首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Some areas of the seafloor, particularly the deep sea, are characterized by large numbers of apparently uninhabited or relict burrow structures formed by macrobenthic organisms. Because of low sedimentation rates or lack of physical disturbance these structures are stable for long periods of time and could potentially influence solute diffusion patterns in surface sediments. A two-dimensional diffusionreaction model which allows for diffusive rather than advective transport within stagnant, water-filled burrows demonstrates that, in the absence of advective irrigation, relict burrow structures are unlikely in most cases to significantly alter average solute distributions from those predicted by one-dimensional vertical models. This conclusion assumes changes in diffusive transport properties alone and does not account for any effects of relict structures on reaction rates or physical ventilation of deposits by bottom currents. Significant changes (≥5%) in solute distributions are generally produced only when the ratio of the halfdistance between burrows to relict burrow radii is ≤10 and sedimentary diffusion coefficients are ≤60% that in free solution. Because solute distributions in stagnant burrow waters are nearly that in surrounding sediment, sediment-water solute fluxes are also essentially unaffected by relict burrows except at extremely high abundances or fairly large differential diffusion rates between sediment and free solution. In contrast, even at low abundance, biologically irrigated or physically ventilated burrows produce major changes in solute transport and build-up patterns.  相似文献   

2.
The seasonal oscillation in sulfate and chloride concentration profiles in some salt marsh sediments is due to exchange of solutes with water on the surface of the marsh, and to the desiccation of the sediment in summer. Desiccation is manifested by disappearance of surface waters, fluctuations in the location of the water table, and by removal of water from the sediment above the water table. The loss of water from the pore space is commonly accompanied by entry of air into the soil, which oxidizes sulfide. The oxidation causes titratable alkalinity to decrease and results in CO2 degassing.Diffusion models of salinity can account for the observed profiles but only as long as the marsh is maintained inundated. The complexities introduced to the solute transport equations by sediment desiccation invalidate steady-state modeling of solute transport and diagenesis. The concentration profiles of dissolved products of sulfate reduction, such as bicarbonate, require months to reestablish a steady state after being disrupted. If the profiles of dissolved products of sulfate reduction are disrupted seasonally, such as by a seasonal fluctuation in the water table, they may remain transient throughout the year.  相似文献   

3.
孙云明  宋金明 《地质论评》2001,47(5):527-534
海洋沉积物中的N和P随沉积物的粒度由粗到细,含量逐渐升高,而Si则降低;积物中N、P、Si的含量还随海区、输入源、季节、动力学过程及生物生产过程不同而变化.控制海洋沉积物-海水界面N、P、Si沉积、释放及循环的因素,包括有机质和溶解氧的浓度、有机质中C、N、P、Si的相对比例、沉积物-海水界面附近的氧化还原环境、生物扰动、温度、水深、pH值、不同形态S的浓度、金属离子以及水动力条件等.一般其综合作用的表现是,沉积物-海水界面之间NH+4、PO3-4和Si(OH)4从沉积物向上覆水扩散转移,而硝酸盐和亚硝酸盐的通量方向相反,通量的大小随着海区的不同差别较大.  相似文献   

4.
This study examined the removal of U, Mo, and Re from seawater by sedimentary processes at a shallow-water site with near-saturation bottom water O2 levels (240-380 μmol O2/L), very high organic matter oxidation rates (annually averaged rate is 880 μmol C/cm2/y), and shallow oxygen penetration depths (4 mm or less throughout the year). Under these conditions, U, Mo, and Re were removed rapidly to asymptotic pore water concentrations of 2.2-3.3 nmol/kg (U), 7-13 nmol/kg (Mo), and 11-14 pmol/kg (Re). The depth order in which the three metals were removed, determined by fitting a diffusion-reaction model to measured profiles, was Re < U < Mo. Model fits also suggest that the Mo profiles clearly showed the presence of a near-interface layer in which Mo was added to pore waters by remineralization of a solid phase. The importance of this solid phase source of pore water Mo increased from January to October as the organic matter oxidation rate increased, bottom water O2 decreased, and the O2 penetration depth decreased. Experiments with in situ benthic flux chambers generally showed fluxes of U and Mo into the sediments. However, when the overlying water O2 concentration in the chambers was allowed to drop to very low levels, Mn and Fe were released to the overlying water along with the simultaneous release of Mo and U. These experiments suggest that remineralization of Mn and/or Fe oxides may be a source of Mo and perhaps U to pore waters, and may complicate the accumulation of U and Mo in bioturbated sediments with high organic matter oxidation rates and shallow O2 penetration depths.Benthic chamber experiments including the nonreactive solute tracer, Br, indicated that sediment irrigation was very important to solute exchange at the study site. The enhancement of sediment-seawater exchange due to irrigation was determined for the nonreactive tracer (Br), TCO2, , U and Mo. The comparisons between these solutes showed that reactions within and around the burrows were very important for modulating the Mo flux, but less important for U. The effect of these reactions on Mo exchange was highly variable, enhancing Mo (and, to a lesser extent, U) uptake at times of relatively modest irrigation, but inhibiting exchange when irrigation rates were faster. These results reinforce the observation that Mo can be released to and removed from pore waters via sedimentary reactions.The removal rate of U and Mo from seawater by sedimentary reactions was found to agree with the rate of accumulation of authigenic U and Mo in the solid phase. The fluxes of U and Mo determined by in situ benthic flux chamber measurements were the largest that have been measured to date. These results confirm that removal of redox-sensitive metals from continental margin sediments underlying oxic bottom water is important, and suggest that continental margin sediments play a key role in the marine budgets of these metals.  相似文献   

