首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of terrestrial ecosystems on the climate system have received most attention in the tropics, where extensive deforestation and burning has altered atmospheric chemistry and land surface climatology. In this paper we examine the biophysical and biogeochemical effects of boreal forest and tundra ecosystems on atmospheric processes. Boreal forests and tundra have an important role in the global budgets of atmospheric CO2 and CH4. However, these biogeochemical interactions are climatically important only at long temporal scales, when terrestrial vegetation undergoes large geographic redistribution in response to climate change. In contrast, by masking the high albedo of snow and through the partitioning of net radiation into sensible and latent heat, boreal forests have a significant impact on the seasonal and annual climatology of much of the Northern Hemisphere. Experiments with the LSX land surface model and the GENESIS climate model show that the boreal forest decreases land surface albedo in the winter, warms surface air temperatures at all times of the year, and increases latent heat flux and atmospheric moisture at all times of the year compared to simulations in which the boreal forest is replaced with bare ground or tundra. These effects are greatest in arctic and sub-arctic regions, but extend to the tropics. This paper shows that land-atmosphere interactions are especially important in arctic and sub-arctic regions, resulting in a coupled system in which the geographic distribution of vegetation affects climate and vice versa. This coupling is most important over long time periods, when changes in the abundance and distribution of boreal forest and tundra ecosystems in response to climatic change influence climate through their carbon storage, albedo, and hydrologic feedbacks.  相似文献   

2.
Measurements carried out in Northern Finland on radiation and turbulent fluxes over a sparse, sub-arctic boreal forest with snow covered ground were analysed. The measurements represent late winter conditions characterised by low solar elevation angles. During the experiment (12–24 March 1997) day and night were about equally long. At low solar elevation angles the forest shades most of the snow surface. Therefore an important part of the radiation never reaches the snow surface but is absorbed by the forest. The sensible heat flux above the forest was fairly large, reaching more than 100 W m-2. The measurements of sensible heat flux within and above the forest revealed that the sensible heat flux from the snow surface is negligible and the sensible heat flux above the forest stems from warming of the trees. A simple model for the surface energy balance of a sparse forest is presented. The model treats the diffuse and direct shortwave (solar) radiation separately. It introduces a factor that accounts for the shading of the ground at low solar elevation angles, and a parameter that deals with the partial transparency of the forest.Input to the model are the direct and diffuse incoming shortwave radiation.Measurements of the global radiation (direct plus diffuse incoming shortwaveradiation) above the forest revealed a considerable attenuation of the globalradiation at low solar elevation. A relation for the atmospheric turbidity asfunction of the solar elevation angle is suggested. The global radiation wassimulated for a three month period. For conditions with a cloud cover of lessthan 7 oktas good agreement between model predictions and measurementswere found. For cloud cover 7 and 8 oktas a considerable spread can beobserved. To apply the proposed energy balance model, the global radiationmust be separated into its diffuse and direct components. We propose a simpleempirical relationship between diffuse shortwave and global radiation asfunction of cloud cover.  相似文献   

3.
Summary  A mesoscale numerical model, incorporating a land-surface scheme based on Deardorffs’ approach, is used to study the diurnal variation of the boundary layer structure and surface fluxes during four consecutive days with air temperatures well below zero, snow covered ground and changing synoptic forcing. Model results are evaluated against in-situ measurements performed during the WINTEX field campaign held in Sodankyl?, Northern Finland in March 1997. The results show that the land-surface parameterization employed in the mesoscale model is not able to reproduce the magnitude of the daytime sensible heat fluxes and especially the pronounced maximum observed in the afternoon. Additional model simulations indicate that this drawback is to a large extent removed by the implementation of a shading factor in the original Deardorff scheme. The shading factor, as discussed in Gryning et al. (2001), accounts for the fact that in areas with sparse vegetation and low solar angles, both typical for the northern boreal forests in wintertime, absorption of direct solar radiation is due to an apparent vegetation cover which is much greater than the actual one (defined as the portion of the ground covered by vegetation projected vertically). Moreover, the observed asymmetry in the diurnal variation of the sensible heat flux indicates that there might be a significant heat storage in the vegetation. The implementation of an objective heat storage scheme in the mesoscale model explains part of the observed diurnal variation of the sensible heat flux. Received November 12, 1999 Revised October 4, 2000  相似文献   

