首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three cores, one kilometer apart, from each of seven locations along Lake Erie were analyzed for heavy metals and dated by 210Pb techniques. The sedimentary record of anthropogenic inputs of heavy metals parallels the increasing intensity of cultural activity in the lake basin. On the average, pollution sources annually contribute 0.4 μg of Cd, 12 μg of Cu, 12 μg of Pb and 36 μg of Zn deposited per each cm2 of the Eastern Basin sediments: 0.5, 8.8, 11 and 31 μg of Cd, Cu, Pb and Zn, respectively, deposited per cm2 of Western Basin sediments and 0.7, 1.4, 2.0 and 5.6 μg of Cd, Cu, Pb and Zn, respectively, deposited per cm2 of fine-grained sediments in the Central Basin. These anthropogenic flux rates exceed the pre-colonial data by 80–600%. The mean flux rates for 210Pb into the Eastern. Central and Western Basins are 0.45, 0.07 and 0.15dpm cm?2 yr?1. respectively. From an inventory of sources and sinks of the metals, it is shown that about 2500 × 103 kg of Cu. 1900 × 103 kg of Pb and 6750 × 103kg of Zn are delivered annually into the lake. The calculated retention in the lake sediments of 45%, 65% and 35% of the total annual inputs of Cu. Pb and Zn, respectively, agrees closely with the accumulation of data derived from sediment analyses. Sewage discharges, direct and indirect, are shown to be an important source of metal in the lake. The mean residence times in the water column are inferred to be 104 days for Cu. 180 days for Pb and 152 days for Zn.  相似文献   

2.
Sedimentation rates were determined by210Pb in three sediment cores from the main basin of Lake Constance. Rates vary from 0.094 to 0.133 g cm?2y?1, in agreement with previous determinations. A constant radionuclide flux (CR) model reveals long-term, quasi-synchronous fluctuations of sedimentation rate on the basin-wide scale. On average, the rate of sedimentation remains much the same from the beginning of this century indicating little effect of human activity in the watershed on fine-silt sediment supply. The anthropogenic fluxes of Zn, Pb, and Cd in the three cores are compared and the application of210Pb as a heavy metal tracer in Lake Constance is examined. It seems to be a very good tracer for Pb, moderately good for Zn and Cu, and not useful for Cd.  相似文献   

3.
Sedimentation rates were determined with the 210Pb method in eight sediment cores from Lake Constance. The rate of deposition in the main basin (Obersee) varies from about 0.06 g cm?2 y?1 in the central part to 0.13 g cm?2 y?1 in the eastern part of the lake and then increases rapidly towards the Rhine delta. In the central lake area the rate of deposition has been approximately constant since 1900, and dating with the 210Pb method is in good agreement with sedimentological observations. In the Konstanzer Trichter area, the deposition rate has been increasing since about 1955 as a result of eutrophication and subsequent high carbonate production. Dating with 137Cs is fairly accurate for sediments deposited at a high rate, but is questionable for slowly accumulating ones. A positive correlation of 210Pb fluxes and sedimentation rates indicates that 210Pb flux into sediments follows the distribution pattern of solids. 210Pb profiles in four sediment cores interpreted in terms of a constant flux model display synchronous fluctuations of the sedimentation rate; however, their relation to long-range particulate input variations remains to be proved. Sedimentation rates determined with the 210Pb method were used to calculate recent nutrient and heavy metal fluxes. Anthropogenic fluxes of Zn and Pb are in the same range of magnitude as in other polluted areas in Europe and America.  相似文献   

4.
Sediment accumulation rate studies utilizing excess 210Pb and 137Cs were conducted as part of recent investigations of biogeochemical cycling at a single site in Cape Lookout Bight, a rapidly changing coastal basin on the Outer Banks of North Carolina (U.S.A.). Cores three meters in length reveal a depositional history for the bight interior characterized by a gradual transition in texture from coarse-grained to fine-grained material over the period 1946–1979. This transition is controlled by progressive enclosure of the bight by an active northerly migrating recurved spit. The textural gradation is periodically interrupted by layers of well-sorted sand associated with major storm events. Lead-210 data indicate that the upper meter of the sediment has accumulated at a rate of 3.35 to 4.71 g · cm?2 · yr?1 or approximately 8.4 to 11.8 cm · yr?1 (at ø = 0.84). Below 120 cm depth, dilution of clay and silt by low activity sand necessitates correction of the 210Pb profile in order to establish a geochronology. Grain size 210Pb distribution measurements at three depths reveal that the specific activity (dpm · g?1) of clay is 3.2 times that of silt and 24.7 times that of sand. Corrections of bulk sediment excess 210Pb activities based on these measurements lead to dates for textural changes which are consistent with charted changes in basin morphology and major storm events.Sixteen 137Cs measurements between 33–241 cm depth reveal a peak activity at 105–115 cm and indicate a minimum sedimentation rate of approximately 2.7 g · cm?2 · yr?1.  相似文献   

