首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
For accurate mathematical modeling of trace-element partitioning during igneous fractionation, adsorption should be considered. Because of adsorption, the partitioning of elements between liquid and a surface layer of a crystal is often not the same as the partitioning between liquid and the solid crystal at true equilibrium. In some minerals e.g. high-calcium pyroxene, the effect of adsorption during crystal growth may be very important; this is suggested by the frequent occurrence of sector zoning in augite, and the wide range in measured partition coefficients for such elements as rare earths. The ions which are enriched by adsorption are usually those which are favored substituents according to Goldschmidt's rules. In other minerals, uptake of trace elements may be closer to equilibrium partitioning, rather than being determined by kinetic factors. For example, the relative partitioning of REE, U, Th and Pb into feldspars is qualitatively predicted by Pauling's rules for complex ionic crystals, rather than by Goldschmidt's rules.  相似文献   

2.
An indirect method was used to study Na, K, Rb, Cs, Sr and Ba partition coefficients between crystals and silicate melt. Equilibria between a hydrothermal solution and the melt at 800°C and 2 kb and between a hydrothermal solution and crystals at 750°C and 2 kb were separately achieved.For major element partitioning (Na and K), the results obtained here are in good agreement with those of Tuttle and Bowen (1958) which allow us to follow crystal evolution during a fractional crystallization process where the growth of zoned crystals takes place.For minor elements Rb, Cs, Sr, Ba, melt/aqueous solution partition coefficients depend on Na/K as well as the silica content of the melt. These effects are rather small for Rb and Cs, but are much more important for the alkaline earths. The feldspar/aqueous solution partition coefficients also depend on Na/K.The variations of the partition coefficients feldspar/melt are complex in the part of the Qz-Ab-Or diagram located below the cotectic line.During fractional crystallization following the Rayleigh law (assuming that there are no kinetic phenomena) Sr (D > 10) is almost totally removed from the melt in the early stages whereas Cs (D < 0.1) remains in the melt during the whole process. Rb and Ba have partition coefficients closer to unity. The variation of these coefficients, due to changes in bulk composition of liquid and crystals during fractional crystallization, can lead to complex zoning with possible concentration maxima at some stages. Similar phenomena can be expected in non-ideal natural solid solutions, even if no discontinuities can be detected in the physicochemical evolution of the parent magma.  相似文献   

3.
Kinetic effects on trace element partitioning have been measured for anorthite, forsterite, and diopside grown from synthetic compositions doped with REE. A seeding technique allowed determination of crystal growth rates and partitioning information was obtained from electron microprobe analyses. Compositional deviations from equilibrium values were sought in the crystals and as gradients in the quenched liquids adjacent to the crystals. The principal result is that large deviations in trace element distribution coefficients from equilibrium values do not occur because of a compensating effect. Rapid growth depletes the melt adjacent to the crystal in the elements of which the crystal is composed, leading to different values for apparent distribution coefficients. However, as the boundary layer melt becomes depleted in the components of the crystal, growth slows and the size of the compositional perturbations decreases. Crystals grown at very high rates (e.g., > 0.2 μm/sec for diopside) tended to be too small for accurate microprobe analyses, but are probably not compositionally extreme since the melts adjacent to the crystals did not acquire sizable compositional gradients. At moderately high growth rates (e.g., 0.02 μm/sec), crystals form in the presence of boundary layer compositions perturbed by as much as 10% from bulk melt values and, in diopside, attain concentrations for excluded trace elements about 70% higher than equilibrium values for crystals plus bulk melt. At the slower growth rates typical of igneous systems, kinetic effects on trace element partitioning are probably negligible.  相似文献   

4.
Isobaric and isothermal experiments were performed to investigate the effect of melt composition on the partitioning of trace elements between titanite (CaTiSiO5) and a range of different silicate melts. Titanite-melt partition coefficients for 18 trace elements were determined by secondary ion mass spectrometry (SIMS) analyses of experimental run products. The partition coefficients for the rare earth elements and for Th, Nb, and Ta reveal a strong influence of melt composition on partition coefficients, whereas partition coefficients for other studied monovalent, divalent and most quadrivalent (i.e., Zr, Hf) cations are not significantly affected by melt composition. The present data show that the influence of melt composition may not be neglected when modelling trace element partitioning.It is argued that it is mainly the change of coordination number and the regularity of the coordination space of trace elements in the melt structure that controls partition coefficients in our experiments. Furthermore, our data also show that the substitution mechanism by which trace elements are incorporated into titanite crystals may be of additional importance in this context.  相似文献   