4.
Summary  The predicted global warming is supposed to have an enhanced effect on the arctic regions. How this will influence the water, carbon dioxide and methane balances in the European arctic tundra is the objective of the EU-funded project “Understanding Land Surface Physical Processes in the Arctic” (LAPP), to which where SINTEF is one of several contributors. The snow cover is one of the limiting factors for these exchange processes and knowledge of how it behaves and will behave under a different climate is important. Data collected for water and energy balance studies in an area close to Ny-?lesund at 79°N at Svalbard are the basis of this study. Measurements during the ablation periods since 1992 show an average air temperature for the periods of 2.1 °C, an average incoming shorwave radiation of 230 W/m2 and an average measured runoff intensity of 14 mm/day with a maximum of 68 mm/day. Three models of different complexity are tested in order to simulate the water and energy balance of a snow cover on the arctic tundra. The three models are: a complex numerical model (CROCUS), a simple energy balance model and a temperature index model. The simulations were carried out for the melt periods in 1992 and 1996 as these two periods represent very different meteorological conditions. The results of these simulations exposed weaknesses in all the models. The energy balance model lacks calculation of cold content in the snowpack. This influences both the outgoing longwave radiation and the timing of the melt. Due to the effect of compensating errors in the simulations, CROCUS performed better than the simple energy balance model but also this model has problems with the simulation of outgoing longwave radiation. The temperature index model does not perform well for snowmelt studies in regions were radiation is the main driving energy source for the melt. Received September 28, 1999 Revised September 18, 2000  相似文献   

5.
A full global atmosphere-ocean-land vegetation model is used to examine the coupled climate/vegetation changes in the extratropics between modern and mid-Holocene (6,000 year BP) times and to assess the feedback of vegetation cover changes on the climate response. The model produces a relatively realistic natural vegetation cover and a climate sensitivity comparable to that realized in previous studies. The simulated mid-Holocene climate led to an expansion of boreal forest cover into polar tundra areas (mainly due to increased summer/fall warmth) and an expansion of middle latitude grass cover (due to a combination of enhanced temperature seasonality with cold winters and interior drying of the continents). The simulated poleward expansion of boreal forest and middle latitude expansion of grass cover are consistent with previous modeling studies. The feedback effect of expanding boreal forest in polar latitudes induced a significant spring warming and reduced snow cover that partially countered the response produced by the orbitally induced changes in radiative forcing. The expansion of grass cover in middle latitudes worked to reinforce the orbital forcing by contributing a spring cooling, enhanced snow cover, and a delayed soil water input by snow melt. Locally, summer rains tended to increase (decrease) in areas with greatest tree cover increases (decreases); however, for the broad-scale polar and middle latitude domains the climate responses produced by the changes in vegetation are relatively much smaller in summer/fall than found in previous studies. This study highlights the need to develop a more comprehensive strategy for investigating vegetation feedbacks.  相似文献   

6.
We tested the sensitivity of a dynamic ecosystem model (LPJ-GUESS) to the representation of soil moisture and soil temperature and to uncertainties in the prediction of precipitation and air temperature. We linked the ecosystem model with an advanced hydrological model (JULES) and used its soil moisture and soil temperature as input into the ecosystem model. We analysed these sensitivities along a latitudinal gradient in northern Russia. Differences in soil temperature and soil moisture had only little influence on the vegetation carbon fluxes, whereas the soil carbon fluxes were very sensitive to the JULES soil estimations. The sensitivity changed with latitude, showing stronger influence in the more northern grid cell. The sensitivity of modelled responses of both soil carbon fluxes and vegetation carbon fluxes to uncertainties in soil temperature were high, as both soil and vegetation carbon fluxes were strongly impacted. In contrast, uncertainties in the estimation of the amount of precipitation had little influence on the soil or vegetation carbon fluxes. The high sensitivity of soil respiration to soil temperature and moisture suggests that we should strive for a better understanding and representation of soil processes in ecosystem models to improve the reliability of predictions of future ecosystem changes.  相似文献   

