首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We measured the adsorption of Cu(II) onto kaolinite from pH 3-7 at constant ionic strength. EXAFS spectra show that Cu(II) adsorbs as (CuO4Hn)n−6 and binuclear (Cu2O6Hn)n−8 inner-sphere complexes on variable-charge ≡AlOH sites and as Cu2+ on ion exchangeable ≡X--H+ sites. Sorption isotherms and EXAFS spectra show that surface precipitates have not formed at least up to pH 6.5. Inner-sphere complexes are bound to the kaolinite surface by corner-sharing with two or three edge-sharing Al(O,OH)6 polyhedra. Our interpretation of the EXAFS data are supported by ab initio (density functional theory) geometries of analog clusters simulating Cu complexes on the {110} and {010} crystal edges and at the ditrigonal cavity sites on the {001}. Having identified the bidentate (≡AlOH)2Cu(OH)20, tridentate (≡Al3O(OH)2)Cu2(OH)30 and ≡X--Cu2+ surface complexes, the experimental copper(II) adsorption data can be fit to the reactions
  相似文献   

2.
《Applied Geochemistry》2000,15(2):133-139
The sorption of Yb3+, UO2+2, Zn2+, I and SeO2−3 onto Al2O3, Fe2O3 and SiO2 were determined by a batch technique in the presence and absence of fulvic acids. The effects of fulvic acid on sorption were compared. The existing general consensus, that humic substances tend to enhance metal cation sorption at low pH, reduce metal cation sorption at high pH and reduce inorganic anion sorption between pH values 3 to 10, was generally shown to be true. However, in this work many exceptions to the general consensus were found. The study indicated that the effect of humic substances on sorption of inorganic cations or anions depends not only on pH, but also on the nature of the oxide, the nature of humic substance, fractionation of the humic substance by sorption, the relative strength of complexes of both soluble and sorbed humic substances, the extent of surface coverage by humic substance, the initial concentration of humic substance and the inorganic electrolyte composition.  相似文献   

3.
Adsorption of Cu2+, Zn2+, Cd2+, and Pb2+ onto goethite is enhanced in the presence of sulfate. This effect, which has also been observed on ferrihydrite, is not predicted by the diffuse layer model (DLM) using adsorption constants derived from single sorbate systems. However, by including ternary surface complexes with the stoichiometry FeOHMSO4, where FeOH is a surface adsorption site and M2+ is a cation, the effect of SO42− on cation adsorption was accurately predicted for the range of cation, goethite and SO42− concentrations studied. While the DLM does not provide direct molecular scale insights into adsorption reactions there are several properties of ternary complexes that are evident from examining trends in their formation constants. There is a linear relationship between ternary complex formation constants and cation adsorption constants, which is consistent with previous spectroscopic evidence indicating ternary complexes involve cation binding to the oxide surface. Comparing the data from this work to previous studies on ferrihydrite suggests that ternary complex formation on ferrihydrite involves complexes with the same or similar structure as those observed on goethite. In addition, it is evident that ternary complex formation constants are larger where there is a stronger metal-ligand interaction. This is also consistent with spectroscopic studies of goethite-M2+-SO42− and phthalate systems showing surface species with metal-ligand bonding. Recommended values of ternary complex formation constants for use in SO4-rich environments, such as acid mine drainage, are presented.  相似文献   

