首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electron paramagnetic resonance (EPR) study of single crystals of forsterite co-doped with chromium and scandium has revealed, apart from the known paramagnetic centers Cr3+(M1) and Cr3+(M1)– $ V_{{{\text{Mg}}^{2 + } }} $ (M2) (Ryabov in Phys Chem Miner 38:177–184, 2011), a new center Cr3+(M1)– $ V_{{{\text{Mg}}^{2 + } }} $ (M2)–Sc3+ formed by a Cr3+ ion substituting for Mg2+ at the M1 structural position with a nearest-neighbor Mg2+ vacancy at the M2 position and a Sc3+ ion presumably at the nearest-neighbor M1 position. For this center, the conventional zero-field splitting parameters D and E and the principal g values have been determined as follows: D?=?33,172(29) MHz, E?=?8,482(13) MHz, g?=?[1.9808(2), 1.9778(2), 1.9739(2)]. The center has been compared with the known ion pair Cr3+(M1)–Al3+ (Bershov et al. in Phys Chem Miner 9:95–101, 1983), for which the refined EPR data have been obtained. Based on these data, the known sharp M1″ line at 13,967?cm?1 (with the splitting of 1.8?cm?1), observed in low-temperature luminescence spectra of chromium-doped forsterite crystals (Glynn et al. in J Lumin 48, 49:541–544, 1991), has been ascribed to the Cr3+(M1)–Al3+ center. It has been found that the concentration of the new center increases from 0 up to 4.4?×?1015?mg?1, whereas that of the Cr3+(M1) and Cr3+(M1)– $ V_{{{\text{Mg}}^{2 + } }} $ (M2) centers quickly decreases from 7.4?×?1015?mg?1 down to 3?×?1015?mg?1 and from 2.7?×?1015?mg?1 down to 0.5?×?1015?mg?1, i.e., by a factor of 2.5 and 5.4, respectively, with an increase of the Sc content from 0 up to 0.22 wt?% (at the same Cr content 0.25 wt?%) in the melt. When the Sc content exceeds that of Cr, the concentration of the new center decreases most likely due to the formation of the Sc3+(M1)– $ V_{{{\text{Mg}}^{2 + } }} $ (M2)–Sc3+ complex instead of the Cr3+(M1)– $ V_{{{\text{Mg}}^{2 + } }} $ (M2)–Sc3+ center. The formation of such ordered neutral complex is in agreement with the experimental results, concerning the incorporation of Sc into olivine, recently obtained by Grant and Wood (Geochim Cosmochim Acta 74:2412–2428, 2010).  相似文献   

2.
The scaling relationships for stress drop and corner frequency with respect to magnitude have been worked out using 159 accelerograms from 34 small earthquakes (M w 3.3–4.9) in the Kachchh region of Gujarat. The 318 spectra of P and S waves have been analyzed for this purpose. The average ratio of P- to S-wave corner frequency is found to be 1.19 suggestive of higher corner frequency for P wave as compared to that for S wave. The seismic moments estimated from P waves, M 0(P), range from 1.98 × 1014 N m to 1.60 × 1016 N m and those from S waves, M 0(S), range from 1.02 × 1014 N m to 3.4 × 1016 N m with an average ratio, M 0(P)/M 0(S), of 1.11. The total seismic energy varies from 1.83 × 1010 J to 2.84 × 1013 J. The estimated stress drop values do not depend on earthquake size significantly and lie in the range 30–120 bars for most of the events. A linear regression analysis between the estimated seismic moment (M 0) and corner frequency (f c) gives the scaling relation M 0 f c 3  = 7.6 × 1016 N m/s3. The proposed scaling laws are found to be consistent with similar scaling relations obtained in other seismically active regions of the world. Such an investigation should prove useful in seismic hazard and risk-related studies of the region. The relations developed in this study may be useful for the seismic hazard studies in the region.  相似文献   

3.
Nitrous oxide evolution may contribute to partial destruction of the ozone layer in the stratosphere. A two year study of the release of N2O from adjoining salt, brackish, and fresh marsh sediment indicates that the annual emission was 31, 48, and 55 mg N m?2 respectively. Emission from open water area was less than the corresponding emission from the marsh sediment. In vitro experiments indicate that the N2O emission was increased when the sediment was drained for extended periods of time. The addition of NO3? significantly increased the rate of N2O evolution, indicating that a large potential for denitrification exists in the anoxic sediment. Appreciable losses of N2O would only be expected when the marshes receive an extraneous source of nitrate such as sewage and/or wastewater.The contribution of the Gulf Coast wetlands to the atmospheric N2O balance is estimated to be 3.3 × 109 g N2O. The maximum average daily emission was equivalent to 1.5 g N2O-N ha?1, which is less than the measured emission from uncultivated soils (Mosieret al., 1981) but greater than the estimates from noncropped land (CAST, 1976).  相似文献   

