首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, sensitivity of the Indian summer monsoon simulation to the Himalayan orography representation in a regional climate model (RegCM) is examined. The prescribed height of the Himalayan orography is less in the RegCM model than the actual height of the Himalayas. Therefore, in order to understand the impact of the Himalayan orography representation on the Indian summer monsoon, the height of the Himalayan orography is increased (decreased) by 10 % from its control height in the RegCM model. Three distinct monsoon years such as deficit (1987), excess (1988) and normal rainfall years are considered for this study. The performance of the RegCM model is tested with the use of a driving force from the reanalysis data and a global model output. IMD gridded rainfall and the reanalysis-2 data are used as verification analysis to validate the model results. The RegCM model has the potential to represent mean rainfall distribution over India as well as the upper air circulation patterns and some of the semi-permanent features during the Indian summer monsoon season. The skill of RegCM is reasonable in representing the variation in circulation and precipitation pattern and intensity during two contrasting rainfall years. The simulated seasonal mean rainfall over many parts of India especially, the foothills of the Himalaya, west coast of India and over the north east India along with the whole of India are more when the orography height is increased. The low level southwesterly wind including the Somali jet stream as well as upper air circulation associated with the tropical easterly jet stream become stronger with the enhancement of the Himalayan orography. Statistical analysis suggests that the distribution and intensity of rainfall is represented better with the increased orography of RegCM by 10 % from its control height. Thus, representation of the Himalayan orography in the model is close to actual and may enhance the skill in seasonal scale simulation of the Indian summer monsoon.  相似文献   

2.
—The influence of soil moisture and vegetation variation on simulation of monsoon circulation and rainfall is investigated. For this purpose a simple land surface parameterization scheme is incorporated in a three-dimensional regional high resolution nested grid atmospheric model. Based on the land surface parameterization scheme, latent heat and sensible heat fluxes are explicitly estimated over the entire domain of the model. Two sensitivity studies are conducted; one with bare dry soil conditions (no latent heat flux from land surface) and the other with realistic representation of the land surface parameters such as soil moisture, vegetation cover and landuse patterns in the numerical simulation. The sensitivity of main monsoon features such as Somali jet, monsoon trough and tropical easterly jet to land surface processes are discussed.¶Results suggest the necessity of including a detailed land surface parameterization in the realistic short-range weather numerical predictions. An enhanced short-range prediction of hydrological cycle including precipitation was produced by the model, with land surface processes parameterized. This parameterization appears to simulate all the main circulation features associated with the summer monsoon in a realistic manner.  相似文献   

3.
In this study, the Weather Research and Forecasting (WRF-2.0.3.1) model with three-dimensional variational data assimilation (3DVAR) was utilized to study a heavy rainfall event along the west coast of India with and without the assimilation of GPS occultation refractivity soundings in the monsoon period of 2002. The WRF model is a next-generation mesoscale numerical weather prediction system designed to serve both operational forecasting and atmospheric research communities. The Global Positioning System (GPS) radio occultation (RO) refractivity data, processed by UCAR, were obtained from the CHAMP and SAC-C missions. This study investigates the impact of thirteen GPS occultation refractivity soundings only, as assimilated into the WRF model with 3DVAR, on the rainfall prediction over the western coastal mountain of India. The model simulation, with the finest resolution of 10 km, was in good agreement with rainfall observations, up to 72-h forecast. There are some subtle but important differences in predicted rainfalls between the control run CN (without the assimilation of refractivity soundings) and G13 (with the assimilation of thirteen GPS RO soundings). In general, the assimilation run G13 gives a better prediction in terms of both rainfall locations and amounts at later times. The moisture increments were analyzed at the initial and forecast times to assess the impact of GPS RO data assimilation. The results indicate that remote soundings in the forcing region could have significant impacts on distant downstream regions. It is anticipated, based on this study, that considerably occultation soundings available from the six-satellite constellation of FORMOSAT-3/COSMIC would have even more significant impacts on weather prediction in this region.  相似文献   