4.
In this study, the speciation of Zn2+, Pb2+, and Cu2+ ions sorbed at the calcite surface was monitored during a 2.5-year reaction period, using extended X-ray absorption spectroscopy to characterize metal speciation on the molecular scale. Experiments were performed using pre-equilibrated calcite-water suspensions of pH 8.3, at metal concentrations below the solubility of metal hydroxide and carbonate precipitates, and at constant metal surface loadings. The EXAFS results indicate that all three metals remained coordinated at the calcite surface as inner-sphere adsorption complexes during the 2.5-year ageing period, with no evidence to suggest slow formation of dilute metal-calcite solid solutions under the reaction conditions employed. All three divalent metals were found to form non-octahedral complexes upon coordination to the calcite surface, with Zn2+ adsorbing as a tetrahedral complex, Cu2+ as a Jahn-Teller distorted octahedral complex, and Pb2+ coordinating as a trigonal- or square-pyramidal surface complex. The non-octahedral configurations of these surface complexes may have hindered metal transfer from the calcite surface into the bulk, where Ca2+ is in octahedral coordination with respect to first-shell O. The use of pre-equilibrated calcite suspensions, with no net calcite dissolution or precipitation, likely prevented metal incorporation into the lattice as a result of surface recrystallization. The results from this study imply that ageing alone does not increase the stability of Zn2+, Pb2+, and Cu2+ partitioning to calcite if equilibrium with the solution is maintained during reaction; under these conditions, these metals are likely to remain available for exchange even after extended sorption times.  相似文献   

5.
Electron paramagnetic spectra of humic acid and various fractions of fulvic acid from a deep peat soil were studied and related to some of the metals present. In fulvic acid, VO2+ occurred in complexed form. The Mn2+ components all had a high degree of ionicity. In the humic acid fraction Cu2+ was present as a copper porphyrin-type complex.  相似文献   

6.
《Organic Geochemistry》1986,9(6):285-292
Potentiometric titrations were used to measure conditional stability constants of UO22+-fulvic acid and UO22+-humic acid complexes. Both 2:1 and 1:1 COO-:UO22+ binding were observed. With decreasing metal concentration (2.5·10−4-6.25·10−5 M) increasing amounts of UO22+ were in the form of 1:1 humate complexes and 2:1 fulvate complexes. Despite the high nitrogen content and the low acidic OH group content, the successive stability constant values were similar to those determined for divalent cations associated with fulvic and humic compounds isolated from soils. Stability constant values increase simultaneously with increasing ionization of the humic (or fulvic) acid polyelectrolytes and with decreasing metal concentration.  相似文献   

7.
Organic matter from an arable soil derived from base rich parent material was extracted by alkali and fractionated on the basis of solubility in 0.1 N HCl, hot water and hot 6 N HCl and by selective adsorption on charcoal. The distribution of associated metals was determined and Cu had the largest proportion, 15%, associated with the organic matter. Moderate proportions of the total Al, Co, Ni, and V (3–8%) but only small amounts (?1%) of the Mn, Fe, Ti, Cr, Ba and Sr were extracted from the soil by alkali. The Fe and Ti were concentrated mainly in the humic fraction whereas Mn and V were both found largely in the fulvic acid.Electron paramagnetic resonance spectra of the various fractions were examined and attempts made to relate the spectra to the forms of some of the metals present. In the humic acid fraction Cu was present partly as a copper porphyrin-type complex but in the fulvic acid it was in some other complexed form. VO2+ occurred in complexed forms in the fulvic acid which were more covalent than VO2+ humic acid complexes, whereas the Mn2+ components of the humic and fulvic acids all had a high degree of ionicity.  相似文献   

8.
Potentiometric titrations were used to measure conditional stability constants of UO22+-fulvic acid and UO22+-humic acid complexes. Both 2:1 and 1:1 COO-:UO22+ binding were observed. With decreasing metal concentration (2.5·10−4-6.25·10−5 M) increasing amounts of UO22+ were in the form of 1:1 humate complexes and 2:1 fulvate complexes. Despite the high nitrogen content and the low acidic OH group content, the successive stability constant values were similar to those determined for divalent cations associated with fulvic and humic compounds isolated from soils. Stability constant values increase simultaneously with increasing ionization of the humic (or fulvic) acid polyelectrolytes and with decreasing metal concentration.  相似文献   