5.
Usually it is assumed that the partitioning of trace elements into titanite in metaluminous granitoid plutonic environments takes place under equilibrium conditions and that compositional zoning is due solely to progressive changes in melt chemistry and/or mineral/melt partition coefficients. Examination of titanites from a variety of Caledonian metaluminous granitoids and related rocks has revealed that sector zoning is present, indicating disequilibrium partitioning. The sector zoning in titanites is defined principally by the distribution of the rare earth elements (REE), Y, Nb, Al and Fe. The REE, Y and Nb preferentially occur within the minor (100) sectors relative to the morphologically important (111) sectors. The reverse is true of Al and Fe which preferentially occur within the (111) sectors relative to the (100) sectors. The patterns of sector zoning are complicated by the fact that the relative growth rates of the various crystal faces fluctuated during growth. Sector zoning indicates that crystal-interface kinetics are responsible for the observed patterns of element partitioning. It is concluded that differences in the lateral-layerspreading rates of crystal faces bring about the sector zoning. The results have implications for the use of trace element partition coefficients in the modelling of fractionation processes.  相似文献   

6.
To better understand the partitioning behavior of elements during the formation and evolution of iron meteorites, two sets of experiments were conducted at 1 atm in the Fe-Ni-P system. The first set examined the effect of P on solid metal/liquid metal partitioning behavior of 22 elements, while the other set explored the effect of the crystal structures of body-centered cubic (α)- and face-centered cubic (γ)-solid Fe alloys on partitioning behavior. Overall, the effect of P on the partition coefficients for the majority of the elements was minimal. As, Au, Ga, Ge, Ir, Os, Pt, Re, and Sb showed slightly increasing partition coefficients with increasing P-content of the metallic liquid. Co, Cu, Pd, and Sn showed constant partition coefficients. Rh, Ru, W, and Mo showed phosphorophile (P-loving) tendencies. Parameterization models were applied to solid metal/liquid metal results for 12 elements. As, Au, Pt, and Re failed to match previous parameterization models, requiring the determination of separate parameters for the Fe-Ni-S and Fe-Ni-P systems.Experiments with coexisting α and γ Fe alloy solids produced partitioning ratios close to unity, indicating that an α versus γ Fe alloy crystal structure has only a minor influence on the partitioning behaviors of the trace element studied. A simple relationship between an element’s natural crystal structure and its α/γ partitioning ratio was not observed. If an iron meteorite crystallizes from a single metallic liquid that contains both S and P, the effect of P on the distribution of elements between the crystallizing solids and the residual liquid will be minor in comparison to the effect of S. This indicates that to a first order, fractional crystallization models of the Fe-Ni-S-P system that do not take into account P are appropriate for interpreting the evolution of iron meteorites if the effects of S are appropriately included in the effort.  相似文献   

7.
Carbon has been proposed as a potential light element in planetary cores, included in models of planetary core formation, and found in meteoritic samples and minerals. To better understand the effect of C on the partitioning behavior of elements, solid/liquid partition coefficients (D = (solid metal)/(liquid metal)) were determined for 17 elements (As, Au, Co, Cr, Cu, Ga, Ge, Ir, Ni, Os, Pd, Pt, Re, Ru, Sb, Sn, and W) over a range of C contents in the Fe-Ni-C system at 1 atm. The partition coefficients for the majority of the elements increased as the C content of the liquid increased, an effect analogous to that of S for many of the elements. In contrast, three of the elements, Cr, Re, and W, were found to have anthracophile (C-loving) preferences, partitioning more strongly into the metallic liquid as the C content increased, resulting in decreases to their partition coefficients. For half of the elements examined, the prediction that partitioning in the Fe-Ni-S and Fe-Ni-C systems could be parameterized using a single set of variables was not supported. The effects of S and C on elemental partitioning behavior can be quite different; consequently, the presence of different non-metals can result in different fractionation patterns, and that uniqueness offers the opportunity to gain insight into the evolution of planetary bodies.  相似文献   

