首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract A suite of granulites including a meta-ironstone, pyroxenites, and spinel-lherzolites from East Tonagh Island, Enderby Land, Antarctica, preserve exsolution-recry-stallization features consistent with a shared metamorphic evolution that involves marked cooling from initial metamorphic temperatures of nearly 1000°C. Reintegrated pre-exsolution and pre-reaction grain compositions in the meta-ironstone indicate the former coexistence of metamorphic pigeonite (Wo12En38Fs50) and ferroaugite (Wo35En31Fs34) at temperatures in excess of 980°C for pressures of 7 kbar (0.7 GPa) using pyroxene quadrilateral thermometry (Lindsley, 1983). Intra-grain lamellae relationships indicate the exsolution of a second pigeonite (Wo12En35Fs53) from the ferroaugite at temperatures in the range 930–970°C, prior to the c. 720–600°C exsolution of orthopyroxene and clinopyroxene (100) lamellae and later partial recrystallization at similar temperatures. Although pyroxenitic and iherzolitic granulites preserve a much less complete history, reintegrated porphyroclast compositions in these yield temperature estimates which approach those inferred from the metaironstone. Pyroxene thermometry based on neoblast compositions suggests that recrystallization post-dating a late, low intensity, deformation phase (D3) occurred at temperatures greater than 600°C. These results are consistent with the independent evidence obtained from studies of metapelitic and felsic rock types for very high temperature metamorphism throughout the Napier Complex followed by near-isobaric cooling and later deformation under lower-grade granulite facies conditions. Comparison with similar pyroxene data from Fyfe Hills (Sandiford & Powell, 1986) demonstrates further the regional significance of these high temperatures, and implies broadly isothermal metamorphic conditions over a large area (~ 5000 km2) and thickness (6–9 km) of lower crust at c. 3070 Ma.  相似文献   

2.
Abstract Ganguvarpatti is part of a Precambrian terrane characterized by granulite facies rocks, including charnockites, mafic granulites, sapphirine-bearing granulites, leptynites and gneisses. A sequence of reactions deduced from the multiphase reaction textures provide information on the metamorphic history of this area, as they formed in response to decompression during uplift. Geothermobarometry and constraints from reaction textures define a segment of a P–T path traversed by the granulites of Ganguvarpatti. Near-peak metamorphic conditions of c. 800°C and 8 kbar were succeeded by a symplectitic stage at a significantly lower pressure ( c. 700°C and 4.5 kbar), documenting a nearly isothermal decompression P–T path and rapid uplift ( c. 12 km) followed by cooling. The presence of many fluid inclusions of extremely low density in the charnockites is consistent with a nearly isothermal uplift path. Attainment of a maximum pressure of c. 8 kbar indicates c. 27 km depth of burial during metamorphism. This would imply a total crustal thickness of c. 65–70 km at 2.6–2.5 Ga. Such a profound crustal thickness and a clockwise decompressive P–T path is interpreted as a consequence of tectonic thickening of crust, accomplished by collision tectonics of the southern granulite terrane against the Dharwar craton along the Palghat–Cauvery shear zone via northward subduction.  相似文献   

3.
Abstract Granulites at Fyfe Hills in Enderby Land, Antarctica, crystallized at temperatures in excess of 850°C, and possibly as high as 1000°C, and at pressures of 8-10kbar during the mid to late Archaean. A number of features, including repeated retrograde metamorphism at 5.5-8kbar, retrograde reaction textures, and rimward zoning in pressure sensitive systems, suggest that following peak metamorphism the granulites stabilized at a depth of 18-26 km. After stabilization, the granulites cooled near-isobarically to temperatures of 600-700°C. Assuming a total crustal thickness of 35-40 km during this late Archaean interval of isobaric cooling, the peak metamorphic crustal thickness is estimated at 35-56 km. This estimate is significantly less than the 60-70 km obtained by summing the depths of the present levels of exposure (26-34 km) and the thickness of the crust presently beneath Fyfe Hills (approxi-mately 35km) and is, therefore, consistent with independent evidence for extensive post-Archaean thickening of the Enderby Land crust.  相似文献   