4.
新疆北部汛期降水年际和年代际异常的环流特征   总被引:23,自引:1,他引:22       下载免费PDF全文
新疆北部汛期(7~8月)降水量具有明显的年际和年代际变化.针对年代际、除去年代际后年际和不同年代际背景下年际变化三种时间尺度,利用NECP/NCAR再分析资料,分析相应的大气环流.结果表明,三种时间尺度降水变化的物理机制不同,年代际背景非常重要.新疆北部汛期降水异常时,欧亚中高纬环流系统具有相当正压结构的显著异常.从气候角度和年代际大气环流变化,提出新疆年代际增湿存在索马里越赤道急流到新疆的三段式水汽接力输送方式,索马里急流和热带印度洋是中亚和新疆的重要水汽补充源之一.  相似文献   

5.
本文采用经验正交函数展开(EOF)及相关分析等方法,使用中国气象局整编的160站1951~2005年月平均降水资料和NCEP/NCAR再分析资料研究了中国东部夏季降水准两年周期振荡的空间模态及其大气环流背景场.结果表明:(1)中国地区降水季节性差异明显,夏季是主要的降水期并具有明显的准两年周期振荡(TBO)特征,中国东部地区是降水TBO方差变化最大的区域.(2)中国东部夏季降水TBO存在两个主要的空间模态,第1模态以27°N为界南北成反位相的变化关系,降水振幅较大;第2模态降水振幅相对较小,大值中心位于河套-华北地区.(3)形成中国东部夏季降水TBO的两个主要空间模态环流背景场明显不同.第1模态与西太平洋海温成正相关,与东太平洋海温成负相关.第2模态则主要与日本海附近的海温成正相关.当夏季降水TBO以江淮偏多时(第1模态),西太平洋海温偏高,东太平洋海温偏低,中国东部及沿海上空850 hPa有异常反气旋,500 hPa高度相关场东亚上空呈"正负正"波列特征,200 hPa南亚高压加强,西风急流位置偏南.当夏季降水TBO降水位置偏北时(第2模态),中国东部及沿海上空有异常气旋,200 hPa南亚高压偏弱,西风急流位置偏北.  相似文献   

6.
River-ocean coupled models are described for the evaluation of the interaction between river discharge and surge development along the Orissa coast of India. The models are used to study the effect of fresh water discharge from the Mahanadi River on the surge response along the Orissa coast due to the October 1999 super cyclone which led to severe flooding of the coastal and delta regions of Orissa. The so-called 1999 Paradip cyclone was one of the most severe cyclones; causing extensive damage to property and loss of lives. The present study emphasizes the impact of the Mahanadi River on overall surge development along the Orissa coast. Therefore, we have developed a location specific fine resolution model for the Orissa coast and coupled it with a one–dimensional river model. The numerical experiments are carried out, both with and without inclusion of fresh water discharge from the river. The bathymetry for the model has been taken from the naval hydrographic charts extending from the south of Orissa to the south of west Bengal. A simple drying scheme has also been included in the model in order to avoid the exposure of land near the coast due to strong negative sea-surface elevations. The simulations with river-ocean coupled models show that the discharge of fresh water carried by the river may modify the surge height in the Bay, especially in the western Bay of Bengal where one of the largest river systems of the east coast of India, the Mahanadi River, joins with the Bay of Bengal. Another dynamic effect of this inlet is the potentially deep inland penetration of the surge originating in the Bay. The model results are in good agreement with the available observations/estimates.  相似文献   