9.
The Pb complexes in a synthetic brine solution with a composition comparable to that of the Atlantis II Deep 56°C Brine have been identified by UV absorption spectroscopy. The important species at ambient temperatures are PbCl2?4 and Pb(OH)BrCl22?. At 56°C the former complex partially dissociates to form lower chloro complexes while the latter undergoes halide exchange reactions forming Pb(OH)Br2Cl2?. Evidence has also been found for the following polymeric lead hydroxo complexes: Pb4(OH)4Cl4, Pb6(OH)3Cl12 and Pb3(OH)12Cl4. The predominant polynuclear complex in the brine, Pb4(OH)4Cl4, tends to dissociate at 56°C to form lower polymeric species. The formulation of the limiting binary chloro complex as PbCl42? rather than PbCl64? is supported by the reflectance spectrum of Cs4PbCl6.  相似文献   

10.
The interfacial structures of the basal surface of muscovite mica in solutions containing (1) 5 × 10−3 m BaCl2, (2) 500 ppm Elliott Soil Fulvic Acid I (ESFA I), (3) 100 ppm Elliott Soil Fulvic Acid II (ESFA II), (4) 100 ppm Pahokee Peat Fulvic Acid I (PPFA), and (5) 5 × 10−3 m BaCl2 and 100 ppm ESFA II were obtained with high resolution in-situ X-ray reflectivity. The derived electron-density profile in BaCl2 shows two sharp peaks near the mica surface at 1.98(2) and 3.02(4) Å corresponding to the heights of a mixture of Ba2+ ions and water molecules adsorbed in ditrigonal cavities and water molecules coordinated to the Ba2+ ions, respectively. This pattern indicates that most Ba2+ ions are adsorbed on the mica surface as inner-sphere complexes in a partially hydrated form. The amount of Ba2+ ions in the ditrigonal cavities compensates more than 90% of the layer charge of the mica surface. The electron-density profiles of the fulvic acids (FAs) adsorbed on the mica surface, in the absence of Ba2+, had overall thicknesses of 4.9-10.8 Å and consisted of one broad taller peak near the surface (likely hydrophobic and positively-charged groups) followed by a broad humped pattern (possibly containing negatively-charged functional groups). The total interfacial electron density and thickness of the FA layer increased as the solution FA concentration increased. The sorbed peat FA which has higher ash content showed a higher average electron density than the sorbed soil FA. When the muscovite reacted with a pre-mixed BaCl2-ESFA II solution, the positions of the two peaks nearest the surface matched those in the BaCl2 solution. However, the occupancy of the second peak decreased by about 30% implying that the hydration shell of surface-adsorbed Ba2+ was partially substituted by FA. The two surface peaks were followed by a broad less electron-dense layer suggesting a sorption mechanism in which Ba2+ acts dominantly as a bridging cation between the mica surface and FA. When the muscovite reacted first with FA and subsequently with BaCl2, more Ba2+ could be adsorbed on the FA-coated mica surface. The peak closest to the mica included Ba2+ ions adsorbed directly on the mica in an amount similar to that in the BaCl2 solution but more broadly distributed. A second peak observed within the FA layer suggests that the FA coating provides additional sites for Ba2+ sorption. The results indicate that enhanced uptake of heavy metals can occur when an organic coating already exists on a mineral surface.  相似文献   

11.
Uranium(VI) sorption onto kaolinite was investigated as a function of pH (3–12), sorbate/sorbent ratio (1 × 10?6–1 × 10?4 M U(VI) with 2 g/L kaolinite), ionic strength (0.001–0.1 M NaNO3), and pCO2 (0–5%) in the presence or absence of 1 × 10?2–1 × 10?4 M citric acid, 1 × 10?2–1 × 10?4 M EDTA, and 10 or 20 mg/L fulvic acid. Control experiments without-solids, containing 1 × 10?6–1 × 10?4 M U(VI) in 0.01 M NaNO3 were used to evaluate sorption to the container wall and precipitation of U phases as a function of pH. Control experiments demonstrate significant loss (up to 100%) of U from solution. Although some loss, particularly in 1 × 10?5 and 1 × 10?4 M U experiments, is expected due to precipitation of schoepite, adsorption on the container walls is significant, particularly in 1 × 10?6 M U experiments. In the absence of ligands, U(VI) sorption on kaolinite increases from pH ~3 to 7 and decreases from pH ~7.5 to 12. Increasing ionic strength from 0.001 to 0.1 M produces only a slight decrease in U(VI) sorption at pH < 7, whereas 10% pCO2 greatly diminishes U(VI) sorption between pH ~5.5 and 11. Addition of fulvic acid produces a small increase in U(VI) sorption at pH < 5; in contrast, between pH 5 and 10 fulvic acid, citric acid, and EDTA all decrease U(VI) sorption. This suggests that fulvic acid enhances U(VI) sorption slightly via formation of ternary ligand bridges at low pH, whereas EDTA and citric acid do not form ternary surface complexes with the U(VI), and that all three ligands, as well as carbonate, form aqueous uranyl complexes that keep U(VI) in solution at higher pH.  相似文献   