5.
The distribution of 210Pb, 137Cs, and Ambrosia (ragweed) pollen in two sediment cores from Lake Ontario and in three cores from Lake Erie provides independent estimates of sediment accumulation rates. Geochronology with 210Pb is based on radioactive decay of the isotope following burial in sediments. The method can reveal with precision changes in sedimentation occurring over the past 100 yr or so. Geochronologies with 137Cs and Ambrosia are based on the occurrence of a horizon corresponding, respectively, to the onset of nuclear testing 25 yr ago and to regional forest clearance in the middle 1800s. These methods provide estimates of long-term average sediment accumulation rates. In all but one core, the distributions of 137Cs and 210Pb indicate no physical mixing of near-surface sediments. In two cores, including one from central Lake Erie collected by diver, all three estimates of sedimentation rates are in excellent agreement. In two other cores, rates based on 210Pb are significantly higher than those inferred from Ambrosia pollen profiles. Lower average rates appear to result from occasional massive losses of sediments. Such events, apparent in the distribution of 210Pb but not in pollen records, correlate with the occurrence of major storm surges on the lakes during this century. In one core from western Lake Erie, exponential distributions of both 210Pb and Ambrosia appear to be artifacts which may result from extensive biological or physical reworking of sediments in shallow water (11 m). Previous indications of increased sedimentation in Lake Erie since about 1935 based on Castanea (chestnut) pollen data are not substantiated.  相似文献   

6.
In this paper210 Pb and 137Cs dating methods were used to determine sedimentation rates of lakes Dianchi, Erhai and Poyanghu, and to establish the time scale of the sediments. Also based on geochemical records in the sediment column, the historical variation in heavy metal content over the past one hundred years was determined. Some element concentration increased rapidly after the 1970s, such as Cu, Zn and Mn in the sediments of northern Lake Dianchi, Cd and Mn in southern Lake Erhai and in the west central parts of Lake Poyanghu, Our investigations indicate that the increase in element concentration is caused by human activities. In order to understand the extent of the effect caused by human activities, we have calculated the flux of Zn, Cd and Mn. Results show that the flux caused by human activities is seven times greater than the natural one and the ratio is about 2 times in Lake Erhai and Lake Poyanghu.  相似文献   

7.
Multiple sediment cores were collected in June 1994 in the turbidity maximum zone of the Hudson River estuary off Manhattan, New York. Results from X-radiography of the sediments and measurements of natural radionuclides (234Th,7Be, and210Pb) and trace metals (Ag, Cd, Cu, Pb, and Zn) show significant spatial variability of sediment composition and structure and patchy distributions of radionuclides activities and trace metal concentrations in this small area (0.6 km × 0.5 km). Radionuclide and trace metal analyses confirm prior work (Olsen et al. 1978; Olsen et al. 1981; Hirschberg et al. 1996) that show the western margin area of the river acts as a repository of these chemical constituents at least for the short-term period (0.5–1 yr), and the mid-channel area is not a depositional area for sediments and associated chemical constituents.7Be profiles reveal short-term sediment deposition rates ranging from 6 cm yr?1 to 26 cm yr?1 in the western margin area. Significant spatial variations in excess234Th and7Be inventories (up to a factor of 10 and 5 for234Th and7Be, respectively) are found in the western margin depositional area, although the inventories are balanced, on average, with in situ production in water column and atmospheric supply. The spatial variation of surficial excess210Pb and trace metal concentrations in depositional areas of the western margin are ≤10% for Ag, Cu, Pb, and Zn and 29% for Cd. However, the variations in the transition zone range from 28% to 93%. This variability is likely related to variations in tidal current velocity, bottom shear stress, and river channel morphology.  相似文献   

