of the general shortening polarity of the Western Carpathians during the Mesozoic that lacks features of an independent Wilson cycle. An attempt is presented to explain all the crustal deformation by one principal driving force - the south-eastward slab pull generated by the subduction of the Meliatic (Triassic-Jurassic Tethys) oceanic lithosphere followed by the subcrustal subduction of the continental mantle lithosphere.  相似文献   

5.
The combination of apatite fission track (FT) thermochronology from basement units and the FT age distributions of apatites in the Miocene intramontane sedimentary rocks allows describing the exhumation history of the central segment of the Southern Carpathians, Romania. Exhumation and cooling from the total track annealing temperature (>120°C) of the Cozia and Cibin massifs occurred in the Palaeocene–Early Eocene. Between the Eocene and Middle Miocene, there was a stagnation period concerning vertical displacement; the presently exposed part of the basement was buried in shallow depth. The present crests of the Cozia and Cibin Mountains were at temperatures around 80°C and 50°C, respectively. The second exhumation period occurred in Middle Miocene times. The magnitude of the Miocene vertical displacement is on the order of the present-day relief. The vertical apatite FT age distribution in the basement and the age clusters in the sedimentary rocks prove that the levels of the crests were already close to the surface in Palaeogene times. Therefore, the post-Palaeocene erosional removal from the crest zones is very limited.  相似文献   

6.
The high-pressure granulites of the Uluguru Mountains are part of the Pan-African belt of Tanzania, the metamorphic evolution of which is characterized by an anticlockwise P-T path. Mineral assemblages that represent distinct metamorphic stages are selected for fluid inclusion studies in order to deduce the fluid evolution in metapelites and pyroxene granulites from the prograde to the retrograde stage. Fluid inclusion data improve the petrologically derived P-T path and confirm the anticlockwise evolution. Fluid inclusions in quartz enclosed in garnet porphyroblasts in metapelites preserve prograde fluids of CO2–N2 composition and later-trapped pure CO2. During isochoric heating at temperatures near the peak of metamorphism, deformation and recrystallization led to fluid homogenization yielding N2-poor CO2 composition in the metapelites. Near-peak CO2–N2 fluid inclusions in quartz of metapelites and CO2 inclusions in garnet-pyroxene granulites are characterized by perfect negative crystal shape. Garnet formed in veins and as coronas around orthopyroxene represent the near-isochoric/isobaric cooling stage which is characterized by high-density CO2-rich fluid inclusions. Up to 15 mol% N2 in some primary CO2 inclusions in corona garnet indicate small-scale fluid heterogeneity during the static garnet growth. The fact that high-density fluid inclusions are preserved, suggests a shallow dP/dT slope of the uplift path. Nevertheless, some fluid inclusions decrepitated or re-equilibrated and low-density CO2 inclusions were trapped in the garnet-pyroxene granulite while N2–CH4 inclusions formed in the metapelites. Different fluid compositions in metapelite and metabasite argue for an internal control of the fluid composition by phase equilibria. In shear zones where the pyroxene granulite was transformed into scapolite-biotite schist, CO2–N2 and low-density N2–CH4 fluid inclusions indicate several stages of tectonic activity and suggest fluid influx from the nearby metapelites. High- and low-salinity aqueous inclusions observed beside CO2 inclusions in garnet-pyroxene granulites, in vein quartz and shear zones could be of high-grade origin but are mainly re-equilibrated or re-trapped along healed microfractures during lower-grade stages. Received: 21 May 1997 / Accepted: 6 October 1997  相似文献   

7.
The Late Cretaceous Brezová and Myjava Groups of the Western Carpathians in Slovakia and formations of the Gosau Group of the Northern Calcareous Alps in Lower Austria comprise similar successions of alluvial/shallow marine deposits overlain by deep water hemipelagic sediments and turbidites. In both areas the heavy mineral spectra of Late Cretaceous sediments contain significant amounts of detrital chrome spinel. In the Early Tertiary the amount of garnet increases. Cluster analysis and correspondence analysis of Coniacian/Santonian and Campanian/Early Maastrichtian heavy mineral data indicate strong similarities between the Gosau deposits of the Lunz Nappe of the north-eastern part of the Northern Calcareous Alps and the Brezova Group of the Western Carpathians. Similar source areas and a similar palaeogeographical position at the northern active margin of the Adriatic/Austroalpine plate are therefore suggested for the two tectonic units.Basin subsidence mechanisms within the Late Cretaceous of the Northern Calcareous Alps are correlated with the Western Carpathians. Subsidence during the Campanian-Maastrichtian is interpreted as a consequence of subduction tectonic erosion along the active northern margin of the Adriatic/Austroalpine plate. Analogous facies and heavy mineral associations from deep water sandstones of the Manin Unit and the Klape Unit indicate accretion of parts of the Pieniny Klippen Belt during the Late Cretaceous along the Adriatic/Austroalpine margin.  相似文献   