7.
安大伟  陆风  杨忠东 《气象科技》2012,40(6):874-877
北极是全球气候敏感区域之一,长期以来极地气象观测资料比较缺乏.为了提高北美及全球天气预报的准确性,加拿大航天局联合加拿大环境、气象、国防等部门多个单位共同启动了极地通信和气象卫星(PCW:Polar Communication and Weather)计划,持续提供50°N以北地区的通信服务和气象遥感观测.在气象方面,PCW将提供北极极地附近地区每隔15/30min的多光谱遥感信息,重点用于高纬度风场反演、海/湖冰、积雪和植被监测,云、气溶胶和火山灰信息反演,这些遥感信息在气候变化研究中将发挥重要作用.简要介绍了PCW计划的进展、卫星观测系统设计、轨道设计、遥感仪器、气象和空间天气的监测产品及应用.  相似文献   

8.
Global climate change is expected to result in greater variation in snow cover and subsequent impacts on land surface hydrology and vegetation production in the high Trans Himalayan region (THR). This paper examines how the changes in timing and duration of snow cover affect the spatio-temporal pattern of rangeland phenology and production in the region. Moderate Resolution Imaging Spectrometer (MODIS) 16-day normalized difference vegetation index (NDVI) data from 2000 to 2009 and concurrent snow cover, precipitation and temperature data were analyzed. In contrast to numerous studies which have suggested that an earlier start of the season and an extension of the length of the growing season in mid and higher latitude areas due to global warming, this study shows a delay in the beginning of the growing season and the peak time of production, and a decline in the length of growing season in the drier part of THR following a decline and a delay in snow cover. Soil moisture in the beginning of the growing season and consequent rangeland vegetation production in drier areas of the THR was found to be strongly dependent upon the timing and duration of snow cover. However, in the wetter part of the THR, an earlier start of season, a delay in end of season and hence a longer growing season was observed, which could be attributed to warming in winter and early spring and cooling in summer and late spring and changes in timing of snow melt. The study shows a linear positive relationship between rangeland vegetation production and snow cover in the drier parts of THR, a quadratic relationship near to permanent snow line, and a negative linear relationship in wetter highlands. These findings suggest that, while temperature is important, changes in snow cover and precipitation pattern play more important roles in snow-fed, drier regions for rangeland vegetation dynamics.  相似文献   

9.
In this paper, based on the analysis of satellite measurements, the authors conclude that the continuous seasonal droughts intensify the browning of woody vegetation and that evergreen needleleaf forest(ENF) shows a larger browning percentage than other woody vegetation types over Yunnan Province. Based on the Tropical Rainfall Measuring Mission(TRMM) precipitation standardized anomaly, in the dry season, which is from October to March, the 2010 drought affected an area of Yunnan Province 1.77 times larger than the 2012 drought, but in the post-drought months(April to June), the browning area of all woody vegetation in 2012 was 1.11 times larger than that in 2010 on the basis of the enhanced vegetation index(EVI) standardized anomaly. The reduction of vegetation greenness over large areas of Yunnan Province represents a photosynthetic capacity loss which will have an impact on carbon fluxes to the atmosphere.  相似文献   

10.
One deficiency of the NCAR Community Land Model (CLM3) is the disappearance of the simulated snow even in the middle of winter over a boreal grassland site due to unrealistically modeled high downward turbulent fluxes. This is caused by the inappropriate treatment of the vertical snow burial fraction for short vegetation. A new snow burial fraction formulation for short vegetation is then proposed and validated using in situ observations. This modification in the CLM3 largely removes the unrealistic surface turbulent fluxes, leading to a more reasonable snowmelt process, and improves the snow water equivalent (SWE) simulation. Moreover, global offline simulations show that the proposed formulation decreases sensible and latent heat fluxes as well as the ground temperature during the snowmelt season over short vegetation dominant regions. Correspondingly, the SWE is enhanced, leading to the increase in snowmelt-induced runoff during the same period. Furthermore, sensitivity tests indicate that these improvements are insensitive to the exact functional form or parameter values in the proposed formulation.  相似文献   