8.
Reconciling the diverse records of magmatic events preserved by multiple crystals and minerals in the same sample is often challenging. In the case of basaltic–andesites from Volcán Llaima (Chile), Mg zoning in olivine is always simpler than Ca zoning in plagioclase. A model that explains a number of chemical patterns is that Llaima magmas stall in the upper crust, where they undergo decompression crystallization and form crystal-mush bodies. Frequent magma inputs from deeper reservoirs provide the potential for remobilization and eruption. The records of multiple recharge events in Llaima plagioclase versus an apparent maximum of one such event in coexisting olivine are addressed by using trace element zoning in olivine phenocrysts. We have integrated elements that (1) respond to changes in magma composition due to recharge or mixing (Mg, Fe, Ni, Mn, ±Ca), with (2) elements that are incorporated during rapid, disequilibrium crystal growth (P, Ti, Sc, V, Al). A more complex history is obtained when these elements are evaluated considering their partition coefficients, diffusivities, and crystal growth rates. The olivine archive can then be reconciled with the plagioclase archive of magma reservoir processes. Olivine (and plagioclase) phenocrysts may experience up to three or more recharge events between nucleation and eruption. Diffusion modeling of major and trace element zoning in two dimensions using a new lattice Boltzmann model suggests that recharge events occur on the order of months to a couple of years prior to eruption, whereas crystal residence times are more likely to be on the order of a few years to decades.  相似文献   

9.
We present detailed experimental results on the partitioning of rare earth elements (REE) between titanite and a range of different silicate melts. Our results show that Henry’s law of trace element partitioning depends on bulk composition, the available partners for heterovalent substitution, crystal composition, and melt composition. We illustrate that the partition coefficients for Sm depend very strongly on the bulk concentration of Sm in the system. The substitution mechanism, by which rare earth elements are incorporated into the crystal structure, plays an important role for trace element partitioning and also for the onset of Henry’s law. Our data show that there are clear differences between substitution mechanisms of major elements compared to elements which are present only as traces. Our experiments also clearly show that the onset of Henry’s law depends on the concentrations of the sum of all trace elements which are incorporated into the crystal by the same substitution mechanism. For geochemical modelling of magmatic processes involving titanite, and indeed other accessory phases, it is of crucial importance to first evaluate whether the REE, and other trace elements, are present as traces or as major elements, only then appropriate D values may be chosen.  相似文献   

10.
Our current lack of understanding of the partitioning behavior of Sc, Y and the REE (rare-earth elements) can be attributed directly to the lack of a sufficiently large or chemically diverse experimental data set. To address this problem, we conducted a series of experiments using several different natural composition lavas, doped with the elements of interest, as starting compositions. Microprobe analyses of orthopyroxene, pigeonite, olivine, magnetite, ilmenite and co-existing glasses in the experimental charges were used to calculate expressions that describe REE partitioning as a function of a variety of system parameters. Using expressions that represent mineral-melt reactions (versus element ratio distribution coefficients) it is possible to calculate terms that express low-Ca pyroxene-melt partitioning behavior and are independent of both pyroxene and melt composition. Compositional variations suggest that Sc substitution in olivine involves either a paired substitution with Al or, more commonly, with vacancies. The partitioning of Sc is dependent both on melt composition and temperature. Our experimentally determined olivine-melt REE Ds (partition coefficients) are similar to, but slightly higher than those reported by McKay (1986) and support their conclusions that olivines are strongly LREE depleted. Y and REE mineral/melt partition coefficients for magnetite range from 0.003 for La to 0.02 for Lu. Ilmenite partition coefficients range from 0.007 for La to 0.029 for Lu. These experimental values are two orders of magnitude lower than many of the published values determined by phenocryst/matrix separation techniques.  相似文献   

11.
Partition coefficients for trace elements in silicic magmas   总被引:2,自引:0,他引:2  
Trace element partition coefficients for 29 elements, including the rare earths, have been calculated for augite, hypersthene, sanidine, plagioclase, quartz, biotite, titanomagnetite and ilmenite from rhyodacite and rhyolite at Twin Peaks, Utah. Partition coefficients are intermediate to those reported from dacite and high silica rhyolite. At Twin Peaks, as in less silicic magmas, partitioning between phenocrysts and melt is governed primarily by crystal structure constraints as opposed to very high silica systems where the structure and volatile content of the melt become the dominant control of trace element partitioning.  相似文献   