8.
Kosice矿床是斯洛伐克第二大的菱镁矿床(150Mt),位于Gemeric的东部.其镁质碳酸盐矿体赋存于石炭纪石灰石和含白云石的石灰石中,同时下盘黑色片岩中也含有被铁质碳酸盐交代的薄层碳酸盐透镜体.在华力西期造山运动(M1)中,古生代岩石受到了低级变质作用(绿泥石带).镁交代作用始于白云岩1的结晶作用,其后形成菱镁矿,最终沿裂隙形成铁菱镁矿.铁质碳酸盐包括早期铁白云石-白云石,铁白云石和后期含方解石和石英的菱铁矿.根据碳酸盐矿物对地质温度计,白云石l结晶作用发生在300~340℃.这一结果与M1的变质矿物组合(绿泥石,白云母-伊利石)吻合.铁白云石的结晶作用发生在320~370℃.少量细脉中可见白云石2,绿泥石和伊利石-多硅白云母,它们是由于阿尔卑斯期造山运动M2变质作用形成的更晚的矿物组合.菱镁矿的流体包裹体(FI)研究,显示存在不同成分的热卤水,卤水成分变化相当于NaCl含量21~42wt%,但其它成分的盐含量高于NaCl,溶解的CO2含量也有变化.两相包裹体均一温度(Th)的范围为164~217℃,含石盐子晶包裹体均一温度的范围为217~344℃.富CO2包裹体(盐度相当于NaCl含量1~22wt%,CO2的密度为0.28~0.77g·cm-3,均一温度为289~344℃)在菱镁矿中是次要的,但这种包裹体在与矿石伴生的石英中是主要的,并且与含石盐子晶流体包裹体共生.在后期镁交代过程中流体中的CO2逐渐增加.和铁质碳酸盐伴生的石英中只有两相包裹体,包裹体中CO2含量有所变化,盐度范围为17~24wt%的NaCl(或者34~36 wt%的MgCl2),均一温度为152~195℃.包裹体的数据结合碳酸盐地质温度计显示镁交代作用的压力范围是180~320MPa(7~12km),铁交代作用的压力范围是280~420MPa(10~16km),说明地热梯度约为25~35℃/km.包裹体浸出液的分析表明Cl/Br和Na/Br的比值存在变化,但仍旧说明富镁的卤水来源是上二叠纪和下三叠纪的分馏蒸发岩来源.铁质碳酸盐流体的高溴和高碘含量,说明在铁交代过程中周围黑色片岩的明显影响.菱镁矿和铁交代作用,表明交代流体中的碳和二氧化碳,主要是海洋沉积的来源.菱铁矿的"Sr/86Sr比值((0.71124~0.71140),说明锶的多来源,最初应是石炭纪和二叠纪的海水,但它被当地其它陆壳中的锶混染.  相似文献   

9.
A ternary solid solution model for omphacite with the end-members jadeite (NaAlSi2O6), diopside (CaMgSi2O6) and hedenbergite (CaFeSi2O6) was derived from experimental data from the literature. The subregular solution model, fitted by linear programming, is best suited to omphacites with very little aegirine component in common eclogites. Applying this solution model to the calculation of equilibrium phase diagrams of eclogites from the Adula nappe (Central Alps, Switzerland) results in large stability fields for common eclogite assemblages (garnet+omphacite+quartz+H2O±kyanite). Within this field the compositions of garnet and omphacite show very little variation. A precise determination of the peak-pressure and temperature is not possible. The occurrence of amphibole, overgrowing the peak-pressure assemblage in fresh eclogite, suggests retrograde re-equilibration, still under eclogite facies conditions. The computation of isopleths for garnet and pyroxene end-members allows the estimation of the pressure and temperature conditions of this re-equilibration event (19–21  kbar, c .  700 °C).  相似文献   