7.
Orissa State, a meteorological subdivision of India, lies on the east coast of India close to north Bay of Bengal and to the south of the normal position of the monsoon trough. The monsoon disturbances such as depressions and cyclonic storms mostly develop to the north of 15° N over the Bay of Bengal and move along the monsoon trough. As Orissa lies in the southwest sector of such disturbances, it experiences very heavy rainfall due to the interaction of these systems with mesoscale convection sometimes leading to flood. The orography due to the Eastern Ghat and other hill peaks in Orissa and environs play a significant role in this interaction. The objective of this study is to develop an objective statistical model to predict the occurrence and quantity of precipitation during the next 24 hours over specific locations of Orissa, due to monsoon disturbances over north Bay and adjoining west central Bay of Bengal based on observations to up 0300 UTC of the day. A probability of precipitation (PoP) model has been developed by applying forward stepwise regression with available surface and upper air meteorological parameters observed in and around Orissa in association with monsoon disturbances during the summer monsoon season (June-September). The PoP forecast has been converted into the deterministic occurrence/non-occurrence of precipitation forecast using the critical value of PoP. The parameters selected through stepwise regression have been considered to develop quantitative precipitation forecast (QPF) model using multiple discriminant analysis (MDA) for categorical prediction of precipitation in different ranges such as 0.1–10, 11–25, 26–50, 51–100 and >100 mm if the occurrence of precipitation is predicted by PoP model. All the above models have been developed based on data of summer monsoon seasons of 1980–1994, and data during 1995–1998 have been used for testing the skill of the models. Considering six representative stations for six homogeneous regions in Orissa, the PoP model performs very well with percentages of correct forecast for occurrence/non-occurrence of precipitation being about 96% and 88%, respectively for developmental and independent data. The skill of the QPF model, though relatively less, is reasonable for lower ranges of precipitation. The skill of the model is limited for higher ranges of precipitation. accepted September 2006  相似文献   

8.
Variability in the characteristics of depth-induced wave breakers along a non-uniform coastal topography and its impact on the morpho-sedimentary processes is examined at the island sheltered wave-dominated micro-tidal coast, Karwar, west coast of India. Waves are simulated using the coupled wind wave model, SWAN nested in WAVEWATCH III, forced by the reanalysis winds from different sources (NCEP/NCAR, ECMWF, and NCEP/CFSR). Impact of the wave breakers is evaluated through mean longshore current and sediment transport for various wave energy conditions across different coastal morphology. Study revealed that the NCEP/CFSR wind is comparatively reasonable in simulation of nearshore waves using the SWAN model nested by 2D wave spectra generated from WAVEWATCH III. The Galvin formula for estimating mean longshore current using the crest wave period and the Kamphuis approximation for longshore sediment transport is observed realistically at the sheltered coastal environment while the coast interacts with spilling and plunging breakers.  相似文献   

9.
Abstract

Standardized regional mean annual rainfall series are analysed over the period 1951–1989 from a data set of 891 rainfall stations which covers 23 countries of West and Central Africa. Missing values are estimated by using regionalized indexes computed on the basis of a morpho-climatic delimitation of 44 homogeneous climatic units. Searches for statistical discontinuities in rainfall series show no discontinuity for most units of Central Africa. For several units of West Africa the first discontinuity occurs at the end of the 1950s. The main discontinuity period occurs between 1968 and 1970, followed by a second one at the beginning of the 1980s. Rainfall deficit is greater north of 10°N, and is also important in the Guinean Mountains and on the northern coast of the Gulf of Guinea, west of the Atakora Mountains. Regions leeward of mountainous areas experienced moderate rainfall decrease.  相似文献   

10.
A three-dimensional model based on the Princeton Ocean Model (POM) has been implemented to study the circulation of the west coast of India. The model uses a curvilinear orthogonal horizontal grid with higher resolution near the coast (3–9 km) and a terrain following sigma coordinate in the vertical. The model is able to simulate Lakshadweep High and Lakshadweep Low (LL) during the winter and summer monsoons, respectively. During winter, the downwelling processes noticed along the coast help in the formation of temperature inversions. The inversions can be seen even up to the depths of ~50 m, which agrees with the available ARGO data in the region. Model simulations show that coastal upwelling off Kerala is at its peak in July. The intensity of upwelling reduces along the coast towards north. During the existence of LL, there is a cyclonic eddy in the sub-surface waters over the South-Eastern Arabian Sea, with vertical extent up to the depths of 100–150 m and it is strengthened due to the presence of northward counter current in the shelf region. The southerly coastal jet formed along the southern coast as a result of upwelling is noticed a westward shift along with LL. The location of the eddy off Kerala is tilted towards the open ocean with depth and our experiments suggest that this flow can be understood as a first baroclinic mode.  相似文献   