12.
Eclogite of recycled slab origin has often been invoked in the source region of mid-ocean ridge and ocean-island basalts. Melts of this eclogitic material are expected to be enriched in incompatible elements including major elements such as Na and Ti. In order to investigate the controls on trace element chemistry of a melt from such a recycled component we have performed trace element partitioning experiments in the simple systems CMAS (CaO-MgO-Al2O3-SiO2), NCMAS (Na2O-CMAS) and Ti-CMAS (TiO2-CMAS) at 3 GPa and 1298-1500°C using analogue eclogitic compositions.We show that sodium has a profound effect on clinopyroxene-melt partition coefficients. NCMAS is characterized by elevated partition coefficients, relative to CMAS for all elements except Li. The increase is more pronounced for more highly charged cations, resulting in negative partitioning anomalies for Li, Sr, Ba and Pb. In contrast to sodium, titanium has very little effect on trace element partitioning for all elements except Nb and Ta, which are retained by the rutile that is saturated in this run.  相似文献   

13.
Some F-rich granitic rocks show anomalous, nonchondritic ratios of Y/Ho, extreme negative Eu anomalies, and unusual, discontinuous, segmented chondrite-normalised plots of rare earth elements (REE). The effects of F-rich fluids have been proposed as one of the explanations for the geochemical anomalies in the evolved granitic systems, as the stability of nonsilicate complexes of individual rare earths may affect the fluid-melt element partitioning. The lanthanide tetrad effect, related to different configurations of 4f-electron subshells of the lanthanide elements, is one of the factors affecting such complexing behaviour. We present the first experimental demonstration of the decoupling of Y and Ho, and the tetrad effect in the partitioning of rare earths between immiscible silicate and fluoride melts. Two types of experiments were performed: dry runs at atmospheric pressure in a high-temperature centrifuge at 1100 to 1200°C, and experiments with the addition of H2O at 700 to 800°C and 100 MPa in rapid-quench cold-seal pressure vessels. Run products were analysed by electron microprobe (major components), solution-based inductively coupled plasma mass spectrometry (ICP-MS) (REE in the centrifuged runs), and laser ablation ICP-MS (REE and Li in the products of rapid-quench runs). All the dry centrifuge runs were performed at super-liquidus, two-phase conditions. In the experiments with water-bearing mixtures, minor amounts of aqueous vapour were present in addition to the melts. We found that lanthanides and Y concentrated strongly in the fluoride liquids, with two-melt partition coefficients reaching values as high as 100-220 in water-bearing compositions. In all the experimental samples, two-melt partition coefficients of lanthanides show subtle periodicity consistent with the tetrad effect, and the partition coefficient of Y is greater than that of Ho. One of the mixtures also produced abundant fluorite (CaF2) and cryolite (Na3AlF6) crystals, which enabled us to study fluorite-melt and cryolite-melt REE partitioning. REE concentrations in fluorite are high and comparable to those in the fluoride melt. However, fluorite-melt partition coefficients appear to depend mostly on ionic radii and show neither significant tetrad anomalies, nor differences in Y and Ho partitioning. In contrast, REE concentrations in cryolite are low (∼5-10 times lower than in the silicate melt), and cryolite-melt REE partitioning shows very strong tetrad and Y-Ho anomalies. Our results imply that Y-Ho and lanthanide tetrad anomalies are likely to be caused mainly by aluminofluoride complexes, and the tetrad REE patterns in natural igneous rocks can result from fractionation of F-rich magmatic fluids.  相似文献   

14.
Experiments in the systems diopside-albite (Di-Ab) and diopside-albite-dolomite (Di-Ab-Dmt), doped with a wide range of trace elements, have been used to characterise the difference between clinopyroxene-silicate melt and clinopyroxene-carbonate melt partitioning. Experiments in Di-Ab-Dmt yielded clinopyroxene and olivine in equilibrium with CO2-saturated dolomitic carbonate melt at 3 GPa, 1375 °C. The experiments in Di-Ab were designed to bracket those conditions (3 GPa, 1640 °C and 0.8 GPa, 1375 °C), and so minimise the contribution of differential temperature and pressure to partitioning. Partition coefficients, determined by SIMS analysis of run products, differ markedly for some elements between Di-Ab and Di-Ab-Dmt systems. Notably, in the carbonate system clinopyroxene-melt partition coefficients for Si, Al, Ga, heavy REE, Ti and Zr are higher by factors of 5 to 200 than in the silicate system. Conversely, partition coefficients for Nb, light REE, alkali metals and alkaline earths show much less fractionation (<3). The observed differences compare quantitatively with experimental data on partitioning between immiscible carbonate and silicate melts, indicating that changes in melt chemistry provide the dominant control on variation in partition coefficients in this case. The importance of melt chemistry in controlling several aspects of element partitioning is discussed in light of the energetics of the partitioning process. The compositions of clinopyroxene and carbonate melt in our experiments closely match those of near-solidus melts and crystals in CMAS-CO2 at 3 GPa, suggesting that our partition coefficients have direct relevance to melting of carbonated mantle lherzolite. Melts so produced will be characterised by elevated incompatible trace element concentrations, due to the low degrees of melting involved, but marked depletions of Ti and Zr, and fractionated REE patterns. These are common features of natural carbonatites. The different behaviour of trace elements in carbonate and silicate systems will lead to contrasted styles of trace element metasomatism in the mantle. Received: 15 July 1999 / Accepted: 18 February 2000  相似文献   