10.
This study of the upper Maastrichtian to Danian sedimentary succession from the northern part of the Romanian Eastern Carpathians (Varniţa section) aims to establish an integrated biostratigraphy based on calcareous nannofossils, organic-walled dinoflagellate cysts (dinocysts) and foraminiferal assemblages, and to reconstruct the depositional environments of the interval. The stratigraphic record across the studied section is incomplete, considering that an approximately 16 m thick strata interval from the top of the Maastrichtian to lowermost Danian cannot be analyzed due to a landslide covering the outcrop. The upper Maastrichtian is marked by a succession of biostratigraphic events, such as the First Appearance Datum (FAD) of the nannoplankton taxon Nephrolithus frequens and FAD of the dinocyst species Deflandrea galeata and Disphaerogena carposphaeropsis, and the Last Appearance Datum (LAD) of Isabelidinium cooksoniae in the lower part of the section. These bioevents are followed by the LAD of the Dinogymnium spp. and Palynodinium grallator dinocyst markers in the top of the Maastrichtian deposits analyzed. In terms of foraminiferal biostratigraphy, the upper Maastrichtian Abathomphalus mayaroensis Zone is documented in the lower part of the studied section. Some bioevents, such as the bloom of the calcareous dinoflagellate genus Thoracosphaera and the FAD of the organic-walled dinocysts Damassadinium californicum, Senoniasphaera inornata, Xenicodinium lubricum and X. reticulatum suggest an early Danian age for the middle part of the section. From the Danian deposits in the Varniţa section, we describe a new organic-walled dinocyst species, Pentadinium darmirae sp. nov., which is until now the only species of the Pentadinium genus discovered in the Paleocene. The occurrence of the global Danian dinocyst marker Senoniasphaera inornata in the top of the section, suggests an age not younger than middle Danian (62.6 Ma) for the analyzed deposits.The palynofacies constituents, as well as the agglutinated foraminiferal morphogroups, used to reconstruct the depositional environments, show that the late Maastrichtian sediments were deposited in an outer shelf to distal (bathyal) environment, followed by a marine transgression during the Danian.  相似文献   

11.
王汝成  王硕  邱检生  倪培 《岩石学报》2009,25(7):1603-1611
石榴子石是榴辉岩中的基本造岩矿物。本文对苏鲁地体中的毛北榴辉岩和大别地体中的双河榴辉岩中的石榴子石进行了研究。结果显示,石榴子石都表现出中心“富”钛特征,即石榴子石颗粒的中心部位的TiO2含量(0.10%~0.50%)明显高于正常榴辉岩中石榴子石的钛含量(TiO2 一般<0.1%)。另外,在石榴子石中心部位含有大量金红石及其它钛矿物包裹体,其定向分布特征揭示其出溶成因模式。计算结果显示,出溶金红石的原始石榴子石大约含1.7% TiO2,揭示其超深源特征。此外,在石榴子石中发现了一颗TiO2含量达8%~9%的钙铝榴石,具超深源成因特征。因此,本文认为超钛钙铝榴石也是超高压变质作用的标志矿物。  相似文献   

12.
珊瑚礁不仅滋养着近1/3的海洋生物, 同时也贡献了近一半的浅海碳酸盐沉积, 在海洋碳循环中扮演重要角色。然而, 在"CO2问题"的影响下, 珊瑚钙化受到来自海洋升温和酸化的双重胁迫, 致使珊瑚礁生态系统遭受到严重的扰动。我国南海由北至南分布有大量的珊瑚礁, 在近几十年来活珊瑚覆盖率和生物多样性都呈现退化的趋势, 但尚不清楚珊瑚钙化是否也同样受到气候变化的干扰而处于退化状态。本研究汇集了目前已报道的南海滨珊瑚钙化生长的重建记录, 分别对海南岛、西沙和南沙典型珊瑚礁区的滨珊瑚钙化生长演变特征进行了对比分析, 探讨了工业革命以来南海珊瑚钙化对海水温度变化的响应情况。研究结果表明, 南海近岸和离岸的滨珊瑚骨骼密度均呈现长期下降的趋势; 而骨骼生长速率呈现多年代际的波动变化, 近50年以来仅在西沙显示出下降趋势, 这使得珊瑚综合的钙化速率在西沙和南沙均出现明显退化。进一步分析表明, 海水温度对南海滨珊瑚钙化生长有显著影响, 并且不同海域的背景温度决定着珊瑚骨骼生长对海表温度变化的响应情况。具体来说, 西沙和南沙的滨珊瑚骨骼密度受温度影响显著, 随着海温升高而逐渐降低, 而骨骼生长速率和钙化速率对温度变化并无明显响应。与前两者不同, 海南东部滨珊瑚的骨骼密度与温度变化关系并不显著, 而其骨骼生长速率和钙化速率受升温影响而有升高的趋势。这些差异可能反映了海南岛较低的冬季温度限制了珊瑚骨骼的钙化生长, 因此升温对珊瑚生长有促进作用; 而西沙和南沙海域的冬季温度均保持在适宜珊瑚生长的温度范围, 且夏季温度较高, 因此温度的升高可能限制了珊瑚钙化生长。  相似文献   