4.
ABSTRACT Sequential reaction textures in Archaean garnet-corundum-sapphirine granulites from the Central Zone of the Limpopo Belt document a progression from early, coarse-grained, high-pressure (P > 9.5 kbar) granulite-facies assemblages (M1) to late, low-pressure (P <6 kbar) granulite-facies sub-assemblages (M2). The stable M1 assemblage was garnet (57% pyrope; Mg/(Mg + Fe) = 62) + sapphirine + corundum + gedrite + phlogopite + rutile. Late-M1 boron-free kornerupine grew at the expense of garnet and corundum, and coexisted with garnet, sapphirine and gedrite. Partial or complete breakdown of coarse garnet and kornerupine during M2 resulted in the development of pseudomorphs and coronas consisting of fine-grained symplectic intergrowths of cordierite, gedrite and sapphirine (later, spinel). The majority of reaction textures can be explained in terms of a stable reaction sequence, and a model time-sequence of mineral facies can be constructed. When compared with a qualitative petrogenetic grid of (Fe, Mg)-discontinuous reactions in the FMASH multisystem sapphirine-garnet-corundum-spinel-cordierite-gedrite-kornerupine, the facies-sequence indicates decompression at essentially constant T assuming constant a(H2O). Exhumation of M1 corundum inclusions during M2 breakdown of kornerupine resulted in production of metastable spinel by a disequilibrium reaction with gedrite. A second disequilibrium reaction of the spinel with cordierite produced sapphirine. The operation of such reaction while pressure was decreasing (the opposite dP from that implied by the texture if assumed to be the product of an equilibrium reaction) has serious implications for the use of reaction textures in the construction of P-T vectors. Garnet-biotite thermometry on garnet interiors and phlogopite inclusions in corundum yields temperatures of ca. 850°C for the M1 stage. A minimum late-M1 pressure of ca. 7 kbar is indicated by the former association of kornerupine and corundum. Relict M1 kyanites reported by other workers indicate a minumum early-M1 pressure of 9.5 kbar, implying metamorphism at depths of at least 33 km (probably 38km). The high-pressure granulite-facies metamorphism was followed by an almost isothermal pressure decrease of > 5 kbar, indicative of rapid uplift. The P-T path is interpreted as the product of a single metamorphic cycle which probably took place in response to tectonic thickening of the crust. Such a process contrasts with the extensional origin recently proposed for isobarically cooled granulite-facies terranes.  相似文献   

5.
In a granulite-facies spinel-bearing quartzite, corundum, orthopyroxene and sapphirine (and rarely cordierite and sillimanite) form partial rims separating spinel from quartz. Textures indicate the reactions:
spinel + quartz = orthopyroxene + corundum, and
spinel + quartz = orthopyroxene + sapphirine.
Thus, corundum and sapphirine are produced by reactions involving quartz. The low Al-content of the orthopyroxene (0.5–2.8 wt %) and low values for Mg–Fe distribution coefficient for spinel–sapphirine and spinel–orthopyroxene reflect low-temperature conditions during formation of the reaction products. Absence of zoning in spinel and a constant Mg–Fe distribution coefficient for spinel–sapphirine and spinel–orthopyroxene, over a compositional range, indicate Mg–Fe equilibration. It is suggested that stable reactions such as spinel + quartz = cordierite or spinel + quartz = garnet + sillimanite were over-stepped and that metastable reactions give rise to the anomalous juxtaposition of corundum + quartz.  相似文献   

6.
Highly magnesian and aluminous migmatitic gneisses from Mather Peninsula in the Rauer Group, Eastern Antarctica, preserve ultrahigh temperature (UHT) metamorphic assemblages that include orthopyroxene+sillimanite±quartz, garnet+sillimanite±quartz and garnet+orthopyroxene±sillimanite. Garnet that ranges up to XMg of 71.5 coexists with aluminous orthopyroxene that shows zoning from cores with 7.5–8.5 wt% Al2O3 to rims with up to 10.6 wt% Al2O3 adjacent to garnet. Peak PT conditions of 1050 °C and 12 kbar are retrieved from Fe–Mg–Al thermobarometry involving garnet and orthopyroxene, in very good agreement with independent constraints from petrogenetic grids in FeO–MgO–Al2O3–SiO2 and related chemical systems. Sapphirine, orthopyroxene and cordierite form extensive symplectites and coronas on the early phases. The specific reaction textures and assemblages involving these secondary phases correlate with initial garnet XMg , with apparent higher-pressure reaction products occurring on the more magnesian garnet, and are interpreted to result from an initial phase of ultrahigh temperature near-isothermal decompression (UHT-ITD) from 12 to 8 kbar at temperatures in excess of 950 °C. Later textures that involved biotite formation and then partial breakdown, along with garnet relics, to symplectites of orthopyroxene+cordierite or cordierite+spinel may reflect hydration through back-reaction with crystallizing melts on cooling below 900–850 °C, followed by ITD from 7 to 8 kbar to c. 5 kbar at temperatures of 750–850 °C. The tectonic significance of this P–T history is ambiguous as the Rauer Group records the effects of Archean tectonothermal events as well as high-grade events at 1000 and 530 Ma. Late-stage biotite formation and subsequent ITD can be correlated with the P–T history preserved in the Proterozoic components of the Rauer Group and hence with either 1000 or 530 Ma collisional orogenesis. However, whether the preceding UHT-ITD history reflects a temporally unrelated event (e.g. Archean) or is simply an early stage of either the late-Proterozoic or Pan-African tectonism, as recently deduced for similar UHT rocks from other areas of the East Antarctica, remains uncertain.  相似文献   