11.
Eddy-correlation measurements of the vertical fluxes of ozone, carbon dioxide, fine particles with diameter near 0.1 m, and particulate sulfur, as well as of momentum, heat and water vapor, have been taken above a tall leafless deciduous forest in wintertime. During the experimental period of one week, ozone deposition velocities varied from about 0.1 cm s–1 at night to more than 0.4 cm s-1 during the daytime, with the largest variations associated primarily with changes in solar irradiation. Most of the ozone removal took place in the upper canopy. Carbon dioxide fluxes were directed upward due to respiration and exhibited a strong dependence on air temperature and solar heating. The fluxes were approximately zero at air temperatures less than 5 °C and approached 0.8 mg m–2 s–1 when temperatures exceeded 15 °C during the daytime. Fine-particle deposition rates were large at times, with deposition velocities near 0.8 cm s–1 when turbulence levels were high, but fluxes directed upward were found above the canopy when the surface beneath was covered with snow. Diffusional processes seemed to dominate fine-particle transfer across quasilaminar layers and subsequent deposition to the upper canopy. Deposition velocities for particulate sulfur were highly variable and averaged to a value small in magnitude as compared to similar measurements taken previously over a pine forest in summer.  相似文献   

12.
This paper addresses the use of radar remote sensing to map forest above-ground biomass, and discusses the use of biomass maps to test a dynamic vegetation model that identifies carbon sources and sinks and predicts their variation over time. For current radar satellite data, only the biomass of young/sparse forests or regrowth after disturbances can be recovered. An example from central Siberia illustrates that biomass can be measured by radar at a continental scale, and that a significant proportion of the Siberian forests have biomass values less than 50 tonnes/ha. Comparison between the radar map and calculations by the Sheffield Dynamic Global Vegetation Model (SDGVM) indicates that the model considerably overestimates biomass; under-representation of managed areas, disturbed areas and areas of low site quality in the model are suggested reasons for this effect. A case study carried out at the Büdingen plantation forest in Germany supports the argument that inadequate representations of site quality and forest management may cause model overestimates of biomass. Comparison of the calculated biomass of stands planted after 1990 with biomass estimates by radar allows identification of forest stands where the growth conditions assumed by the model are not valid. This allows a quality check on model calculations of carbon fluxes: only calculations for stands where there is good agreement between the data and the model predictions should be accepted. Although the paper only uses the SDGVM model, similar effects are likely in other dynamic vegetation models, and the results show that model calculations attempting to quantify the role of forests as carbon sources or sinks could be qualified and potentially improved by exploiting remotely sensed measurements of biomass.  相似文献   

13.
This paper addresses the use of radar remote sensing to map forest above-ground biomass, and discusses the use of biomass maps to test a dynamic vegetation model that identifies carbon sources and sinks and predicts their variation over time. For current radar satellite data, only the biomass of young/sparse forests or regrowth after disturbances can be recovered. An example from central Siberia illustrates that biomass can be measured by radar at a continental scale, and that a significant proportion of the Siberian forests have biomass values less than 50 tonnes/ha. Comparison between the radar map and calculations by the Sheffield Dynamic Global Vegetation Model (SDGVM) indicates that the model considerably overestimates biomass; under-representation of managed areas, disturbed areas and areas of low site quality in the model are suggested reasons for this effect. A case study carried out at the Büdingen plantation forest in Germany supports the argument that inadequate representations of site quality and forest management may cause model overestimates of biomass. Comparison of the calculated biomass of stands planted after 1990 with biomass estimates by radar allows identification of forest stands where the growth conditions assumed by the model are not valid. This allows a quality check on model calculations of carbon fluxes: only calculations for stands where there is good agreement between the data and the model predictions should be accepted. Although the paper only uses the SDGVM model, similar effects are likely in other dynamic vegetation models, and the results show that model calculations attempting to quantify the role of forests as carbon sources or sinks could be qualified and potentially improved by exploiting remotely sensed measurements of biomass.  相似文献   