13.
Studies of calcareous nannofossils and microfossils and their distribution in different intervals of the flysch rhythms in the Kloko ník brook in the Bílé Karpaty Unit of the Magura Group of nappes in the West Carpathians gave the following results. The highest species diversity of calcareous nannofossils was found in the lower parts of the Bouma Te hemipelagic intervals. The Campanian marker species Ceratolithoides aculeus and Aspidolithus parcus were found in practically all layers studied. A stratigraphically important foraminiferal fauna was obtained from the upper parts of the Bouma Te intervals, including the Campanian-Maastrichtian planktic foraminifers Globotruncana arca and Globotruncanita stuartiformis. In the non-calcareous pelagites, agglutinated species with a range from the Late Cretaceous to the Paleogene dominate.  相似文献   

14.
The magnetic lineation observed in “undeformed” sedimentary units has been interpreted either as an indication of paleoflow direction, or as a result of tectonic overprint which progressively modifies the original sedimentary fabric related to compactional processes. Distinguishing between the two processes is not always easy. In fact, most studies of the Anistropy of Magnetic Susceptibility (AMS) of “undeformed” sequences have been carried out in fine-grained sediments from foredeep sequences, which are characterized by sedimentary flow directions which are almost parallel to the main deformation structures, like thrust faults and folds. In the Alborz Mts., the Upper Triassic–Lower Jurassic Shemshak Group was deposited in a foreland to molassic basin of the Eo-Cimmerian orogen and now outcrops in several folds which are oriented parallel to the curved chain. Paleoflow directions are generally oblique to the main tectonic structures, being directed SSW to SSE and showing negligible changes in their orientation along the Alborz Mountains. We have, therefore, the opportunity to distinguish between tectonic- or sedimentary-related origins of the magnetic lineation. The AMS results show that magnetic lineations of the Shemshak Group are oriented almost parallel to the main fold axes and thrust structures, which follow the Alborz Mts. curved trend, suggesting that magnetic lineation is of tectonic origin in fine to medium grained, mostly massive sandstones, and confirming that AMS is a valuable tool to study deformation processes in sedimentary rocks.  相似文献   

15.
The Sichevita and Poniasca plutons belong to an alignment of granites cutting across the metamorphic basement of the Getic Nappe in the South Carpathians. The present work provides SHRIMP age data for the zircon population from a Poniasca biotite diorite and geochemical analyses (major and trace elements, Sr–Nd isotopes) of representative rock types from the two intrusions grading from biotite diorite to biotite K-feldspar porphyritic monzogranite. U–Pb zircon data yielded 311 ± 2 Ma for the intrusion of the biotite diorite. Granites are mostly high-K leucogranites, and biotite diorites are magnesian, and calcic to calc-alkaline. Sr, and Nd isotope and trace element data (REE, Th, Ta, Cr, Ba and Rb) permit distinguishing five different groups of rocks corresponding to several magma batches: the Poniasca biotite diorite (P1) shows a clear crustal character while the Poniasca granite (P2) is more juvenile. Conversely, Sichevita biotite diorite (S1), and a granite (S2*) are more juvenile than the other Sichevita granites (S2). Geochemical modelling of major elements and REE suggests that fractional crystallization can account for variations within P1 and S1 groups. Dehydration melting of a number of protoliths may be the source of these magma batches. The Variscan basement, a subduction accretion wedge, could correspond to such a heterogeneous source. The intrusion of the Sichevita–Poniasca plutons took place in the final stages of the Variscan orogeny, as is the case for a series of European granites around 310 Ma ago, especially in Bulgaria and in Iberia, no Alleghenian granitoids (late Carboniferous—early Permian times) being known in the Getic nappe. The geodynamical environment of Sichevita–Poniasca was typically post-collisional of the Variscan orogenic phase.  相似文献   