7.
The high grade rocks (metapelites and metabasites) of Clavering Ø represent the easternmost exposures of granulites in the Palaeozoic Caledonian Orogen of East Greenland. Mafic granulites which occur as sheet‐like bodies and lenses within metapelitic migmatites and orthogneiss complexes have experienced migmatisation and mineral equilibria which define a clockwise P–T path incorporating a near‐isothermal decompression segment. Textures demonstrate the existence of early garnet‐clinopyroxene‐melt assemblages which equilibrated at >8–11 kbar and 850915 °C. Subsequently, decompression melting led to formation of orthopyroxene‐plagioclase‐melt assemblages at conditions below >8–11 kbar. Continued syn‐deformational decompression is indicated by a combination of both static and syn‐deformational recrystallization textures which generated finer grained orthopyroxene‐plagioclase assemblages. P–T constraints indicate these assemblages equilibrated at c. 5.0–6.5 kbar at 850–915 °C. These data are consistent with the rocks undergoing a stage of rapid tectonic‐induced exhumation involving some 3.0–4.5 kbar (c.1012 km) uplift as part of a clockwise P–T path in a collisional setting.  相似文献   

8.
Distinctive lithological associations and geological relationships, and initial geochronological results indicate the presence of an areally extensive region of reworked Archaean basement containing polymetamorphic granulites in the Rauer Group, East Antarctica.
Structurally early metapelites from within this reworked region preserve complex and varied metamorphic histories which largely pre-date and bear no relation to a Late Proterozoic metamorphism generally recognized in this part of East Antarctica. In particular, magnesian metapelite rafts from Long Point record extreme peak P–T conditions of 10–12 kbar and 100–1050°C, and an initial decompression to 8 kbar at temperatures of greater than 900°C. Initial garnet–orthopyroxene–sillimanite assemblages contain the most magnesian (and pyrope-rich) garnets ( X Mg= 0.71) yet found in granulite facies rocks. A high-temperature decompressional P–T history is consistent with reaction textures in which the phase assemblages produced through garnet breakdown vary systematically with the initial garnet X Mg composition, reflecting the intersection of different divariant reactions in rocks of varied composition as pressures decreased. This history is thought to relate to Archaean events, whereas a lower-temperature ( c. 750–800°C) decompression to 5 kbar reflects Late Proterozoic reworking of these relict assemblages.
The major Late Proterozoic ( c. 1000 Ma) granulite facies metamorphism is recorded in a suite of younger Fe-rich metapelites and associated paragneisses in which syn- to post-deformational decompression, through 2–4 kbar from maximum recorded P–T conditions of 7–9 kbar and 800–850°C, is constrained by geothermobarometry and reaction textures. This P–T evolution is thought to reflect rapid tectonic collapse of crust previously thickened through collision.  相似文献   