12.
Because of their physicochemical properties, biochars can be used as sorption materials for removal of toxic substances. The purpose of the present study was to determine whether biochar obtained from cones of larch (Larix decidua Mill. subsp. decidua) and spruce (Picea abies L. H. Karst) could be used as a sorbent for Cd2+, Pb2+ and Co2+ in aqueous solutions. So far, this feedstock had not been tested in this respect. The material was subjected to pyrolysis at 500 and 600 °C for the duration of 5, 10 and 15 min. The obtained pyrolysates were found to differ in terms of pH and the contents of the essential macroelements. The different values of these parameters were determined for varying temperature, duration of the pyrolysis process and type of feedstock. Sorption capacities of the biochars for removal of Cd2+, Pb2+ and Co2+ were examined using simulated contamination of aqueous solutions with salts of these metals. The findings showed the highest, nearly complete, removal for Pb2+ were maximum 99.7%, and almost three times lower value for Cd2+ and Co2+ (respectively, 35.7 and 24.8%). It was demonstrated that pyrolysis of conifer cones produced optimum sorption capacities when the process was conducted at a temperature of 500 °C for the duration of 5 min. It was shown that products of spruce cone pyrolysis were characterized by better sorption capacity in comparison with products of larch cone pyrolysis. The properties of conifer cone biochar create the possibility of using it as an adsorbent in water and wastewater treatment as well as in production of filters and activated carbon.  相似文献   

13.
Two fractions of soil fulvic acid (FA) were separated by gel filtration chromatography. An observed increase in volume of the heavier fraction (FA I) with increasing pH was attributed to aggregation, intramolecular negative charge repulsions and the rupture of hydrogen bonds, which control molecular conformation. Optical absorption properties and elemental analyses of both fractions were determined. The stability constants and stoichiometries of FA complexes with vanadyl, VO2+, at pH 5.0 and ionic strength of 0.04 M were measured by electron paramagnetic resonance (EPR) spectroscopy. EPR spectra of model VO2+ complexes with phthalic and salicylic acids, which are the probable functional groups present in FA, are identical to those of the VO2+-FA complexes. Aggregation of FA I occurs in the presence of VO2+ to form a complex that can be approximated as ‘(VO)2(FA I)6’. The average site distance between vanadyl ions in this complex is shown to be greater than 1.2 nm. EPR parameters for FA I suggest binding by carboxylate groups. These parameters are compared with those of other vanadyl complexes with fulvic and humic acids reported by others. Reduction of VO3? to VO2+ by these materials is discussed.  相似文献   

14.
15.
Aquatic fulvic acid, isolated from a North Carolina bay lake, was reacted with ozone, an alternative oxidant in drinking water treatment. Ozonated samples were acidified, extracted with ether, dried, concentrated, and methylated prior to GC-MS analysis. Identified reaation products include mono-, di- and tribasic aliphatic acids and benzene tricarboxylic acids. The products with the highest relative concentrations were succinic and malonic acid, although all products were at relatively low concentration levels. Many of the products identified in this study have also been seen among the reaction products of fulvic acid and other oxidants, such as Cl2, CIO2 and KMnO4.  相似文献   