11.
—The radiative-convective feedback and land-sea thermal forcing play significant roles in maintenance of the summer monsoon circulation over the Indian sub-continent. In this study, the role of radiative transfer in maintaining the monsoon circulation is examined with numerical sensitivity experiments. For this purpose, a sixteen layer primitive equation limited area model is used to perform numerical simulations with and without atmospheric radiative transfer processes parameterized in the model. The initial values and boundary conditions for the numerical integrations of the model are derived from operational analyses of the ECMWF, UK. The results show that the radiative transfer is essential in maintaining the intensity of the low level Somali Jet as well as the upper level Tropical Easterly Jet (TEJ) over the Indian sub-continent and adjoining seas. The meridional circulation over the region is also well simulated. As a result, enough moisture transports from the warm equatorial region to simulate more realistic orographic precipitation in the windward side of the mountains along the West coast of India. Without radiative transfer processes in the model atmosphere the simulated monsoon circulation weakens, moisture transport decreases and the precipitation lessens.  相似文献   

12.
Rainfall input for hydrologic modelling is assumed uniformly distributed over the entire catchment. This can lead to significant errors. Investigations of areal rainfall in mountain areas are typically limited by a lack of adequate meteorological and hydrogeological records. This study focuses on areal rainfall in mountain areas within the Kaidu River Basin, China, with the aim of analyzing the influence of areal rainfall on the simulation accuracy of runoff prediction. We conducted a simulation using MIKE 11/NAM rainfall‐runoff model over 92 days of the rain season and compared the simulation error in different methods. On the basis of properties of self‐similarity degree (SSD) in analyzing the detailed characteristics of terrain, areal rainfall was calculated to model the runoff. The results of the model simulations are generally consistent with observed data, indicating that the self‐similarity topography method is able to reflect the spatial change of rainfall. This indicates that the proposed methodology is applicable for the management of water resources in mountain area. The modelling and self‐similarity topography method study allowed quantification of the spatial rainfall and provided an insight into their implications in hydrological forecasting. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
《Continental Shelf Research》2005,25(9):1003-1022
The coastal upwelled waters of the Guajira coast, the most northerly peninsula of South America, were studied on the basis of historical data bases, remotely sensed data, and three oceanographic cruises. The Guajira Peninsula is the locus of particularly strong upwelling because it protrudes into the Caribbean Low-Level Wind Jet and its west coast parallels the direction of the strongest winds. The year-round upwelling varies with the wind forcing: strongest in December–March and July, and weakest in the October–November rainy season. The east–west temperature, salinity and density front that delimits the upwelling lies over the shelf edge in the east of the peninsula but separates from the south-westward trending topography to the west. A coastal westward surface jet geostrophically adjusted to the upwelling flows along the front, and an eastward sub-surface counterflow is trapped against the Guajira continental slope. The undercurrent shoals toward the western limit of the upwelling, Santa Marta, beyond which point it extends to the surface. Some of the westward jet re-circulates inshore with the counterflow but part continues directly west to form an upwelling filament. Much of the mesoscale variation is associated with upwelling filaments, which expel cooler, chlorophyll-rich coastal upwelling waters westward and northward into the Caribbean Sea. Freshwater plumes from the Magdalena and Orinoco rivers influence the area strongly, and outflow from Lake Maracaibo interacts directly with upwelled waters off Guajira. Another important factor is the Aeolian input of dust from the Guajira desert by episodes of offshore winds.  相似文献   

14.
Many of the world's flood basalt provinces form elevated plateaux at the margins of continents, although in most cases their present large elevation is not the result of mountain building processes. Several explanations have recently been put forward to explain such occurrences of epeirogeny. The Deccan Trap basalt province forms one such elevated plateau, and results are presented here showing how the epeirogenic uplift in this region, combined with crustal subsidence probably associated with the rifting of the Indian continental margin, has affected the structure of the basalt sequence. Trace element analytical data are used for samples from numerous vertical sections through the Deccan Traps lava series along and around the Western Ghats ridge in India. The results reinforce the previously defined stratigraphy of the Mahabaleshwar area, and extend it over a region covering some 36 000 km2, reaching as far south as Belgaum and the Trap/basement contact. These results show that the lava pile is not flat lying, but forms a very low amplitude anticlinal fold structure plunging southwards by up to 0.3 ° over most of the area, although in the south there is evidence of a reversal of this plunge. The fold is interpreted as being the result of two tilting processes: (1) westward tilting near the coast, due to the foundering of the passive continental margin, and (2) epeirogenic uplift along the whole west coast of India producing the observed topography and the peninsula-wide drainage patterns, and also the easterly component of dip. Variations in the magnitude of the latter effect along the western continental margin may also be important in generating the plunge of the fold, although the possibility of some component of depositional dip may also be important. This latter possibility can be modelled using a simple computer program. The results of this modelling show that a migrating linear volcanic edifice fits the observations best.  相似文献   