9.
Anatectic veins containing the Be minerals khmaralite and berylliansapphirine as primary phases (or surinamite derived therefrom)are associated with Mg–Al-rich paragneisses at three localitiesin the ultrahigh-temperature Napier complex, Antarctica, a uniqueBe mineralization in the granulite facies. Likely precursorsof the paragneisses are volcaniclastic deposits that were hydrothermallyaltered by heated seawater prior to metamorphism. Regular distributionof Be among minerals in the paragneisses suggests an approachto equilibrium with Be greatly concentrated in sapphirine (25–3430ppm Be) or cordierite (560–930 ppm Be) relative to plagioclaseAn53–66 (14–43 ppm Be) > cores of coarse-grainedorthopyroxene (0·7–29 ppm Be) > coronitic orthopyroxene(0·4–14 ppm Be) sillimanite (0·1–26ppm Be) plagioclase An18–33 (0·6–15 ppmBe) > biotite (0·06–8 ppm Be) > K-feldspar,quartz, garnet (0·05–0·7 ppm Be). Sapphirine-bearingparagneisses have average Be concentrations, 4·9 ±2·4 ppm (13 samples), about twice that of typical pelites,whereas paragneisses lacking sapphirine and primary cordieritehave only 2·9 ± 2·1 ppm Be (12 samples),implying some loss of Be during metamorphism. The likely sourcerocks for the Be-rich melts were biotitic rocks lacking theBe sinks sapphirine and cordierite. These gneisses were probablyless competent than the sapphirine-bearing gneisses, so themelts were drawn to the latter and collected in spaces openedduring deformation and boudinage of the more competent paragneisses.Fractionation of the melts concentrated Be to the extent thatBe minerals could crystallize. The final result was Be-mineralizedanatectic veins hosted by relatively Be-rich sapphirine-bearingparagneisses. KEY WORDS: Antarctica; beryllium; granulite facies; microprobe; sapphirine  相似文献   

10.
Calc-silicate granulites from the Bolingen Islands, Prydz Bay, East Antarctica, exhibit a sequence of reaction textures that have been used to elucidate their retrograde P–T path. The highest temperature recorded in the calc-silicates is represented by the wollastonite- and scapolite-bearing assemblages which yield at least 760°C at 6 kbar based on experimental results. The calc-silicates have partially re-equilibrated at lower temperatures (down to 450°C) as evidenced by the successive reactions: (1) wollastonite + scapolite + calcite = garnet + CO2, (2) wollastonite + CO2= calcite + quartz, (3) wollastonite + plagioclase = garnet + quartz, (4) scapolite = plagioclase + calcite + quartz, (5) garnet + CO2+ H2O = epidote + calcite + quartz, and (6) clinopyroxene + CO2+ H2O = tremolite + calcite + quartz.
The reaction sequence observed indicates that a CO2 was relatively low in the wollastonite-bearing rocks during peak metamorphic conditions, and may have been further lowered by local infiltration of H2O from the surrounding migmatitic gneisses on cooling. Fluid activities in the Bolingen calc-silicates were probably locally variable during the granulite facies metamorphism, and large-scale CO2 advection did not occur.
A retrograde P–T path, from the sillimanite stability field ( c. 760°C at 6 kbar) into the andalusite stability field ( c. 450°C at <3 kbar), is suggested by the occurrence of secondary andalusite in an adjacent cordierite–sillimanite gneiss in which sillimanite occurs as inclusions in cordierite.  相似文献   

11.
Geochronological data, combined with field and petrological evidence, constrain the timing and rate of near‐isothermal decompression at granulite facies temperatures in rocks from the Lützow‐Holm Complex of East Antarctica. Granulite facies gneisses from Rundvågshetta in Lützow‐Holm Bay experienced a peak metamorphic temperature of over 900 °C at c. 11 kbar, as evidenced by primary orthopyroxene–sillimanite‐bearing assemblages, and secondary cordierite–sapphirine‐bearing assemblages in metapelites. Peak metamorphic assemblages show strong preferred mineral orientation, interpreted to have developed synchronously with pervasive ductile deformation. Zircon from a syndeformational leucosome has a U–Pb age of 517±9 Ma, which is interpreted as a melt crystallization age. This age provides the best estimate of the time of peak metamorphic conditions. The post‐peak metamorphic history is characterized by near‐isothermal decompression, recorded by mineral textures in a variety of rock compositions. Field and textural relations indicate that decompression post‐dated pervasive ductile deformation. K/Ar and 40Ar/39Ar ages from hornblende and biotite represent closure ages during cooling subsequent to decompression, and indicate cooling to temperatures between c. 350 and 300 °C by c. 500 Ma, thus placing a lower time limit on the duration of the high‐temperature isothermal decompression episode. The combination of the zircon age from a syndeformational melt with K/Ar and 40Ar/39Ar closure ages indicates that near‐isothermal decompression from c. 11 to c. 4 kbar at granulite facies temperatures, followed by cooling to c. 300 °C, took place within a time interval of 20±10 Myr. Simple one‐dimensional models for exhumation‐controlled cooling indicate that these data require exhumation rates of the order of c. 3 km Myr?1 for several million years, then cessation of exhumation followed by relatively isobaric cooling during thermal re‐equilibration.  相似文献   