5.
Much of the sedimentary geochemistry of iodine has been surmised from analyses of solid phase distributions without direct documentation of reactions or reaction rates. It is shown here that the anoxic production rate of dissolved I in nearshore terrigenous sediments decreases rapidly below the sediment-water interface and is strongly temperature controlled. An apparent activation energy of ~19.3 Kcal/mole comparable to that found for other microbially mediated reactions, describes the temperature dependence of release. Production of dissolved iodide is zeroth order with respect to natural ranges of pore water concentrations and apparently first-order with respect to a reactive I component in the solid phase. First order reaction coefficients in sediments from Mud Bay, South Carolina and Long Island Sound, Connecticut, U.S.A., are strongly depth dependent, varying from ~6.9/yr in the top few centimeters to an average of ~0.011/yr over the upper 70 cm. About 90% of the dissolved I flux comes from the top 10 cm with estimated values of ~ 15 and 29 μmoles/m2/day at 22–23°C in Mud Bay and Long Island Sound, respectively. The I/C net release ratio of decomposing material changes rapidly below the sediment surface. When temperature corrections are made, I remineralization rates from nearshore sediments below the bioturbated zone appear to be similar to those observed in deep water sediments underlying oxygenated waters.  相似文献   

6.
The seafloor is the site of intense biogeochemical and mineral dissolution-precipitation reactions which generate strong gradients in pH near the sediment-overlying water interface. These gradients are usually measured in one-dimension vertically with depth. Two-dimensional pH distributions in marine sediments were examined at high resolution (65 × 65 μm pixel) and analytical precision over areas of ∼150 to 225 cm2 using a newly developed pH planar fluorosensor. Dramatic three-dimensional gradients, complex heterogeneity, and dynamic changes of pH occur in the surficial zone of deposits inhabited by macrofauna. pH can vary by ±2 units horizontally as well as vertically over millimeter scales. pH minima zones often form in association with redoxclines within a few millimeters of inner burrow walls, and become more pronounced with time if burrows remain stable and irrigated for extended periods. Microenvironmental pH minima also form locally around decaying biomass and relict burrow tracks, and dissipate with time (∼5 d). H+ concentrations and fluxes in sandy mud show complex acid-base reaction distributions with net H+ fluxes around burrows up to ∼12 nmol cm−2 d−1 and maximum net reaction rates varying between −90 (consumption) to 120 (production) μM d−1 (∼90 nmol cm−1 d−1 burrow length). Acid producing zones that surround irrigated burrows are largely balanced by acid titration zones along inner burrow walls and outer radial boundaries. The geometry and scaling of pH microenvironments are functions of diagenetic reaction rates and three-dimensional transport patterns determined by sediment properties, such as diffusive tortuosity, and by benthic community characteristics such as the abundance, mobility, and size of infauna. Previously, undocumented biogeochemical phenomena such as low pH regions associated with in-filled relict biogenic structures and burrowing tracks are readily demonstrated by two-dimensional and time-dependent images of pH and sedimentary structure.  相似文献   