8.
《Applied Geochemistry》1998,13(1):59-75
Sediment cores were collected from depositional basins in lakes Michigan, Ontario and Superior to assess spatial and temporal variations in Cu accumulation rates and inventories. Sediment chronologies were determined via 210Pb dating, and 210Pb inventories were used to correct for the effects of sediment focusing. Among the lakes studied, Cu loading histories generally decrease to the present, signifying a regional reduction in the anthropogenic release of Cu to the environment. Focusing-corrected Cu accumulation rates in surficial sediments vary significantly within lakes Michigan and Ontario, suggesting that recent inputs of Cu to these 2 lakes may have been dominated by localized sources. Variations in Cu accumulation rates within Lake Superior are interpreted to be insignificant, suggesting either that Lake Superior is well-mixed with respect to copper inputs or that the lake is dominated by a single source for Cu. Recent measurements of atmospheric fluxes of Cu within the Great Lakes region generally indicate that the atmosphere accounts for less than 50% of the Cu accumulating in surficial sediments. Historical Cu accumulation rates from Lake Superior are poorly correlated with Cu production associated with local smelters, but favorably agree with national production rates. Trends in historical Cu accumulation rates within all 3 lakes may indicate that recent declines in Cu loading can be attributed to the enactment of stricter environmental regulations as well as changes in the use of Cu. Focusing-corrected Cu inventories in lakes Michigan, Ontario, and Superior are generally invariant within a given lake, indicating that, historically, these lakes have been dominated either by a single source or were well-mixed with respect to Cu inputs. The disparity between the results from recent accumulation rates and historical inventories may reflect differences in how the Great Lakes respond to contaminant loading on short (e.g. years) versus long (e.g. decades) timescales.  相似文献   

9.
The lakes of the Himalaya are degrading due to increase in toxic heavy metal loading. This study reports the last 50-year heavy metal pollution loading in the Rewalsar Lake, Himachal Pradesh, India. Sediment cores were recovered to study the pollution loading in the lake sediments. The 137Cs and 210Pb isotope-based sedimentation rate suggest rapid sedimentation in the lake during the last ~50 years. The concentrations of Mn, Cu, Zn, Cd, Pb, Co, Ni, Cr metals in the lake sediments owe its contributions both to the natural and anthropogenic sources. Prior to ca 1990 AD, metal loading was dominated by the lithogenic input, whereas post ca 1990 AD the metal loading was controlled by the anthropogenic factors. The Pb concentration in the lake gradually increased during 1990–2004 and then decreased significantly till present. The higher concentration of Pb seems to be derived from the fossil fuel burning, while the Cr concentration in the lake indicates the use of fertilizer in the catchment area. The lowest concentrations of elements around ca 1990 AD seem to have occurred due to channelization of the lake feeding system.  相似文献   

10.
In Fayetteville Green Lake, past sedimentation rates can be accurately and precisely estimated by separating annual couplets or varves in dried sediment samples. Two measures were used, which serve as upper and lower limits on estimated sedimentation rate. They agree within 5 % with average annual sedimentation rate in couplets for recent years. Between 3 and 5 replicate samples are needed to reduce the half-width of 95 % confidence intervals on individual couplet sedimentation rates to 30 g m?2 yr?1 about 5 % of average recent rates. In the late 1800s sedimentation rate averaged 392 g m?2 yr?1 and ranged between 324 and 466 g m?2 yr?1, while in the 1970s the rate averaged 581 g m?2 yr?1 by the same measure, and ranged between 384 and 646 g m?2 yr?1. Sedimentation rate averaged for 13 years does not vary over short distances in the profundal zone, but lateral variation in sedimentation rate can be detected for individual years over the same distance. Not all this variation was associated with the non-uniform distribution of dark sublaminae and thin turbidites which cannot be separated from the annual layers. This indicates that although precise estimates of sedimentation rates can be made at different points in the lake, estimates will have to be made at numerous points before annual sedimentation rates for the lake as a whole can be accurately assessed.  相似文献   