4.
5.
Our analysis of many years of infrared photometry of the unique object FG Sge indicates that the dust envelope formed around the supergiant in August 1992 is spherically symmetrical and contains compact, dense dust clouds. The emission from the spherically symmetrical dust envelope is consistent with the observed radiation from the star at 3.5–5 µm, and the presence of the dust clouds can explain the radiation observed at 1.25–2.2 µm. The mean integrated flux from the dust envelope in 1992–2001 was ~(1.0±0.2)×10?8 erg s?1cm?2. The variations of its optical depth in 1992–2001 were within 0.5–1.0. The maximum density of the dust envelope was recorded in the second half of 1993 and corresponded to mean optical depths as high as unity. Several times in the interval from 1992 to 2001, the dusty material of the envelope partially dissipated and was then replenished. For example, the optical depth of the dust cloud at λ=1.25 µm during the last brigthness minimum in the J band was τ1.25≈4.3, which is much higher than the optical depth of the dust envelope of FG Sge. During maxima of the J brightness, the mean spectral energy distribution at 0.36–5 µm can be represented as a combination of radiation from a G0 supergiant that is attenuated by a dust envelope with a mean optical depth of 0.65±0.15 and emission from the spherically symmetrical dust envelope itself, with the temperature of the graphite grains being 750±150 K. At minima of the J brightness, only radiation from the dust envelope is observed at 1.65–5 µm, with the radiation from the supergiant barely detectable at 1.25 µm. As a result, the integrated flux during J minima is almost half that during J maxima. The mean mass of the spherically symmetrical dust envelope of FG Sge in 1992–2001 was (3 ± 1) × 10?7M. This envelope’s mass varied by nearly a factor of two during 1992–2001, in the range (2 – 4) × 10?7M. In Autumn 1992, the mass-loss rate from the supergiant exceeded 2 × 10?7M/yr. The average rate at which matter was injected into the envelope during 1993–2001 was 10?8M/yr. The mean rate of dissipation of the dust envelope was about 1 × 10?8M/yr. During 1992–2001, the supergiant lost about 8.7 × 10?7M. The parameters of the dust envelope were relatively constant from 1999 until the middle of 2001.  相似文献   

6.
We present the results of long-term (1978–1998) infrared and optical observations of the unique symbiotic system CH Cygni. The system’s IR brightness and color variations are generally consistent with a model in which the source is surrounded by a dust envelope with variable optical depth. There was evidence for a hot source in the CH Cyg system during the entire period from 1978 to 1998, with the exception of several hundred days in 1987–1989. Over the observation period, there was tendency for the system to gradually redden at 0.36–5 µm, accompanied by a brightness decrease at 0.36–2.2µm and a brightness increase at 3.5 and 5 µm. The “activation” of the cool sources in 1986–1989 nearly coincided with the disappearance of radiation from the hot source. The dust envelope of CH Cyg is not spherically symmetrical, and its optical depth along the line of sight is substantially lower than its emission coefficient, the mean values being τex(L)~0.06 and τem(L)~0.16. We confirm the presence of a 1800-to 2000-day period in both the optical and IR, both accounting for, and not accounting for, a linear trend. The spectral type of the cool star varied between M5III and M7III. The spectral type was M5III during the phase of maximum activity of the system’s hot source, while the spectral type was M7III when the star’s optical radiation was almost completely absent. The luminosity of the cool giant varied from (6300–9100)L ; its radius varied by approximately 30%. The ratio of the luminosities of the dust envelope and the cool giant varied from 0.08 to 0.5; i.e., up to 50% of the cool star’s radiation could be absorbed in the envelope. The temperature of dust particles in the emitting envelope varied from 550 to 750 K; the radius of the envelope varied by more than a factor of 2. The expansion of the emitting dust envelope observed in 1979–1988 accelerated: its initial velocity (in 1979) was ~8 km/s, while the maximum velocity (in 1987–1989) was ~180 km/s. Beginning in 1988, the radiation radius of the dust envelope began to decrease, first at ~45 km/s and then (in 1996–1998) at ~3 km/s. From 1979 until 1996, the mass of the emitting dust envelope increased by approximately a factor of 27 (the masses in 1979 and 1988 were ~1.4×10?7 M and ~3.8×10?6 M , respectively), after which (by 1999) it decreased by nearly a factor of 7. The mass-loss rate of the cool star increased in 1979–1989, reaching ~3.5×10?6 ~3.5×10?6 M /yr in 1988. Subsequently (up to the summer of 1999), the envelope itself began to lose mass at a rate exceeding that of the cool star. The largest input of matter to the envelope occurred after the phase of optical activity in 1978–1985. If the envelope’s gas-to-dust ratio is ~100, the mass of matter ejected in 1988 was ~4×10?4 M .  相似文献   