7.
Activity profiles of excess 234Th, excess 210Pb, 232Th, 230Th, 234U and 238U, and 228/232Th ratios determined in eight box cores of sediment from six sites in central Puget Sound provide new insights into the dynamic nature of solid phase mixing in surface sediments, the exchange of 228Ra and other soluble species across the sediment-water interface, and the cycling of U, Th and 210Pb in this coastal zone.Comparison of excess 234Th inventories in sediments with its production rate in the overlying water column indicates a mean residence time of at most 14 days for particles in the central Puget Sound water column.Surface sediment horizons with excess 234Th have no excess 228Th which might be used to ascertain sediment accumulation rates over the past decade. Instead, deficiencies of 228Th due to loss of soluble 228Ra from pore water to the overlying water persist to 20–30 cm, revealing that exchange of soluble chemicals between pore and overlying waters reaches these depths in the extensively bioturbated sediments of Puget Sound.Solid phase U isotope concentrations tend to increase by up to a factor of two with depth in sediments, as a result of dissolved U being biologically pumped down into sediments where it is partially removed when conditions become mildly reducing. 232Th and 230Th activities and 230/232Th ratios are constant with depth in sediments, indicating constant detrital phase compositions and essentially no authigenic 230Th. Steady state 210Pb depositional activities in and fluxes to Puget Sound sediments average only about onehalf those for sediments of the open Washington coast north of the Columbia River mouth, primarily because of a much lower supply of dissolved 210Pb in sea waters adverting into Puget Sound.Excess 234Th profiles in sediments reveal much more detail about the depth dependency, dynamic nature and recent history of solid phase mixing processes than excess 210Pb profiles. At least six of eight 234Th profiles show that mixing within the 210Pb-defined surface mixed layer is depth dependent. In three profiles, 234Th-derived mixing rates are fastest several centimeters below the sediment-water interface, indicating greater macro-benthic activity at these depths. Depth dependent mixing coefficients derived from the best fit of a four layer, advection-diffusion-decay model to the 234Th data are consistent with 210Pb profiles determined for the same sediments, strongly suggesting that 234Th and 210Pb are mixed equivalently and in a multilayered manner.  相似文献   

8.
Estuarine and coastal marine sediment-water fluxes are considered to be important ecological features, but a global-scale assessment has yet to be developed. Goals of this work were to assemble a global-scale database of net sediment-water flux measurements, examine measurement techniques, characterize the geographic distribution and magnitude of sediment fluxes, explore the data for controls on sediment flux magnitude, and assess the importance of sediment fluxes in ecosystem-level metabolism and primary production. We examined 480 peer-reviewed sources and found sediment flux data for 167 estuarine and coastal systems. Most measurements were made in North America, Europe, and Australia. Fluxes varied widely among systems, some by several orders of magnitude. Inter-annual variability within sites was less than an order of magnitude but time series flux data to evaluate this were rare. However, limited time series data exhibited large and rapid responses to decreased external nutrient loading rates, climate change effects (possible temperature effects), and variability in trophic conditions. Comparative analyses indicated organic matter supply to sediments set the upper limits of flux magnitude, with other factors playing secondary roles. Two metrics were developed to assess ecosystem-level importance of sediment-water fluxes. Sediments represented 30% or more of depth-integrated rates of aerobic system respiration at depths of <10 m. An annual phytoplankton production data set was used to estimate N and P demand; sediments supplied an average of 15–32% of N and 17–100% of P demand and, in some cases, was as large or larger than external nutrient inputs. The percent of demand supplied by sediments was highest in temperate latitudes and lower in high and tropical latitudes.  相似文献   