11.
Surface sediments of the Washington coast have 210Pb activites which average 104 ± 48dpm/g for submarine canyon and slope regimes and 18 ± 12dpm/g for the continental shelf regime. 210Pb sedimentary fluxes are also higher in canyons, averaging 18 ± 13dpm/cm2 per yr, compared to 5.2 ± 3.1 dpm/cm2 per yr for slope and 4.8 ± 1.8dpm/cm2 per year for shelf regions. These 210Pb activities and fluxes are 2–7 times greater than those reported for other coastal regions. Inputs from the atmosphere and the Columbia River are not sufficient to supply the 210Pb, but advection of seawater containing dissolved 210Pb produced in situ from 226Ra provides an input several times larger than the sedimentary fluxes. The sedimentary 210Pb flux is limited by scavenging reactions rather than by supply of dissolved 210Pb.Calculations of maximum biological uptake and fluxes of 210Pb and ‘selective’ chemical leaching experiments all show that the primary scavenging processes are due to hydrous Mn and Fe oxides rather than biological phases. The pattern of higher 210Pb depositional fluxes in canyons than in nearby open slope areas of comparable water depth is most reasonably explained by enhanced scavenging of dissolved 210Pb near the sea floor, rather than by processes operating throughout the water column. Relatively rapid removal of dissolved 210Pb from the near bottom nepheloid layer to slope and canyon sediments is shown by its mean residence time of less than two years in this layer.  相似文献   

12.
Many small estuaries are influenced by flow restrictions resulting from transportation rights-of-way and other causes. The biogeochemical functioning and history of such systems can be evaluated through study of their sediments. Ten long and six short cores were collected from the length of Jordan Cove, Connecticut, a Long Island Sound subestuary, and analyzed for stratigraphy, radionuclides (14C, 210Pb, 226Ra, 137Cs, and 60Co), and metals (Ag, Cd, Cu, Pb, Zn, Fe, and Al). For at least 3,800 yr, rising sea level has gradually inundated Jordan Cove, filling it with mud similar to that currently being deposited there. Long-term sediment accumulation in the cove averaged close to 0.1 cm yr−1 over the last three millennia. Recent sediment accumulation rates decrease inland from 0.84 cm yr−1 to 0.40 cm yr−1, and are slightly faster than relative sea-level rise at this site (0.3 cm yr−1). Similarity of depth distributions of trace metals was used to confirm relative sediment accumulation rates. 60Co and Ag are derived from sources outside the cove and its watershed, presumably the Millstone nuclear power plant and regional contaminated sediments, respectively. The combined data suggest that Long Island Sound is an important source of sediment to the cove; a minor part of total sediment is supplied from the local watershed. Trace metal levels are strongly correlated with Fe but not with either organic matter or Al. Sediment quality has declined in the cove over the past 60 yr, but only slightly. Cu, Pb, and Zn data correlate strongly with Fe but not with either organic matter or aluminum. Ratios of Ag to Fe and to trace metals suggest that Ag in the cove is derived almost entirely from Long Island Sound. This result supports the notion that Fenormalized Ag can serve as a better tracer of some kinds of contamination than more common and abundant metals, like Cu, Pb, and Zn. *** DIRECT SUPPORT *** A01BY085 00008  相似文献   

13.
Persistent inorganic constitutents preserved in sediments of aquatic ecosystems record temporal variability of biogeochemical functioning and anthropogenic impacts.210Pb and137Cs dating techniques were used to study the past variations of heavy metals (Pb, Cu, and Zn) and accumulation rates of sediments for Tivoli South Bay, in the Hudson River National Estuarine Research Reserve ecosystem. South Bay, a tidal freshwater embayment of the Hudson, may play an important role in the sediment dynamics of this important river. The measured sedimentation rate range of 0.59 to 2.92 cm yr−1 suggests that rapid accumulation occurred during the time period represented by the length of the cores (approximately the past 50 yr). Direct measurements of sediment exchange with the Hudson River reveal high variability in the sediment flux from one tidal cycle to the next. Net exchange does not seem to be adequate to explain sediment accumulation rates in the bay as measured by210Pb and137Cs. The difference may be supplied from upland streams or the Hudson River during storm events. Concentrations of the metals Pb, Cu and Zn were found to be well correlated with each other within individual cores at five of six sites tested. This suggests a common proximate source for the three metals at a specific site. The evidence is consistent with mixing in some environmental compartment before delivery to the bay. While metals self-correlate within individual cores, absolute concentrations, depth distribution patterns, and ratios of the metals to each other vary among the cores collected at different locations within the bay. Organic matter, Fe content, and particle size distribution of sediments do not account for the intercore variations in metal concentration. It is likely that cores collected from different sites may have derived metals from different sources, such as watershed streams and tidal exchange with the Hudson River.  相似文献   