12.
Calc-silicate boudins within Proterozoic granulite facies gneisses of the northern Prince Charles Mountains, East Antarctica, preserve a number of reaction textures including garnet coronas between calcite and scapolite; garnet-quartz coronas between scapolite and wollastonite and between plagioclase and wollastonite; calcite-quartz intergrowths in wollastonite; and calcite-plagioclase symplectites in scapolite. These textures have been modelled using petrogenetic grids for reactions in the CaO-Al2,O3-SiO2-CO2 system, but with reduced mineral activities to account for additional components in real mineral compositions. Such fixed-composition reduced-activity grids are strictly valid only at the point in P-T-aCO2 space where an assemblage last equilibrated, and do not show the true positions of reactions away from this point because mineral compositions change with reaction progress. In this case, however, mineral compositions close to end-member values and low extents of reaction progress mean that compositional change was limited and the grids are good approximations to true pseudosections over the entire P-T-aco2 range of interest. The grids show that the textures are consistent with near-isobaric cooling from about 850 to 700d? C at 7 kbar, a P-T path compatible with thermobarometric studies of other lithologies from the area. Phase relationships indicate that CO2 activities were buffered by the local mineral assemblage during peak and retrograde metamorphism, either under fluid-absent conditions or within a non-pervasive fluid phase. Previous studies of garnet coronas in scapolite-wollastonite calc-silicates have used qualitative grids based on limited experimental data to invoke garnet growth during water infiltration at high temperature, but the grids used here show that garnet coronas can form on cooling, without any need for water influx.  相似文献   

13.
Interpretations based on quantitative phase diagrams in the system CaO–Na2O–K2O–TiO2–MnO–FeO–MgO–Al2O3–SiO2–H2O indicate that mineral assemblages, zonations and microstructures observed in migmatitic rocks from the Beit Bridge Complex (Messina area, Limpopo Belt) formed along a clockwise P–T path. That path displays a prograde P–T increase from 600 °C/7.0 kbar to 780 °C/9–10 kbar (pressure peak) and 820 °C/8 kbar (thermal peak), followed by a P–T decrease to 600 °C/4 kbar. The data used to construct the P–T path were derived from three samples of migmatitic gneiss from a restricted area, each of which has a distinct bulk composition: (1) a K, Al‐rich garnet–biotite–cordierite–sillimanite–K‐feldspar–plagioclase–quartz–graphite gneiss (2) a K‐poor, Al‐rich garnet–biotite–staurolite–cordierite–kyanite–sillimanite–plagioclase–quartz–rutile gneiss, and (3) a K, Al‐poor, Fe‐rich garnet–orthopyroxene–biotite–chlorite–plagioclase–quartz–rutile–ilmenite gneiss. Preservation of continuous prograde garnet growth zonation demonstrates that the pro‐ and retrograde P–T evolution of the gneisses must have been rapid, occurring during a single orogenic cycle. These petrological findings in combination with existing geochronological and structural data show that granulite facies metamorphism of the Beit Bridge metasedimentary rocks resulted from an orogenic event during the Palaeoproterozoic (c. 2.0 Ga), caused by oblique collision between the Kaapvaal and Zimbabwe Cratons. Abbreviations follow Kretz (1983 ).  相似文献   

14.
High‐pressure basic granulites are widely distributed as enclaves and sheet‐like blocks in the Huaian TTG gneiss terrane in the Sanggan area of the Central Zone of the North China craton. Four stages of the metamorphic history have been recognised in mineral assemblages based on inclusion, exsolution and reaction textures integrated with garnet zonation patterns as revealed by compositional maps and compositional profiles. The P–T conditions for each metamorphic stage were obtained using thermodynamically and experimentally calibrated geothermobarometers. The low‐Ca core of growth‐zoned garnet, along with inclusion minerals, defines a prograde assemblage (M1) of garnet + clinopyroxene + plagioclase + quartz, yielding 700 °C and 10 kbar. The peak of metamorphism at about 750–870 °C and 11–14.5 kbar (M2) is defined by high‐Ca domains in garnet interiors and inclusion minerals of clinopyroxene, plagioclase and quartz. Kelyphites or coronas of orthopyroxene + plagioclase ± magnetite around garnet porphyroblasts indicate garnet breakdown reactions (M3) at conditions around 770–830 °C and 8.5–10.5 kbar. Garnet exsolution lamellae in clinopyroxene and kelyphites of amphibole + plagioclase around garnet formed during the cooling process at about 500–650 °C and 5.5–8 kbar (M4). These results help define a sequential P–T path containing prograde, near‐isothermal decompression (ITD) and near‐isobaric cooling (IBC) stages. The clockwise hybrid ITD and IBC P–T paths of the HP granulites in the Sanggan area imply a model of thickening followed by extension in a collisional environment. Furthermore, the relatively high‐pressures (6–14.5 kbar) of the four metamorphic stages and the geometry of the P–T paths suggest that the HP granulites, together with their host Huaian TTG gneisses, represent the lower plate in a crust thickened during collision. The corresponding upper‐plate might be the tectonically overlying Khondalite series, which was subjected to medium‐ to low‐pressure (MP/LP: 7–4 kbar) granulite facies metamorphism with a clockwise P–T path including an ITD segment. Both the HP and the MP/LP granulite facies events occurred contemporaneously at c. 1.90–1.85 Ga in a collisional environment created by the assembly process of the North China craton.  相似文献   