9.
Pore water profiles of dissolved Si, Ca2+, SO42-, CH4, and TCO2 (Dissolved Inorganic Carbon; DIC) were determined from multicores and gravity cores collected at nine sites off Southern California, the west coast of Mexico, and within the Gulf of California. These sites were located within the eastern North Pacific oxygen minimum zone at depths of 400 to 900 m and in settings where bottom water oxygen concentrations were <3 μM and sediments were laminated. Pore water profiles were defined at a resolution of millimeters (whole core squeezing), centimeters (sectioning and squeezing) and meters (gravity core sectioning and squeezing), and diffusive fluxes were calculated for different zones within the sediment column. The flux of dissolved silica across the sediment-water interface (SWI) ranged from 0.3 to 3.4 mmol Si m-2d-1, and TCO2 fluxes ranged from 0.8 to 4.6 mmol C m-2d-1. A positive correlation (r = 0.74) existed between these fluxes, yet these two constituents exhibited significantly different diagenetic behavior downcore; dissolved Si generally reached a constant concentration (between 450 and 900 μM) in the upper few cm, whereas TCO2 concentrations increased monotonically with depth.Methane was detected at micromolar levels in sediment intervals between 0 and 60 cm and at five sites, increased to millimolar levels at depths of 80 to 170 cm. At the horizon marking the appearance of millimolar levels of methane, there was a distinct change in slope of the sulfate and TCO2 gradients. A flux budget for this horizon was determined by using linear fits to pore water profiles; these budgets indicate that the upward TCO2 flux away from this horizon is 40 to 50% greater than the downward sulfate flux to this horizon. Given that the TCO2 flux to this horizon from below was quite small, this imbalance suggests that anaerobic oxidation of methane by sulfate is not the only process producing TCO2 within this horizon. A budget for TCO2 at this horizon is balanced when 40 to 80% of the sulfate flux is attributed to organic carbon remineralization. Of the DIC that diffuses across the SWI, 20 to 40% is generated by reactions occurring within or below this deep reaction horizon.  相似文献   

10.
We present data for dissolved germanic and silicic acids from several settings: sediment pore water profiles collected from the Peru-Chile continental margin, fluxes measured with in situ benthic flux chambers and shipboard whole-core incubations, and water column profiles from the California continental margin. Collectively, these data show that Ge and Si are fractionated in these continental margin sedimentary environments during diagenesis with ∼50% of the Ge released by opal dissolution being sequestered within the sediments. The areal extent of this diagenetic fractionation covers station depths from ∼100 m to >1000 m. Sediments from these sites typically have high pore water Fe2+ present in the upper ∼2 cm. At sites with low Fe2+ concentrations in the upper pore waters, the Ge:Si benthic regeneration ratio indicates little or no fractionation during diatom dissolution. Consistent with the sedimentary fractionation, water column dissolved Ge:Si ratios along the continental margin are on average lower (0.66 μmol/mol) than the global average ratio (0.72 μmol/mol, Mortlock and Froelich, 1996). This lower “average” ratio is driven by two distinct ΔGe:ΔSi data trends having similar slopes but different intercepts. Data from the upper ∼150 m has a Ge:Si slope of 0.74 ± 0.04 μmol/mol (2σ) and an intercept of 0.5 ± 0.4; whereas below ∼550 m the slope is 0.70 ± 0.06 μmol/mol, but the intercept is −5.0 ± 8.0. Assuming that the sediments sampled here are representative of all reducing marine environments, an assumption requiring further testing, our calculations indicate that sequestration of Ge into a nonopal phase throughout the global ocean in the depth range 0.2-1 km is sufficient to balance the Ge budget. Thus, we tentatively conclude that sequestering of Ge in reducing continental margin sediments is the “missing” Ge sink.  相似文献   

11.
Early diagenesis affects the distribution of solutes and minerals in unconsolidated sediments. The investigation of diagenesis is critical to understanding the geochemical transformation and benthic fluxes of elements. During the cruise mission SO-177 in 2004, gravity coring samples were recovered in the Haiyang 4 Area of the northern slope of the South China Sea (SCS). The geochemical concentrations in interstitial water were determined onboard. The 1D C.CANDI reactive transport software was used to model the early diagenesis processes at four sites: 56-GC-3, 70-GC-9, 94-GC-11, and 118-GC-13. All of the simulations reproduced concentration profiles that matched the measurements with the implemented geochemical reactions. The degradation of organic carbon and anaerobic oxidation of methane (AOM) primarily determine the distribution of solutes in the working area. The degradation is active in the top 150 cm, and AOM is vigorous at depths below 200 cm. The local advective flux, sediment rate, and kinetic reaction constants of organic matter, methane and sulfate were calibrated based on the existing concentrations of pore water solutes. Geochemical reactions in this area occur in considerably deeper layers compared to depths cited in the literature. The model results provide evidence for the existence of deep hydrocarbon reservoirs that provide methane to the upper sediments.  相似文献   