14.
叶更新 《气象科技》2015,43(5):849-857
利用N S(Navier Stokes)方程和一个基本假设推导出星体大气平均纬向风和平均气压公式,根据公式讨论了地球大气纬向风系和平均气压以及副热带高压的成因并进行了数值模拟。结果发现,地球大气纬向风是大气微团密度与基准大气密度存在差异而形成的,大气微团的密度大于(小于)基准密度,则为西风(东风);密度的差距越大,风速越强。在中高纬度地区大气微团吸收的太阳辐射少而向空间辐射多,导致其密度变大,因此在中高纬度盛行西风;而在低纬度地区,因为吸收的太阳辐射多使大气微团密度变小而盛行东风。夏季(冬季)太阳辐射增强(减弱)使得大气微团密度变小(增大),进而导致中高纬度地区西风减弱(增强)和低纬度地区的东风加强(减弱)。风速的大小还与纬度的余弦成正比,这就使得最大西风带位于中纬度地区而不是大气微团密度最大的极地附近;也使得最大的东风不是发生在太阳直射点附近而是靠近赤道一侧。根据气压公式和大气密度的经向差异可以得出中高纬度区域气压随纬度的升高而减小的分布特征,而太阳辐射所造成低纬地区密度的减小是该区域气压大于中高纬度的主要原因;在赤道上纬度的正弦为零,使得气压在赤道上存在极小值,导致了赤道槽和副热带高压的形成,且太阳辐射越强、副热带高压越强。因为纬度正弦因子的存在,使得副高脊线总是位于太阳直射点的向极一侧。在假定太阳大气为理想气体的情况下,由N S方程推导出太阳大气自转角速度随纬度的变化公式,由此解释了太阳较差自转的成因在于低纬地区的大气微团密度大于高纬度,并且在赤道上大气微团的密度最大。该公式与观测得到的经验公式在略去高阶小项后一致。由此认为,太阳大气的运动在形成机制上与地球大气没有区别,不同的是在太阳表面没有象地球表面那样受太阳辐射的影响,N S方程是所有星体(包括恒星、行星)大气共同遵守的动力方程。  相似文献   

15.
Forests have an important role to play in climate change mitigation through carbon sequestration and wood supply. However, the lower albedo of mature forests compared to bare land implies that focusing only on GHG accounting may lead to biased estimates of forestry's total climatic impacts. An economic model with a high degree of detail of the Norwegian forestry and forest industries is used to simulate GHG fluxes and albedo impacts for the next decades. Albedo is incorporated in a carbon tax/subsidy scheme in the Norwegian forest sector using a partial, spatial equilibrium model. While a price of EU€100/tCO2e that targets GHG fluxes only results in reduced harvests, the same price including albedo leads to harvest levels that are five times higher in the first five years, with 39% of the national productive forest land base being cleared. The results suggest that policies that only consider GHG fluxes and ignore changes in albedo will not lead to an optimal use of the forest sector for climate change mitigation.

Policy relevance

Bare land reflects a larger share of incoming solar energy than dense forest and thus has higher albedo. Earlier research has suggested that changes in albedo caused by management of boreal forest may be as important as carbon fluxes for the forest's overall global warming impacts. The presented analysis is the first attempt to link albedo to national-scale forest climate policies. A policy with subsidies to forest owners that generate carbon sequestration and taxes levied on carbon emissions leads to a reduced forest harvest. However, including albedo in the policy alongside carbon fluxes yields very different results, causing initial harvest levels to increase substantially. The inclusion of albedo impacts will make harvests more beneficial for climate change mitigation as compared to a carbon-only policy. Hence, it is likely that carbon policies that ignore albedo will not lead to optimal forest management for climate change mitigation.  相似文献   