15.
An irregular mesh model of the west coast of Britain is used to examine the sensitivity of tidal residuals to mesh resolution in the region. Computed residuals are compared with earlier published results determined with a high resolution (1 km grid) finite difference model of the eastern Irish Sea. Initial calculations show that tidal residuals are largest in nearshore regions particularly in the vicinity of headlands. Local refinement of the mesh in these regions leads to a more detailed picture of the flow field, particularly adjacent to the coast. Although large scale offshore features of the flow can be resolved using the high resolution finite difference model, such an approach leads to a “stair case” representation of the coastal boundary with an adjacent near coastal region of spurious tidal residuals. By using an irregular mesh that follows the coast, this effect is removed. In the Mersey river region the tidal residual is resolved with a mesh resolution of 120 m, although calculations show that its distribution is particularly sensitive to small scale features of the topography. A variable mesh that can accurately represent the lateral variations in river width and details of topography in both the nearshore and estuarine environment appears essential in modelling the coastal spread of freshwater plumes from rivers and pollutants discharged into the near coastal environment.  相似文献   

16.
An attempt is made to evaluate the impact of the three dimensional variational (3DVAR) data assimilation within the Weather Research Forecasting (WRF) modeling system to simulate two heavy rainfall events which occured on 26–27 July 2005 and 27–30 July 2006. During the 26–27 July 2005 event, the unprecedented localized intense rainfall 90–100 cm was recorded over the northeast parts of Mumbai city; however, southern parts received only 10 cm. Model simulation with the data assimilation experiment is reasonably well predicted for the rainfall intensity (800 mm) in 24 h and with accurate location over Mumbai agreeing with observation. Divergence, vorticity, vertical velocity and moisture parameters are evaluated during the various stages of the event. It is noticed that maximum convergence and vorticity during the mature stage; at the same time the vertical velocity also follows a similar trend during the period in the assimilation experiment. Vorticity budget terms over the location of heavy rainfall revealed that the contribution of the positive tilting term produced positive vorticity which triggered the convection and negative contribution to vorticity from the tilting term to precede the dissipation of the system. Model simulations from the second rain event, the off-shore trough at sea level along the west coast of India, is well represented after assimilation of observations during day-1 and day-2 as compared to the control simulations; the orientation of the off-shore trough is well matched with that of the observed. The intensity and spatial distribution of the rainfall has considerably improved in the assimilation simulation. The statistical skill scores also revealed that the precipitation forecast during the period has appreciably improved due to assimilation of observations. The results of this study indicate a positive impact of the 3DVAR assimilation on the simulation of heavy rainfall events.  相似文献   

17.
Abstract

A hydrological modelling framework was assembled to simulate the daily discharge of the Mandovi River on the Indian west coast. Approximately 90% of the west-coast rainfall, and therefore discharge, occurs during the summer monsoon (June–September), with a peak during July–August. The modelling framework consisted of a digital elevation model (DEM) called GLOBE, a hydrological routing algorithm, the Terrestrial Hydrological Model with Biogeochemistry (THMB), an algorithm to map the rainfall recorded by sparse raingauges to the model grid, and a modified Soil Conservation Service Curve Number (SCS-CN) method. A series of discharge simulations (with and without the SCS method) was carried out. The best simulation was obtained after incorporating spatio-temporal variability in the SCS parameters, which was achieved by an objective division of the season into five regimes: the lean season, monsoon onset, peak monsoon, end-monsoon, and post-monsoon. A novel attempt was made to incorporate objectively the different regimes encountered before, during and after the Indian monsoon, into a hydrological modelling framework. The strength of our method lies in the low demand it makes on hydrological data. Apart from information on the average soil type in a region, the entire parameterization is built on the basis of the rainfall that is used to force the model. That the model does not need to be calibrated separately for each river is important, because most of the Indian west-coast basins are ungauged. Hence, even though the model has been validated only for the Mandovi basin, its potential region of application is considerable. In the context of the Prediction in Ungauged Basins (PUB) framework, the potential of the proposed approach is significant, because the discharge of these (ungauged) rivers into the eastern Arabian Sea is not small, making them an important element of the local climate system.