14.
This paper describes the use of 210Pb and 137Cs radioactivity measurements to determine the rates of sedimentation in the Great Lakes. Cores from eight locations in Lake Michigan were chosen for examination to cover as wide as possible a range of sedimentation rates and representative sedimentary environments. The surficial 210Pb activity in the sediments varies between 7 and 23 pCi/g dry wt and its profile in each core shows the expected exponential decrease with depth consistent with the assumption of uniform sedimentation rate over the last hundred years and secular equilibrium between supported 210Pb and 226Ra (0.5-1.0 pCi/g dry wt). Companion measurements of 137Cs indicate that the coring technique satisfactorily recovered the uppermost levels of the deposit and that the mobility of both radionuclides within the sediment is probably small.Based on the limited number of cores analyzed to date, it appears that modern sedimentation rates are not very different from average rates for the last 7000 yr. The excess 210Pb appears to originate primarily from atmospheric fallout, but a further inventory of the 210Pb distribution over the lake bottom must be made to properly assess the significance of other sources. The spatial distributions of both 137Cs and 210Pb at certain stations suggest that the mode of transport of these radionuclides are comparable and involve attachment to settling particles. A mathematical model is developed which accounts for the observed limited mobility of both 210Pb and 137Cs in several of the cores in terms of post-depositional redistribution by physical or biological mixing processes.  相似文献   

15.
The rate of sedimentation and the source of sediments in the lake basins of Nainital region, Kumaun Himalaya, have been estimated employing210Pb and210Ra methods. This has yielded a rate of sedimentation of 11.5, 4.70, 3.72, and 3.00 mm/yr in Nainital, Bhimtal, Naukuchiyatal, and Sattal lakes, respectively. The higher rate of sedimentation in Nainital lake, compared to other lakes, is related to faster erosion in the catchment aided by greater anthropogenic activity, while the slowest rate in Sattal lake is due to less erosion and more input of soil-derived material involving a slow rate of accumulation.  相似文献   

16.
The vertical distribution of 210Pb and 210Po in the dissolved (<0.4 μm) and the paniculate (>0.4 μm) phases was measured in Crystal Lake, Wisconsin, to examine the spatial and temporal variability during the seasonal cycle of this oligotrophic lake. The concentration of unsupported 210Pb in the water column is maintained principally by atmospheric input. However, most of the 210Po in Crystal Lake is produced in situ from radioactive decay of 210Pb.Mass balance considerations indicated that the removal rates of 210Pb and 210Po from the water column to the sediment varied temporally by nearly an order of magnitude. During transient periods of high biological productivity, a large net flux of these nuclides into the sediment occurred. In addition, 210Pb was rapidly stripped from the water column during fall turnover. It was during these short-lived events that most of the annual net removal of 210Pb and 210Po occurred. The mean removal residence time was estimated to be 0.095 yr for 210Pb and 0.26 yr for 210Po. These residence times suggest that there is a difference between 210Pb and 210Po in the extent of their recycling in the water column. Calculations indicated that there was a cyclic response of the water column 210Po inventory corresponding to successive time periods where there was a net loss or net gain. This cycling is attributed to rapid biological removal and subsequent release from the sediment of freshly deposited 210Po. For 210Pb, replenishment of the water column appeared to occur mainly from atmospheric input.  相似文献   