12.
The release of remineralized N and P from the organic-rich anoxic sediments of Cape Lookout Bight is controlled by processes occurring within the sediment column and at the sediment-water interface. The relatively rapid rates of temperature dependent microbial degradation of organic matter support seasonally varying nutrient fluxes ranging from 20 to 1200 μmol·m?2·hr?1 for dissolved ammonium and from ? 20 to 120 μmol·m?2·hr?1 for total dissolved phosphate (measured in situ over the period October, 1976 to October, 1978). Molecular diffusion along steep vertical pore water concentration gradients measured simultaneously cannot explain the high fluxes observed during warmer months. Gradients for ammonium and phosphate ranged from 0.33 to 1.10 and from 0 to 0.29 μmol·cm?3pw·cm?1s respectively. These high summertime fluxes appear to result from increased sediment-water transport associated with bubble tubes created and maintained by low-tide methane gas bubble ebullition. When these tubes are present, apparent bulk sediment diffusivities calculated from concurrent studies of methane and radon-222 sediment-water exchange are 1.0–3.1 times greater than molecular diffusivities. Nutrient fluxes calculated via Fick's first law taking into account this enhanced transport and the differential diffusive mobilities of dissolved ammonium, phosphate and phosphate ion pairs indicate that removal by aerobic adsorption and/or biological uptake at the sediment-water interface plays an important role in controlling nutrient exchange in these sediments.  相似文献   

13.
14.
Numerous studies of marine environments show that dissolved organic carbon (DOC) concentrations in sediments are typically tenfold higher than in the overlying water. Large concentration gradients near the sediment–water interface suggest that there may be a significant flux of organic carbon from sediments to the water column. Furthermore, accumulation of DOC in the porewater may influence the burial and preservation of organic matter by promoting geopolymerization and/or adsorption reactions. We measured DOC concentration profiles (for porewater collected by centrifugation and “sipping”) and benthic fluxes (with in situ and shipboard chambers) at two sites on the North Carolina continental slope to better understand the controls on porewater DOC concentrations and quantify sediment–water exchange rates. We also measured a suite of sediment properties (e.g., sediment accumulation and bioturbation rates, organic carbon content, and mineral surface area) that allow us to examine the relationship between porewater DOC concentrations and organic carbon preservation. Sediment depth-distributions of DOC from a downslope transect (300–1000 m water depth) follow a trend consistent with other porewater constituents (ΣCO2 and SO42−) and a tracer of modern, fine-grained sediment (fallout Pu), suggesting that DOC levels are regulated by organic matter remineralization. However, remineralization rates appear to be relatively uniform across the sediment transect. A simple diagenetic model illustrates that variations in DOC profiles at this site may be due to differences in the depth of the active remineralization zone, which in turn is largely controlled by the intensity of bioturbation. Comparison of porewater DOC concentrations, organic carbon burial efficiency, and organic matter sorption suggest that DOC levels are not a major factor in promoting organic matter preservation or loading on grain surfaces. The DOC benthic fluxes are difficult to detect, but suggest that only 2% of the dissolved organic carbon escapes remineralization in the sediments by transport across the sediment-water interface.  相似文献   

15.
Nutrient fluxes and primary production were examined in Lake Illawarra (New South Wales, Australia), a shallow (Zmean=1.9 m) coastal lagoon with a surface area of 35 km2, by intensive measurement of dissolved nutrients and oxygen profiles over a 22-h period. Rates of primary production and nutrient uptake were calculated for the microphytobenthos, seagrass beds, macroalgae, and pelagic phytoplankton. Although gross nutrient release rates to the water column and sediment pore waters were potentially high, primary production by microphytobenthos rapidly sequesters the re-mineralized nutrients so that net releases, averaged over times longer than a day, were low. Production in the water column was closely coupled with the relatively low sediment net nutrient release rates and detrital decomposition in the water column. Dissolved inorganic nitrogen and silica concentrations in the water column are drawn down at the beginning of the day. The system did not appear to be light limited so photosynthesis occurs as fast as the nutrients become available to the phytoplankton and microphytobenthos. We conjecture that microphytobenthos are the dominant primary producers and, as has been shown previously, that the nutrient uptake occurs in phase with the various stages of the diatom growth.  相似文献   