16.
Surface fluxes of heat and water vapour from sites in the European Arctic   总被引:1,自引:0,他引:1  
Summary  Measurements of the surface fluxes of heat and water vapour were taken at four sites across the European Arctic as part of the EU funded LAPP project. The sites cover a range of latitudinal, altitudinal and climatic conditions. The most northerly site is near Ny-?lesund, Svalbard, a polar semi-desert with continuous permafrost. A second permafrost site is a fen area in the Zackenberg valley, East Greenland. Finally two sites in northern Finland, Skalluvaara and Kaamanen are on the southern boundary of the region affected by permafrost. At all sites measurements were made of the turbulent fluxes of heat and water vapour using eddy correlation equipment for at least one active season. The net radiation totals for July and August are similar at all sites. At the sites with permafrost a substantial proportion (over 20%) of the net radiation goes into soil heat flux, to thaw the soil moisture in the top metre. Of the remaining energy just over half is used for evaporation. At the Finnish sites the vegetation is largely deciduous and this is seen in the record with higher evaporative ratios in July and August, after the vegetation becomes green. The Finnish sites tend to have higher surface resistance to evaporation; however, the evaporative demand is greater leading to slightly higher evaporation rates. The two Finnish sites have a similar seasonal pattern determined by the water table and seasonality of the vegetation. The two northern sites show a pattern that is determined primarily by the variation of water table only. It is concluded that the water balance through the active season is influenced primarily by the history of snow cover. The seasonality of the vegetation, the permafrost and the depth of water table are also important influences. Received November 1, 1999 Revised April 17, 2000  相似文献   

17.
甘肃马衔山区陆面过程与降水的研究   总被引:1,自引:0,他引:1  
采用定西的麦田微气象观测,定西、兰州的辐射观测和马衔山区34个气象、水文和雨量站的气候资料,结合NOAA-16卫星的AVHRR资料以及反演的地表植被盖度和反射率,并用SEBAL算法推导出夏季地表净辐射、感热、潜热、土壤热通量密度的区域分布特征,并分析陆面过程对降水的影响。结果表明:本区降水的空间分布与夏季植被盖度对应最好,相关系数高达0.722,其次是土壤热通量和潜热通量,相关系数分别为-0.65和0.615。这表明森林通过降低地表反射率和表面温度,不仅增加地表净辐射,而且减少其用于感热和土壤热通量的消耗。由于林区地表水分多,从而将接收较多的太阳辐射能主要用于蒸散,增加边界层中的水汽。故林区降水远大于植被稀疏的半干旱黄土梁。  相似文献   

18.
A seasonal energy balance climate model containing a detailed treatment of surface and planetary albedo, and in which seasonally varying land snow and sea ice amounts are simulated in terms of a number of explicit physical processes, is used to investigate the role of high latitude ice, snow, and vegetation feedback processes. Feedback processes are quantified by computing changes in radiative forcing and feedback factors associated with individual processes. Global sea ice albedo feedback is 5–8 times stronger than global land snowcover albedo feedback for a 2% solar constant increase or decrease, with Southern Hemisphere cryosphere feedback being 2–5 times stronger than Northern Hemisphere cryosphere feedback.In the absence of changes in ice extent, changes in ice thickness in response to an increase in solar constant are associated with an increase in summer surface melting which is exactly balanced by increased basal winter freezing, and a reduction in the upward ocean-air flux in summer which is exactly balanced by an increased flux in winter, with no change in the annual mean ocean-air flux. Changes in the mean annual ocean-air heat flux require changes in mean annual ice extent, and are constrained to equal the change in meridional oceanic heat flux convergence in equilibrium. Feedback between ice extent and the meridional oceanic heat flux obtained by scaling the oceanic heat diffusion coefficient by the ice-free fraction regulates the feedback between ice extent and mean annual air-sea heat fluxes in polar regions, and has a modest effect on model-simulated high latitude temperature change.Accounting for the partial masking effect of vegetation on snow-covered land reduces the Northern Hemisphere mean temperature response to a 2% solar constant decrease or increase by 20% and 10%, respectively, even though the radiative forcing change caused by land snowcover changes is about 3 times larger in the absence of vegetational masking. Two parameterizations of the tundra fraction are tested: one based on mean annual land air temperature, and the other based on July land air temperature. The enhancement of the mean Northern Hemisphere temperature response to solar constant changes when the forest-tundra ecotone is allowed to shift with climate is only 1/3 to 1/2 that obtained by Otterman et al. (1984) when the mean annual parameterization is used here, and only 1/4 to 1/3 as large using the July parameterization.The parameterized temperature dependence of ice and snow albedo is found to enhance the global mean temperature response to a 2% solar constant increase by only 0.04 °C, in sharp contrast to the results of Washington and Meehl (1986) obtained with a mean annual model. However, there are significant differences in the method used here and in Washington and Meehl to estimate the importance of this feedback process. When their approach is used in a mean annual version of the present model, closer agreement to their results is obtained.  相似文献   