17.
Two sediment cores (BO90/13b and BO90/17b) from Lake Constance were investigated by-spectrometry for210Pb,134Cs,137Cs,241Am,234Th, and other members of the238U decay chain. The sediments were dated using the constant-flux model for210Pb, and accumulation rates were determined. These range from 0.04 to 0.65g/cm 2/yr (BO90/13b) and 0.04 to 0.8g/cm 2/yr (BO90/17b), respectively. The mean accumulation rate amounts to 0.16g/cm 2/yr for both cores. The cores had already been dated by lamination counting and reconstruction of high-water events at the Limnological Institute at Constance, so that a very precise time scale was available. Both ages derived are in agreement within statistical error up to 1900, which means dating with the constant-flux model for210Pb was confirmed up to that age. The position of the maxima of bomb cesium and americium confirm the stratigraphic and210Pb datings. With241Am a further radioactive isotope is available, which can, due to the half-life of241Pu (t 1/2=14.4yr) be detected now by-spectrometry and can serve as an additional time indicator, the maximum being dated at 1963. By applying the various time scales, the depth profiles of stable lead and zinc of core BO90/13b were dated. Both heavy metals show a very significant maximum located beneath the layer of the maxima of bomb cesium and americium, showing that these maxima are older than those of the bomb isotopes. It is remarkable in this context that the maximum of zinc concentration occurs a little later than that of stable lead. Similar concentration profiles are observable in core BO90/17b and other, older sediment cores (CS6-CS10) on a transect across the lake. In contrast to a former assumption, the depth profile of stable lead in Lake Constance sediments does not reflect the anthropogenic gasoline lead emissions into the atmosphere for Germany, their maximum being dated at 1971.  相似文献   

18.
Sediment accumulation rates were estimated from-the vertical distribution of excess Pb-210 measured in sediment cores collected at seven stations in the Saguenay Fjord, Quebec. These rates decrease with increasing water depth and distance from the mouth of the Saguenay River, ranging from 4.0 g cm?2 yr?1 (~- 7 cm yr?1) near the head of the fjord to 0.07 g cm?2 yr?1 (~- 0.1 cm yr?1) in the deep inner basin of the fjord. In one core from the head of the fjord, layered sediment structures, having different physical characteristics and composition, appear related to recent, pulsed inputs of older raised marine deposits displaced by a landslide in 1971. Synchronous depositional anomalies in several cores provide evidence of other large scale sediment redistribution processes in the fjord. Pb-210 geochronologies are generally in good agreement with time-stratigraphic horizons inferred both from Cs-137 activity profiles and from the analysis of pollen assemblages in one core.  相似文献   

19.
The concentrations and physico-chemical states of 210Pb have been measured in Bikini Atoll and Washington State coastal waters, and 210Po in Washington coastal waters. Lead-210 concentrations of 113–133 dpm · m?3 were found in surface water collections near Bikini Atoll and 29–153 dpm · m?3 in Bikini Lagoon. The concentrations of 210Pb in near Bikini and in Washington State waters increased with depth in the upper 150m at a rate of 0.35–0.45dpm·m?3 · m?1. In the North Equatorial Current waters near Bikini Atoll 210Pb was found associated predominantly with the soluble (colloidal) fraction, but in Washington coastal waters 210Pb and 210Po were found associated with the paniculate (> 0.3 μm) fraction. The mean residence times of 210Pb, calculated from the atmospheric input to marine waters from precipitation and the concentrations measured in surface water, were consistent with the physico-chemical states of 210Pb found in samples collected in deep ocean and coastal waters. Approximate values of the mean residence times were calculated, for the upper 50 m, to be as follows: 58 days in the Strait of Juan de Fuca, 128 days at the 5-mile (8 km) station off Cape Flattery (Washington), 163 days at the 12-mile (19 km) station off Cape Flattery, and 2.6 yr near Bikini Atoll. It appears that 210Pb and 210Po can be used to trace particle removal rates in the upper layers of marine waters.  相似文献   

20.
A material balance is constructed for excess 210Pb (relative to 226Ra) as a test of the retentivity of Long Island Sound for a reactive heavy metal. Excess 210Pb is supplied to Long Island Sound chiefly by direct atmospheric deposition [1 ± 0.2(dis·min?1)cm?2·yr?1]. Rivers supply less than 20% of the atmospheric flux, and other inputs, from open ocean waters, 226Ra decay, groundwater seepage, and sewage discharge, appear to be negligible. The total input of excess 210Pb represents approximately the flux required to maintain the inventory of excess 210Pb measured in sediment cores from central Long Island Sound; that is, excess 210Pb is lost from Long Island Sound chiefly by radioactive decay. The retention of excess 210Pb within Long Island Sound is achieved in two steps: a rapid removal of soluble 210Pb onto suspended particles and the ongoing entrapment of particles in the basin by the residual bottom-water influx from the east.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号