Editor D. Koutsoyiannis; Associate editor S. Grimaldi

Citation Suprit, K., Shankar, D., Venugopal, V. and Bhatkar, N.V., 2012. Simulating the daily discharge of the Mandovi River, west coast of India. Hydrological Sciences Journal, 57 (4), 686–704.  相似文献   

18.
A linear coastal-trapped-wave (CTW) model is used to examine the effects of large-scale winds, with time scale ranging from a few days to a few weeks, on the West India Coastal Current (WICC), particularly on the shelf off the central west coast of India. We show that unlike the seasonal cycle of WICC, which is primarily forced by the winds along the east coast of India, the high-frequency WICC is mostly driven by the west-coast winds. Nevertheless, the influence of winds as far as Sri Lanka and east coast of India cannot be neglected. Simple numerical experiments with the CTW model show that the strong current observed at Goa (15° N) compared to Bhatkal (13° N) and Jaigarh (17° N) is due to two factors: (1) the superposition of local and remote CTWs and (2) the widening of shelf width north of Goa, which decreases the amplitude of the currents poleward of Goa. If the local winds are weak, the amplitude of current decreases poleward due to friction, and the current at the south leads the north. We also note that the observed phase difference between sea level and alongshore current at Goa could be attributed to the propagation of remotely forced higher-order modes of CTWs.  相似文献   

19.
The mechanisms governing dispersion processes in the northern Yucatan coast are investigated using a barotropic numerical model of coastal circulation, which includes wind-generated and large scale currents (i.e. Yucatan Current). This work provides the foundations for studying the dispersion of harmful algal blooms (HABs) in the area. Modelling experiments include effects of climatic wind (from long term monthly mean NCEP reanalysis), short term wind events (from in situ point measurements), and Yucatan Current (YC) characteristics. Its magnitude was approximated from published reports, and its trajectory from geostrophic current fields derived from altimeter data. These provided a range of real and climatic conditions to study the routes in which phytoplankton blooms may travel. The 2-D model results show that a synthetic and conservative bloom seeded in the Cabo Catoche (CC) region (where it usually grows), moves along the coast to the west up to San Felipe (SF), where it can either move offshore, or carry on travelling westwards. The transport to the west up to SF is greatly influenced by the trajectory, intensity and proximity of the YC jet to the peninsula, which enhances the westward circulation in the Yucatan Shelf. Numerical experiments show that patch dispersion is consistently to the west even under the influence of northerly winds. When the YC flows westward towards the Campeche Bank, momentum transfer caused by the YC jet dominates the dispersion processes over wind stress. On the other hand, when it flows closer to Cuba, the local processes (i.e. wind and bathymetry) become dominant. Coastal orientation and the Coriolis force may be responsible for driving the patch offshore at SF if external forcing decreases.  相似文献   

20.
利用美国国家环境预报中心和美国国家大气科学研究中 心(NCEP/NCAR)再分析月平均气候资料以及Xie和Arkin分析的月平均降水资料(1968~199 8年),针对索马里低空急流(SMJ)的年际变化及其对东亚夏季降水的影响问题展开了分析 研究. 结果揭示,SMJ作为最主要的越赤道气流,对两个半球间水汽输送起最关键的作用, 它把水汽从冬半球输送到夏半球. 夏季SMJ的年际变化有全球范围内的环流异常与之相联系 ,特别是东亚沿岸的波列状异常分布、南亚高压以及澳大利亚以南的偶极型异常分布;它 也同春季的北印度洋等海区的海温异常有密切关系. 研究还表明,春季SMJ的年际变化对东 亚夏季降水和大气环流有显著影响,由于SMJ影响的超前性,因此它在东亚夏季气候预测上 有重要意义.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号