16.
The post-collision late-kinematic Tismana pluton belongs to the shoshonitic series. It is part of a Late Precambrian basement within the Alpine Danubian nappes of the South Carpathians (Romania). This pluton displays an exceptionally complete range of compositions from ultramafic to felsic rocks (granites). Widespread mingling/mixing relationships at all scales give rise to a variety of facies. A liquid line of descent from the diorites to the granites is reconstructed by considering the variation in major and trace elements (REE, Sr, Rb, Ba, Nb, Zr, Hf, Zn, V, Co, Cr, U, Th, Ga, Pb) from 33 selected samples as well as mineral/melt equilibrium relationships. The first step of fractional crystallization is the separation from a monzodioritic parent magma of a peridotitic cumulate similar to the ultramafic rock found in the massif. A possible contamination by lower crustal mafic component takes place at this stage. The second step marks the appearance of apatite and Fe–Ti oxide minerals as liquidus phases, and the third step, saturation of zircon. Mixing by hybridisation of magmas produced at different stages of the evolution along the liquid line of descent is also operating (endo-hybridisation). As depicted by Nd and Sr isotopes, fractional crystallization was combined to an important early contamination by a mafic lower crust in a deep-seated magma chamber and to a later and mild contamination by a felsic medium crust in an intermediate chamber. The mingling essentially occurred during the final emplacement in the high-level magma chamber. The monzodioritic parent magma, identified by major and trace element modelling, is shown by Sr and Nd isotopes to have its source in the lithospheric mantle or in a juvenile mafic lower crust derived from it. The necessarily recent enrichment in K2O and associated elements of the lithospheric mantle is likely to be related to the preceding Pan-African subduction period. The partial melting of this newly formed deep source has to be linked to a major change in the thermal state of the plate.  相似文献   

17.
新编华南花岗岩分布图及其说明   总被引:81,自引:4,他引:81  
孙涛 《地质通报》2006,25(3):332-335,i0001
展示了新编的《华南花岗岩分布图(1:250万)》,并作了简要说明。该图在前人相关图件的基础上,收集了近15年来华南花岗岩研究的新的主量元素和年代学资料修编而成。此外,该图反映了华南不同时代花岗岩的富铝程度。  相似文献   

18.
The Devonian-Carboniferous contact in southern South America, characterized by a sharp unconformity, has been related to the Late Devonian-Early Carboniferous Eo-Hercynian orogeny. The Calingasta-Uspallata basin of western Argentina and the Sauce-Grande basin (Ventana Foldbelt) of eastern Argentina have been selected to characterize this unconformity. The Eo-Hercynian movements were accompanied in western Argentina by igneous activity related to a Late Devonian—Early Carboniferous magmatic arc mainly exposed today along the Andean Cordillera. This magmatic activity is partly reflected also in eastern Argentina (Ventana Foldbelt), where isotopic dates suggest a thermal event also related to the intrusions present to the west in the North Patagonian Massif and Sierras Pampeanas. The scarcity of Lower Carboniferous deposits in the stratigraphic record of southern South America suggests that the Early Carboniferous was a time interval dominated by uplift and erosion followed by widespread subsidence during the Middle and Late Carboniferous. The origin of the Eo-Hercynian orogeny can be linked with the convergence between the Arequipa Massif, and its southern extension, and the South American continent. Its effects are best represented along the Palaeo-Pacific margin, although distant effects are discernible in the cratonic areas of eastern South America. Correspondence to: O. R. López-Gamundí  相似文献   

19.
Machilus maomingensis Jin et Tang, sp. nov. from the Eocene Youganwo Formation of the Maoming Basin, South China, is studied in detail from the perspective of the leaf architecture and the excellently preserved cuticle. The leaf margin is entire, the primary venation is pinnate; 6 to 8 secondary veins are present and the major secondary venation is eucamptodromous. Stomata are paracytic and occur on the lower epidermis. Trichome bases are unicellular. Oil cells are present in the upper epidermis. The new fossil species described has features of the Lauraceae, particularly of the extant genus Machilus Rumphius ex Nees, and it is most similar to Machilus chinensis (Bentham) Hemsley, an extant species distributed in southern China and Vietnam. Hence, Machilus maomingensis sp. nov. is inferred to live in a warm and humid climate. The discovery of the present fossil indicates that Machilus has existed in South China from at least the Eocene.  相似文献   

20.
在南蒙古巴音苏赫图矿区古生代地层中新发现一套火山岩,其Rb-Sr同位素年龄为409±19Ma,与前人划分的地层年代(志留纪-泥盆纪)较吻合。英安岩的SiO2含量为63.23%~73.36%,Al2O3含量为10.25%~15.56%。英安岩轻稀土元素富集,重稀土元素亏损,具有较强的负Eu异常。岩石学和地球化学综合研究表明,该套火山岩基本同期同源演化,且岩性变化较小,以流纹岩-英安岩类为主。根据钾含量,该套火山岩为中钾钙碱性系列。英安岩落在靠近盆岭构造域的位置,显示出略亏损的特征,与原始地幔PM端元接近。推测该套火山岩形成于古亚洲洋闭合过程中的岛弧环境,表明火山岩形成时古亚洲洋可能还没有闭合。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号