15.
The nonequilibrium partition of components between a crystal and solution is mainly controlled by impurity adsorption on the surface of the growing crystal. The specificity of adsorption on the faces of various simple forms leads to the sectorial zoning of crystals. This effect was studied experimentally for several crystallizing systems with different impurities, including isomorphous, 2d-isomorphous, and nonisomorphous, readily adsorbed impurities. In all systems, the sectorial selectivity of impurity incorporation into host crystals has been detected with partition coefficients many times higher than in the case of equilibrium partition. Specific capture of impurities by certain faces is accompanied by inhibition of their growth and modification of habit. The decrease in nonequilibrium partition coefficients with degree of oversaturation provides entrapment of impurities in the growing crystals. Thereby, the adsorption mechanism works in much the same mode for impurities of quite different nature. The behavior of partition coefficient differs drastically from impurity capturing by diffusion mechanism.  相似文献   

16.
Results are reported from an experimental study in which the partitioning of U and Mg between aragonite and an aqueous solution were determined as a function of crystal growth rate. Crystals, identified as aragonite by X-ray diffractometry and micro-Raman spectroscopy, were grown by diffusion of CO2 from an ammonium carbonate source into a calcium-bearing solution at temperatures of 22 and 53 °C. Hemispherical bundles (spherulites) of aragonite crystals were produced, the growth rates of which decreased monotonically from the spherulite interiors to the edges and thus provide the opportunity to examine the influence of growth rate on crystal composition. Element concentration ratios were measured using electron microprobe (EMP) and fluid composition was determined by inductively coupled plasma-mass spectrometry (ICP-MS) and atomic absorption (AA). Growth rates were determined directly by addition of a Dy spike to the fluid during the experiment that was subsequently located in an experimentally precipitated spherulite using secondary ion mass spectrometry (SIMS). At 22 °C both U/Ca and Mg/Ca partition coefficients exhibited a strong growth rate dependence when crystal growth rates were low, and became independent of growth rate when crystal growth rates were high. The U/Ca ratios in aragonite increase between 22 and 53 °C; in contrast Mg/Ca ratios show inverse dependence on temperature.  相似文献   

17.
We experimentally investigate the major and trace elements behavior during the interaction between two partially molten crustal rocks (meta-anorthosite and metapelite) and a basaltic melt at 0.5–0.8 GPa. Results show that a hybrid melt is formed at the basalt-crust contact, where plagioclase crystallizes. This contact layer is enriched in trace elements which are incompatible with plagioclase crystals. Under these conditions, the trace element diffusion coefficients are one order of magnitude larger than those expected. Moreover, the HFSE diffusivity in the hybrid melt is surprisingly higher than the REE one. Such a feature is related to the plagioclase crystallization that changes the trace elements liquid-liquid partitioning (i.e. diffusivity) over a transient equilibrium that will persist as long as the crystal growth proceeds. These experiments suggests that the behaviour of the trace elements is strongly dependent on the crystallization at the magma-crust interface. Diffusive processes like those investigated can be invoked to explain some unusual chemical features of contaminated magmatic suites.  相似文献   