16.
Irrigation by benthic macrofauna has a major influence on the biogeochemistry and microbial community structure of sediments. Existing quantitative models of bioirrigation rely primarily on chemical, rather than ecological, information and the depth-dependence of bioirrigation intensity is either imposed or constrained through a data fitting procedure. In this study, stochastic simulations of 3D burrow networks are used to calculate mean densities, volumes and wall surface areas of burrows, as well as their variabilities, as a function of sediment depth. Burrow networks of the following model organisms are considered: the polychaete worms Nereis diversicolor and Schizocardium sp., the shrimp Callianassa subterranea, the echiuran worm Maxmuelleria lankesteri, the fiddler crabs Uca minax, U. pugnax and U. pugilator, and the mud crabs Sesarma reticulatum and Eurytium limosum. Consortia of these model organisms are then used to predict burrow networks in a shallow water carbonate sediment at Dry Tortugas, FL, and in two intertidal saltmarsh sites at Sapelo Island, GA. Solute-specific nonlocal bioirrigation coefficients are calculated from the depth-dependent burrow surface areas and the radial diffusive length scale around the burrows. Bioirrigation coefficients for sulfate obtained from network simulations, with the diffusive length scales constrained by sulfate reduction rate profiles, agree with independent estimates of bioirrigation coefficients based on pore water chemistry. Bioirrigation coefficients for O2 derived from the stochastic model, with the diffusion length scales constrained by O2 microprofiles measured at the sediment/water interface, are larger than irrigation coefficients based on vertical pore water chemical profiles. This reflects, in part, the rapid attenuation with depth of the O2 concentration within the burrows, which reduces the driving force for chemical transfer across the burrow walls. Correction for the depletion of O2 in the burrows results in closer agreement between stochastically-derived and chemically-derived irrigation coefficient profiles.  相似文献   

17.
18.
发生在沉积物-水界面的剧烈生物地球化学作用对沉积物和上覆水体具重要的环境效应,然而此方面研究很少。本文通过云贵高原四个湖泊湖水和孔隙水NH和NO剖面,沉积物柱芯不同结合态氮含量剖面分布,界面扩散通量,影响氮循环的因素及它们季节性变化规律等的对比研究,初步揭示了湖泊沉积物一水界面的氮循环及其环境效应。  相似文献   

19.
Pore water samplers with high vertical resolution were used to evaluate the response of sediment redox geochemistry during transient hydrologic conditions at Lake Powell, a large reservoir in Utah and Arizona, USA. Samplers were deployed at two different yet proximal shoreline locations, White and Farley Canyons, before and after exposure of sediment to air and subsequent resubmersion, which resulted from fluctuations in the water level of the reservoir. Before exposure to air, an observed increase in dissolved Mn concentrations and, at Farley Canyon, an observed decrease in dissolved U concentrations across and immediately below the sediment–water interface indicated reducing conditions in the sub-surface. After exposure and resubmersion of the sediment, pore water profiles at each site differed distinctly from those observed before the fluctuation in water level. At White Canyon, an increase in U concentrations and a decrease in Mn concentrations in pore water after exposure and subsequent resubmersion are suggestive of oxidative processes occurring during the period of sediment exposure. Data from Farley Canyon suggest that the same processes may be occurring, but to a lesser extent. Depth profiles of As and Pb were also examined, but were relatively featureless compared to those of Mn and U. At both sites, sediment evaluated for pore water chemistry in the second sampling was only fully resubmerged for 2–5 days prior to the second sampling event, yet reducing conditions were clearly evident in the Mn pore water profiles. This suggests that the dynamics of the biogeochemical processes occurring in surface sediment at Lake Powell are responsive on the timescale defined by the fluctuating water levels in the reservoir.  相似文献   

20.
Chemical erosion in glacial environments is normally a consequence of chemical weathering reactions dominated by sulphide oxidation linked to carbonate dissolution and the carbonation of carbonates and silicates. Solute fluxes from small valley glaciers are usually a linear function of discharge. Representative glacial solute concentrations can be derived from the linear association of solute flux with discharge. These representative glacial concentrations of the major ions are 25% of those in global river water. A 3-D thermomechanically coupled model of the growth and decay of the Northern Hemisphere ice sheets was used to simulate glacial runoff at 100-year time steps during the last glacial cycle (130 ka to the present). The glacially derived fluxes of major cations, anions and Si over the glaciation were estimated from the product of the glacial runoff and the representative glacial concentration. A second estimate was obtained from the product of the glacial runoff and a realistic upper limit for glacial solute concentrations derived from theoretical considerations. The fluxes over the last glacial cycle are usually less than a few percent of current riverine solute fluxes to the oceans. The glacial fluxes were used to provide input to an oceanic carbon cycling model that also calculates changes in atmospheric CO2. The potential change in atmospheric CO2 concentrations over the last glacial cycle that arise from perturbations in glacial solute fluxes are insignificant, being <1 ppm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号