19.
Summary  The carbon dioxide exchange in arctic and subarctic terrestrial ecosystems has been measured using the eddy-covariance method at sites representing the latitudinal and longitudinal extremes of the European Arctic sea areas as part of the Land Arctic Physical Processes (LAPP) project. The sites include two fen (Kaamanen and Kevo) and one mountain birch ecosystems in subarctic northern Finland (69° N); fen, heathland, and snowbed willow ecosystems in northeastern Greenland (74° N); and a polar semidesert site in Svalbard (79° N). The measurement results, which are given as weekly average diurnal cycles, show the striking seasonal development of the net CO2 fluxes. The seasonal periods important for the net CO2 fluxes, i.e. winter, thaw, pre-leaf, summer, and autumn can be identified from measurements of the physical environment, such as temperature, albedo, and greenness. During the late winter period continuous efflux is observed at the permafrost-free Kaamanen site. At the permafrost sites, efflux begins during the thaw period, which lasts about 3–5 weeks, in contrast to the Kaamanen site where efflux continues at the same rate as during the winter. Seasonal efflux maximum is during the pre-leaf period, which lasts about 2–5 weeks. The summer period lasts 6 weeks in NE Greenland but 10–14 weeks in northern Finland. During a high summer week, the mountain birch ecosystem had the highest gross photosynthetic capacity, GP max, followed by the fen ecosystems. The polar semidesert ecosystem had the lowest GP max. By the middle of August, noon uptake fluxes start to decrease as the solar elevation angle decreases and senescence begins within the vascular plants. At the end of the autumn period, which lasts 2–5 weeks, topsoil begins to freeze at the end of August in Svalbard; at the end of September at sites in eastern Greenland; and one month later at sites in northern Finland. Received March 1, 2000 Revised October 2, 2000  相似文献   

20.
Climate change: High-latitude regions   总被引:1,自引:0,他引:1  
E. F. Roots 《Climatic change》1989,15(1-2):223-253
The distinctive physical setting of high-latitude regions results not only in enhanced change in mean surface temperature for a given perturbation of planetary heat balance, but an enhanced regional and seasonal environmental response due to non-uniformity in poleward heat flux, and to the energy relationships of phase change and albedo change connected with ice and snow cover. The environmental response of the Arctic is characteristically different from that of the Antarctic because of differences in planetary geography and energy circulation. Ecosystems that have adapted to the low natural energy flows of high latitudes are relatively more sensitive to a given change in magnitude and timing of available energy, and to changes in physical and geochemical conditions, than most of those in lower latitudes. These natural sensitivities have a profound influence on human activities in polar areas. Policies to adapt to, or where possible to benefit from the environmental changes that will be brought about by climate change in high latitudes will have to be adapted to the distinctive environmental responses of polar areas. Careful research to understand the environmental response to climate change is essential as arctic and antarctic regions assume a greater importance in world affairs, and as the arctic regions in particular are the subject of increasing policy attention on strategic, resource development, socioeconomic and environmental protection grounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号