7.
8.
Electron transport properties of single crystal and polycrystalline natural mineral galena (PbS) samples from the Trep?a mine, Yugoslavia, were determined using the photoacoustic frequency transmission technique. Their thermal diffusivity (D T≈0.16 × 10?5 m2 s?1), the coefficient of diffusion (D between 0.15×10?2 0.16×10?2 m2 s?1) and lifetime of the excess carrier (τ≈35 μs and the front and rear recombination velocity (s g≈65.5 m s?1 and s b≈66.4 m s?1, respectively), were calculated by comparing the experimental results and the theoretical photoacoustic amplitude and phase signals. The lattice parameter obtained by X-ray work was a?=5.936?Å. The free carrier concentration of these single-crystal samples was measured using the Hall method (N?=?3×1018 cm?3). Measurements of the optical reflectivity of the same samples, as a function of wavelength, in the infrared and far infrared ranges, were performed. In the far infrared range a free electron plasma frequency was observed and numerically analyzed, using the least-squares fitting procedure. The values of optical parameters were calculated and the value of the free carrier concentration obtained by the Hall method was confirmed.  相似文献   

9.
The results of hydrodynamical calculations of radially pulsating helium stars with masses 0.5MM≤0.9M, bolometric luminosities 600L≤5×103L, and effective temperatures 1.5×104 K≤Teff≤3.5×104 K are presented. The pulsation instability of these stars is due to the effects of ionization of iron-group elements in layers with temperatures T~2×105 K. The calculations were carried out using opacities for the relative mass abundances of hydrogen and heavy elements X=0 and Z=0.01, 0.015, and 0.02. Approximate formulas for the pulsation constant Q over the entire range of pulsation instability of the hot helium stars in terms of the mass M, radius R, effective temperature Teff, and heavy-element abundance Z are derived. The instability of BX Cir to radial pulsations with the observed period Π=0.1066 d occurs only for a mass M≥0.55M, effective temperature Teff≥23000 K, and heavy-element abundance Z≥0.015. The allowed mass of BX Cir is in the range 0.55MM≤0.8M, which corresponds to luminosities 800LM≤1400L and mean radii 1.7R?R?2.1R.  相似文献   

10.
In estuaries, organic coatings play an important role in the aggregation of mineral particles. Particles acquire adhesive surfaces through the activities of bacteria and microalgae in the sediment and water column. Eventually, they may become incorporated into larger aggregates and structures, such as tubes, constructed by infaunal benthic animals. Where these structures are large enough, and the adhesive bonds between particles strong enough, individual particles may remain in place at bed shear stresses otherwise strong enough to cause sediment transport. This study examined the aggregation of particles during tube building by the ubiquitous tanaid crustaceanLeptochelia dubia. Particle size selection and rates of tube building were determined as functions of animal size, temperature, and the presence or absence of bacteria and microalgae. These data were used to model seasonal patterns of sediment binding by a population ofL. dubia in Yaquina Bay, Oregon, taking into account seasonal changes in sizes and abundance of animals. Rates of tube building (mass of sediment per day) increased with animal size, but temperature had no effect. The model indicated that the field population ofL. dubia bound sediment into tubes at a gross rate of 350 g m?2 d?1, averaged over a 2-yr period. Seasonally, gross rates of tube building were predicted to range from 70 g m?2 d?1 (during late winter-early spring) to 600 g m?2 d?1 (during autumn). When constructing tubes from sterile sediments, small animals selected silt-sized particles while large animals discriminated against these particles. The presence of microbes in sediments tended to reduce particle selectivity.  相似文献   