16.
《Organic Geochemistry》1999,30(8):901-909
Deuterium nuclear magnetic resonance spectroscopy (2H-NMR) spin–lattice relaxation (T1) experiments were used to measure noncovalent interactions between deuterated monoaromatic compounds (phenol-d5, pyridine-d5, benzene-d6) and fulvic acids isolated from the Suwannee River and Big Soda Lake. Noncovalent interactions, in aqueous solution, were examined as a function of monoaromatic hydrocarbon functional groups, fulvic acid concentration and identity, and solution pH. Phenol did not exhibit noncovalent interactions with either fulvic acid at any pH. Pyridine, in a pH range from 3 to 8, interacted with Suwannee River fulvic acid, forming a bond involving the lone pair of electrons on nitrogen. Conversely, no interactions were observed between pyridine and Big Soda Lake fulvic acid; the difference in noncovalent interactions is attributed to the structural and chemical differences of the two fulvic acids. The translational and rotational molecular motion of benzene increased in the presence of both fulvic acids, indicating that in aqueous solution, fulvic acids solubilize benzene rather than forming discrete bonds as with pyridine. The results of this study demonstrate that monoaromatic functional groups, solution pH, and identity and concentration of fulvic acid can influence the type and degree of noncovalent interactions with dissolved organic matter.  相似文献   

17.
X-ray absorption near-edge spectroscopy (XANES) analysis of sorption complexes has the advantages of high sensitivity (10- to 20-fold greater than extended X-ray absorption fine structure [EXAFS] analysis) and relative ease and speed of data collection (because of the short k-space range). It is thus a potentially powerful tool for characterization of environmentally significant surface complexes and precipitates at very low surface coverages. However, quantitative analysis has been limited largely to “fingerprint” comparison with model spectra because of the difficulty of obtaining accurate multiple-scattering amplitudes for small clusters with high confidence.In the present work, calculations of the XANES for 50- to 200-atom clusters of structure from Zn model compounds using the full multiple-scattering code Feff 8.0 accurately replicate experimental spectra and display features characteristic of specific first-neighbor anion coordination geometry and second-neighbor cation geometry and number. Analogous calculations of the XANES for small molecular clusters indicative of precipitation and sorption geometries for aqueous Zn on ferrihydrite, and suggested by EXAFS analysis, are in good agreement with observed spectral trends with sample composition, with Zn-oxygen coordination and with changes in second-neighbor cation coordination as a function of sorption coverage. Empirical analysis of experimental XANES features further verifies the validity of the calculations. The findings agree well with a complete EXAFS analysis previously reported for the same sample set, namely, that octahedrally coordinated aqueous Zn2+ species sorb as a tetrahedral complex on ferrihydrite with varying local geometry depending on sorption density. At significantly higher densities but below those at which Zn hydroxide is expected to precipitate, a mainly octahedral coordinated Zn2+ precipitate is observed. An analysis of the multiple scattering paths contributing to the XANES demonstrates the importance of scattering paths involving the anion sublattice. We also describe the specific advantages of complementary quantitative XANES and EXAFS analysis and estimate limits on the extent of structural information obtainable from XANES analysis.  相似文献   