18.
微量元素在幔源矿物与热液之间分配系数的差异是造成地幔不均一的一个重要因素,对于认识地球演化、元素的分异和板块构造具有重要的意义。热液的组成、矿物的结构、温度、压力以及氧逸度都与分配系数密切相关。不同微量元素在相同矿物或热液中的分配系数存在差别,而相同的元素在不同矿物中的分配系数也可能出现很大的变化,这是研究微量元素分异和不同地幔端员形成的理论基础。在较低的温度和压力下,热液的组成对分配系数的影响很大,随着温度和压力的升高,热液组成的影响逐渐减弱,而矿物的组成与结构的影响逐渐增大。由于分配系数影响因素的复杂性,因此在考虑地球深部微量元素的迁移和分异时需慎重对待。  相似文献   

19.
Element partitioning in metal-light element systems is important to our understanding of planetary differentiation processes. In this study, solid-metal/liquid-sulfide, liquid-metal/liquid-sulfide and solid-metal/troilite partition coefficients (D) were determined for 18 elements (Ag, As, Au, Co, Cr, Cu, Ge, Ir, Ni, Os, Pd, Pt, Mo, Mn, Re, Ru, Se and W) in the graphite-saturated Fe-S-C system at 1 atm. Compared at the same liquid S concentration, the solid/liquid partition coefficients are similar to those in the Fe-S system, but there are systematic differences that appear to be related to interactions with carbon dissolved in the solid metal. Elements previously shown to be “anthracophile” generally have larger solid/liquid partition coefficients in the Fe-S-C system, whereas those that are not have similar or smaller partition coefficients in the Fe-S-C system. The partitioning of trace elements between C-rich and S-rich liquids is, in most cases, broadly similar to the partitioning between solid metal and S-rich liquid. The highly siderophile elements Os, Re, Ir and W are partitioned strongly into the C-rich liquid, with D ? 100. The partition coefficients for Pt, Ge and W decrease significantly at the transition to liquid immiscibility, while the partition coefficient for Mo increases sharply. The bulk siderophile element patterns of ureilite meteorities appear to be better explained by separation of S-rich liquid from residual C-rich metallic liquid at temperatures above the silicate solidus, rather than by separation of S-rich liquid from residual solid metal at lower temperatures.  相似文献   

20.
As technical advances have dramatically increased our ability to analyze trace elements, the need for more reliable data on the compositional dependence of trace element partitioning between minerals and melt has become increasingly important. The late-Cretaceous Carmacks Group of south central Yukon comprises a succession of primitive high-Mg ankaramitic lavas characterized by shoshonitic chemical affinities and containing large complexly zoned clinopyroxene phenocrysts. The compositional zonation of the clinopyroxene phenocrysts is characterized by relatively Fe-rich (Mg# = Mg/(Mg + Fe) = 0.85), but mottled, cores surrounded by mantles of cyclically-zoned clinopyroxene whose Mg# varies repeatedly between 0.9 and 0.80. These cyclically zoned clinopyroxene mantles appear to record the repeated influx and mixing of batches of primitive with more evolved magma in a deep sub-crustal (∼1.2 GPa) magma chamber(s). Laser ablation ICP-MS was used to analyze the trace element variation in these zoned clinopyroxenes. The results indicate more than a threefold variation in the absolute concentrations of Th, Zr, rare earth elements (REE), and Y within individual clinopyroxene phenocrysts, with no apparent change in the degree of REE or high field strength element (HFSE) fractionation. The variation in absolute abundances of trace elements correlates closely with the major element composition of the clinopyroxene, with the most enriched clinopyroxene having the lowest Mg# and highest Al contents. The problem is that the amount of crystal fractionation required to explain the major element variation (∼20%) in these clinopyroxene phenocrysts cannot explain the increase in the abundance of the incompatible trace elements, which would require more than 70% crystal fractionation, if constant partition coefficients are assumed. The anomalous increase in incompatible trace elements appears to reflect an increase in their partition coefficients with increasing AlIV in the clinopyroxene; with an increase in Al2O3 from 1.5 to 4.0 wt.% during ∼20% crystal fractionation over a temperature decrease of ∼100°C being associated with more that a threefold increase in the partition coefficients of Th, Zr, REE, and Y. The magnitude of these increases may indicate that the substitution of these trace elements into clinopyroxene is better modeled in some natural systems by a local charge balance model, rather than the distributed charge model that better replicates the results of annealed experiments. These findings indicate that the effect of Al on the partition coefficients of incompatible trace elements in clinopyroxene may be under appreciated in natural magmatic systems and that the application of experimentally determined clinopyroxene partition coefficients to natural systems must be done with caution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号