11.
The thermo-elastic behaviour of Be2BO3(OH)0.96F0.04 (i.e. natural hambergite, Z = 8, a = 9.7564(1), b = 12.1980(2), c = 4.4300(1) Å, V = 527.21(1) Å3, space group Pbca) has been investigated up to 7 GPa (at 298 K) and up to 1,100 K (at 0.0001 GPa) by means of in situ single-crystal X-ray diffraction and synchrotron powder diffraction, respectively. No phase transition or anomalous elastic behaviour has been observed within the pressure range investigated. P?V data fitted to a third-order Birch–Murnaghan equation of state give: V 0 = 528.89(4) Å3, K T0 = 67.0(4) GPa and K′ = 5.4(1). The evolution of the lattice parameters with pressure is significantly anisotropic, being: K T0(a):K T0(b):K T0(c) = 1:1.13:3.67. The high-temperature experiment shows evidence of structure breakdown at T > 973 K, with a significant increase in the full-width-at-half-maximum of all the Bragg peaks and an anomalous increase in the background of the diffraction pattern. The diffraction pattern was indexable up to 1,098 K. No new crystalline phase was observed up to 1,270 K. The diffraction data collected at room-T after the high-temperature experiment showed that the crystallinity was irreversibly compromised. The evolution of axial and volume thermal expansion coefficient, α, with T was described by the polynomial function: α(T) = α 0 + α 1 T ?1/2. The refined parameters for Be2BO3(OH)0.96F0.04 are: α 0 = 7.1(1) × 10?5 K?1 and α 1 = ?8.9(2) × 10?4 K ?1/2 for the unit-cell volume, α 0(a) = 1.52(9) × 10?5 K?1 and α 1(a) = ?1.4(2) × 10?4 K ?1/2 for the a-axis, α 0(b) = 4.4(1) × 10?5 K?1 and α 1(b) = ?5.9(3) × 10?4 K ?1/2 for the b-axis, α 0(c) = 1.07(8) × 10?5 K?1 and α 1(c) = ?1.5(2) × 10?4 K ?1/2 for the c-axis. The thermo-elastic anisotropy can be described, at a first approximation, by α 0(a):α 0(b):α 0(c) = 1.42:4.11:1. The main deformation mechanisms in response to the applied temperature, based on Rietveld structure refinement, are discussed.  相似文献   

12.
Spectrophotometric observations are used to study the envelopes of the FeII nova V2467 Cyg and the HeN nova V2491 Cyg. The abundances of several elements in the nova envelopes and the envelope masses are estimated. The nitrogen mass abundance in the V2467 Cyg envelope is higher than the solar value by a factor of 186 and the oxygen abundance by the factor of 10. The nitrogen abundance in the envelope of V2491 Cyg exceeds the solar value by a factor of 56, the oxygen abundance by a factor of 12, and the neon abundance by a factor of 8. The masses of the envelopes were estimated to be 8.5×10?5 M for V2467 Cyg and 1.5×10?5 M for V2491 Cyg. These envelope elemental abundances and masses are in good agreement with those of low-mass CO white dwarfs (0.8 M ) and ONe white dwarfs (1.15 M ).  相似文献   

13.
Trends in the spatial distribution of chlorophylla (chla) and colloidal and total carbohydrates on the Molenplaat tidal flat in the Westerschelde estuary, Netherlands, reflected spatial differences in physical properties of the sediment. Results from a Spearman Rank Order Correlation indicated that many of the physical and biological measures covaried. Multiple regression analyses describing the relationship between colloidal carbohydrates and sediment properties resulted in several highly significant equations, although in all cases chla was able to predict colloidal carbohydrate content. Relationships between sediment surface chla and colloidal carbohydrate, and sediment erodibility (i.e., critical erosion threshold, Ucrit, and mass of sediment eroded at a velocity of 30 cm s?1) determined in annular flume experiments were examined. Overall sediment erodibility was lowest (i.e., high thresholds, low mass eroded) for the siltiest sediments in June 1996 when chla and colloidal carbohydrates were high (56.9 μg gDW?1 and 320.6 μg gluc.equ. gDW?1, respectively), and greatest (i.e., low thresholds, high mass eroded) at the sandier sediments in September 1996, when chla and colloidal carbohydrates were low (1.0 μg gDW?1 and 5.7 μg gluc.equ. gDW?1, respectively). When sediments were grouped according to relative silt content, the most significant relationships were found in muddy sand with a finegrained fraction (<63 μm) of 25–50%. Thresholds of erosion increased, while mass of sediment eroded decreased, with increasing chla and colloidal carbohydrate. A similar trend was observed for the sand-muddy sand (63 μm 10–25%). In the sand (63 μm 0–10%), there were no relationships for Ucrit, whereas mass eroded appeared to increase with increasing chla and colloidal carbohydrate. The increased carbohydrate may stick sand grains together, altering the nature of erosion from rolling grains to clumps of resuspension.  相似文献   