18.
“Two-line” ferrihydrite samples precipitated and then exposed to a range of aqueous Zn solutions (10−5 to 10−3 M), and also coprecipitated in similar Zn solutions (pH 6.5), have been examined by Zn and Fe K-edge X-ray absorption spectroscopy. Typical Zn complexes on the surface have Zn-O distances of 1.97(.02) Å and coordination numbers of about 4.0(0.5), consistent with tetrahedral oxygen coordination. This contrasts with Zn-O distances of 2.11(.02) Å and coordination numbers of 6 to 7 in the aqueous Zn solutions used in sample preparation. X-ray absorption extended fine structure spectroscopy (EXAFS) fits to the second shell of cation neighbors indicate as many as 4 Zn-Fe neighbors at 3.44(.04) Å in coprecipitated samples, and about two Zn-Fe neighbors at the same distance in adsorption samples. In both sets of samples, the fitted coordination number of second shell cations decreases as sorption density increases, indicating changes in the number and type of available complexing sites or the onset of competitive precipitation processes. Comparison of our results with the possible geometries for surface complexes and precipitates suggests that the Zn sorption complexes are inner sphere and at lowest adsorption densities are bidentate, sharing apical oxygens with adjacent edge-sharing Fe(O,OH)6 octahedra. Coprecipitation samples have complexes with similar geometry, but these are polydentate, sharing apices with more than two adjacent edge-sharing Fe(O,OH)6 polyhedra. The results are inconsistent with Zn entering the ferrihydrite structure (i.e., solid solution formation) or formation of other Zn-Fe precipitates. The fitted Zn-Fe coordination numbers drop with increasing Zn density with a minimum of about 0.8(.2) at Zn/(Zn + Fe) of 0.08 or more. This change appears to be attributable to the onset of precipitation of zinc hydroxide polymers with mainly tetrahedral Zn coordination. At the highest loadings studied, the nature of the complexes changes further, and a second type of precipitate forms. This has a structure based on a brucite layer topology, with mainly octahedral Zn coordination. Amorphous zinc hydroxide samples prepared for comparison had a closely similar local structure. Analysis of the Fe K-edge EXAFS is consistent with surface complexation reactions and surface precipitation at high Zn loadings with little or no Fe-Zn solid solution formation. The formation of Zn-containing precipitates at solution conditions two or more orders of magnitude below their solubility limit is compared with other sorption and spectroscopic studies that describe similar behavior.  相似文献   

19.
The effects that Al3+ and benzene interactions exhibit on a model fulvic acid were investigated. Energy minimizations of the structures mimicking the interactions of Al3+-Suwannee fulvic acid (SFA), benzene-SFA and Al3+-benzene-SFA were run with a solvation sphere of 60 H2O molecules with the semi-empirical methods PM3 and PM5. The semi-empirical method PM3 was run with Gaussian 98 and CAChe Workstation Pro 6.1.1 to compare the results of the energy minimization algorithms in the two programs. PM5 calculations were run with CAChe Workstation Pro 6.1.1. Molecular dynamics (MD) simulations were run in Cerius2 (Accelrys Inc., San Diego, CA) using the Universal Force Field (UFF) 1.02 [Rappé A. K., Casewit C., Colwell K., Goddard W., and Skiff W. (1992) UFF, a full periodic-table force-field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc.114(25), 10024-10035] and COMPASS force field [Sun H. (1998) COMPASS: an ab initio force-field optimized for condensed-phase applications—overview with details on alkane and benzene compounds. J. Phys. Chem. B102, 7338-7364]. Single point calculations were run on the minimized structures at the B3LYP/6-31G(d) level to obtain more accurate estimates of the energy on the minimized structures derived from the PM3, PM5, and UFF methods and to normalize energies to the same reference state. This methodology was used as the standard of comparison for all the models to assess whether or not a given configuration was reasonably stable.The PM3/G03 energy minimizations predicted the lowest B3LYP/6-31G(d) potential energies of the methodologies examined in this study. Thus, this method is considered the most reliable of those tested. The PM3/G03 method predicted that there would be aromatic-aromatic interactions between benzene and SFA. The presence of Al3+ was predicted not to interfere with aromatic-aromatic interactions between benzene and SFA, but benzene may influence the location of metal complexation to SFA.  相似文献   

20.
The spectra of chlorolead(II) complexes in the ultraviolet region have been measured in acid chloride solutions from 0.0012 to 3.223 m and at temperatures from 25 to 300°C. The thermodynamic cumulative and stepwise formation constants as well as the spectra of the individual chlorolead(II) species have been calculated from the spectrophotometric data. At 25°C, the five species PbCl2?nn (0 ≤ n ≤ 4) occur, however, at 300°C the predominant species were PbCl+, PbCl02 and PbCl?3. Pb2+ occurs as a minor species in dilute solutions where total chloride is <0.003 m at 300°C and the presence of PbCl2?4 in concentrated solutions was not detected above 150°C. With increasing temperature, chlorolead(II) complex stability is characterised by large endothermic enthalpies and large positive entropies of formation. Lead(II) chloride complexes are important in the transport and deposition of lead by hydrothermal ore solutions of moderate to high salinity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号