14.
Sixteen crater samples were analyzed by radiochemical neutron activation analysis for Ge, Ir, Ni, Os, Pd and Re. Two impact melt rock samples from Clearwater East (22 km) showed strong, uniform enrichments in all elements except Ge, corresponding to 7.4% C1 chondrite material. Interelement ratios suggest that the meteorite was a C1 (or C2) chondrite, not an iron, stony iron, or chondrite of another type. An Ivory Coast tektite (related to the 10 km Bosumtwi crater) was enriched in Ir + Os and Ni to about 0.04 and 1.6% of C1 chondrite levels, but in the absence of data on country rocks, the meteorite cannot yet be characterized.Impact melt rock samples from Clearwater West (32km), Manicouagan (70km), and Mistastin (28 km) showed no detectable meteoritic component. Upper limits, as Cl chondrite equivalent, were Os ≤ 2 × 10?3% (~0.01 ppb), Ni ≤ 2 × 10?1% (~20ppm). Possible causes are high impact velocity and/or a chemically inconspicuous meteorite (achondrite, Ir,Os-poor iron or stony iron). However, a more likely reason is that some fraction of the impact melt remains meteorite-free, especially at craters with central peaks.Clearwater East is the first terrestrial impact crater found to be associated with a stony meteorite. Apparently the consistent absence of stony projectiles at small craters (< 1 km diameter) reflects their destruction in the atmosphere, as proposed by Öpik.  相似文献   

15.
A cellulose-specific staining procedure employing Herzberg’s chlor-zinc-iodide solution was developed to aid in the identification of microdetritus derived fromSpartina alterniflora and tested on samples of suspended and sedimented particulate matter collected in the Cumberland Basin at the head of the Bay of Fundy. Not all of the particles reacting positively to the stain could have been identified as originating fromSpartina on the basis of morphology alone, and the stain improved speed and confidence in identification even when particles could be identified morphologically.Spartina dominated particles greater than 100 μm while most of the smaller particles were amorphous aggregates of uncertain origin. In April 1985, at the start of the salt-marsh growing season, the average concentration of suspended microdetritus derived fromSpartina in Cumberland Basin surface water was 129 mg C m?3 or 0.3–2.7% of the particulate organic carbon. The average concentration in intertidal sediments was 0.036 mg C g?1 or 0.2–0.9% of the sediment organic carbon. Summing all reservoirs in the sediment (to a depth of 1 cm) and water column, the total amount of detritus originating fromSpartina in Cumberland Basin is 10–24% of the estimated annual net primary production of low marshS. alterniflora.  相似文献   

16.
This study was designed to determine the amount of particulate organic carbon (POC) introduced to the Gulf of Mexico by the Mississippi River and assess the influence of POC inputs on the development of hypoxia and burial of organic carbon on the Louisiana continental shelf. Samples of suspended sediment and supporting hydrographic data were collected from the river and >50 sites on the adjacent shelf. Suspended particles collected in the river averaged 1.8±0.3% organic carbon. Because of this uniformity, POC values (in μmol l?1) correlated well with concentrations of total suspended matter. Net transport of total organic carbon by the Mississippi-Atchafalaya River system averaged 0.48×1012 moles y?1 with 66% of the total organic carbon carried as POC. Concentrations of POC decreased from as high as 600 μmol l?1 in the river to <0.8 μmol l?1 in offshore waters. In contrast, the organic carbon fraction of the suspended matter increased from <2% of the total mass in the river to >35% along the shelf at ≥10 km from the river mouth. River flow was a dominant factor in controlling particle and POC distributions; however, time-series data showed that tides and weather fronts can influence particle movement and POC concentrations. Values for apparent oxygen utilization (AOU) increased from ~60 μmol l?1 to >200 μmol l?1 along the shelf on approach to the region of chronic hypoxia. Short-term increases in AOU were related to transport of more particle-rich waters. Sediments buried on the shelf contained less organic carbon than incoming river particles. Orgamic carbon and δ13C values for shelf sediments indicated 3 that large amounts of both terrigenous and marine organic carbon are being decomposed in shelf waters and sediments to fuel observed hypoxia.  相似文献   

17.
Methane produced in anoxic organic-rich sediments of Cape Lookout Bight, North Carolina, enters the water column via two seasonally dependent mechanisms: diffusion and bubble ebullition. Diffusive transport measured in situ with benthic chambers averages 49 and 163 μmol · m ?2 · hr ?1 during November–May and June–October respectively. High summer sediment methane production causes saturation concentrations and formation of bubbles near the sediment-water interface. Subsequent bubble ebullition is triggered by low-tide hydrostatic pressure release. June–October sediment-water gas fluxes at the surface average 411 ml (377 ml STP: 16.8 mmol) · m?2 per low tide. Bubbling maintains open bubble tubes which apparently enhance diffusive transport. When tubes are present, apparent sediment diffusivities are 1.2–3.1-fold higher than theoretical molecular values reaching a peak value of 5.2 × 10?5 cm2 · sec?1. Dissolution of 15% of the rising bubble flux containing 86% methane supplies 170μmol · m?2 · hr?1 of methane to the bight water column during summer months; the remainder is lost to the troposphere. Bottom water methane concentration increases observed during bubbling can be predicted using a 5–15 μm stagnant boundary layer dissolution model. Advective transport to surrounding waters is the major dissolved methane sink: aerobic oxidation and diffusive atmospheric evasion losses are minor within the bight.  相似文献   

18.
The paper considers possible observational implications of the presence of dark matter in the Galaxy in the form of dense gas clouds—clumpuscules with masses M c ~10?3 M and radii R c~3×1013 cm. The existence of such clouds is implied by modern interpretations of extreme scattering events—variations in quasar radio fluxes due to refraction in dense plasma condensations in the Galactic halo. The rate of collisions between these clouds is shown to be rather high: from 1 to 10M per year is ejected into the interstellar medium as a result of such collisions. The optical continuum and 21-cm emission from hot post-collision gas could be observable. Gas clouds composed of dark matter could be formed around O stars in an H II region with radius R~30 pc and emission measure EM?20 cm?6 pc. They could also be observable in the Hα line. The evaporation of clumpuscules by external ionizing radiation could be a substantial source of matter for the interstellar medium. Assuming that the total mass of matter entering the interstellar medium over the Hubble time does not exceed the mass of luminous matter in the Galaxy, upper limits are found for the cloud radii (R c<3.5×1012 cm) and the contribution of clouds to the surface density of the Galaxy (<50M pc?2). Dissipation of the kinetic energy of matter lost by clumpuscules could provide an efficient mechanism for heating gas in the Galactic halo.  相似文献   

19.
A detailed study of variations of the orbital periods of the Algol-type eclipsing binary systems RZ Cas and Z Dra is presented. The fairly complex variations of the periods of both systems can be represented as a superposition of a secular increase of the period, slow periodic fluctuations, and quasiperiodic oscillations with a small amplitude occurring on timescales of decades. The secular increase of the period can be explained by the steady mass transfer from the less massive to the more massive component with conservation of the total angular momentum. The mass-transfer rate is 5.7 × 10?9M/yr for RZ Cas and 3.0×10?8M/yr for Z Dra. To explain the long-period cyclic variations of the orbital periods of RZCas and Z Dra, it must be assumed that the eclipsing binaries move in long-period orbits. RZ Cas moves with a period of 133 yr around a third body withmass M3 > 0.55M, while Z Dra moves with a period of 60 yr around a third body with mass M3 > 0.7M. The residual fluctuations of the periods may be due to a superposition of variations due to magnetic cycles and non-stationary ejections of matter.  相似文献   

20.
Results of a study of the shell of Nova V2659 Cyg based on spectrophotometric observations carried out over a year and a half after its eruption are presented. The physical conditions in the nova shell have been studied. The electron temperature (9000 K) and density (5 × 106 cm?3) in the nebular stage have been estimated, together with the abundances of helium, oxygen, nitrogen, neon, argon, and iron. The abundances of nitrogen, oxygen, neon, and argon are enhanced relative to the solar values. The relative abundances are [N/H] = 2.26 ± 0.25 dex, [O/H] = 1.66 ± 0.35 dex, [Ne/H] = 0.78 ± 0.25 dex, and [Ar/H] = 0.32 ± 0.38 dex. The estimated mass of oxygen and total mass of the emitting shell are ≈1 × 10?4M and ≈3 × 10?4M, respectively. In the period of chaotic brightness oscillations, the maximum velocity of the shell expansion derived from the radial velocities of the absorption components of the HI and FeII line profiles increased by ≈400 km/s 41 days after the maximum, and by ≈200 km/s 101 days after the maximum, reaching 1600 km/s in both cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号