15.
Mineral textures in metapelitic granulites from the northern Prince Charles Mountains, coupled with thermodynamic modelling in the K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3 (KFMASHTO) model system, point to pressure increasing with increasing temperature on the prograde metamorphic path, followed by retrograde cooling (i.e. an anticlockwise P–T path). Textural evidence for the increasing temperature part of the path is given by the breakdown of garnet and biotite to form orthopyroxene and cordierite in sillimanite‐absent rocks, and through the break‐down of biotite and sillimanite to form spinel, cordierite and garnet in more aluminous assemblages. This is equated to the advective addition of heat from the regional emplacement of granitic and charnockitic magmas dated at c. 980 Ma. A subsequent increase in pressure, inferred from the break‐down of spinel and quartz to sillimanite, cordierite and garnet in aluminous rocks, is attributed to crustal thickening related to upright folding dated at 940–910 Ma. The terrane attained peak metamorphic temperatures of c. 880 °C at pressures of c. 6.0–6.5 kbar during this event. Subsequent cooling is inferred from the localised breakdown of cordierite and garnet to form biotite and sillimanite that developed in the latter stages of the same event. The textural observations described are interpreted via the application of P–T and P–T–X pseudosections. The latter show that most rock compositions preserve only fragments of the overall P–T path; a result of different rock compositions undergoing mineral assemblage changes, or changes in mineral modal abundance, on different sections of the P–T path. The results also suggest that partial melting during granulite facies metamorphism, coupled with melt loss and dehydration, initiated a switch from pervasive ductile, to discrete ductile/brittle deformation, during retrograde cooling.  相似文献   

16.
Quartz Al–Mg granulites exposed at In Hihaou, In Ouzzal (NW Hoggar), preserve an unusual high-grade mineral association stable at temperatures up to 1050°C, involving the parageneses orthopyroxene–sillimanite–garnet–quartz, sapphirine–quartz and spinel–quartz. The phase relationships within the FMAS system show that a continuum exists between the earlier prograde reaction textures and those of the later decompressive event. The following mineral reactions involving sillimanite are deduced: (1) Grt+Qtz→Opx+Sil, (2) Opx+Sil→Grt+Spr+Qtz, (3) Grt+Sil+Qtz→Crd, (4) Grt+Sil→Crd+Spr, (5) Grt+Sil+Spr→Crd+Spl, (6) Grt+Sil→Crd+Spl, (7) Grt+Crd+Sil→Spl+Qtz and (8) Grt+Sil→Spl+Qtz. Minerals in quartz Al–Mg granulites display compositional variations consistent with the observed reactions. The Mg/(Mg+Fe2+) range of the main minerals is as follows: cordierite (0.81–0.97), sapphirine (0.77–0.88), orthopyroxene (0.65–0.81), garnet (0.33–0.64) and spinel (0.23–0.56). The reaction textures and the evolution of the mineral assemblages in the quartz Al–Mg granulites indicate a clockwise P–T trajectory characterized by peak conditions of at least 10 kbar and 1050°C, followed by decompression from 10 to 6 kbar at a temperature of at least 900°C.  相似文献   

17.
Osumilite-sapphirine-quartz granulites from Enderby Land, Antarctica (Ellis et al. 1980) were metamorphosed at 8–10 kb pressure, 900°-980° C under very low conditions. Retrograde mineral coronas in these rocks record subsequent cooling from the peak of metamorphism at approximately constant pressure. The inferredP-T cooling-uplift path differs markedly from that evident in many other granulite terrains.Present garnet-cordierite geothermometers imply equilibration at temperatures of 500°–600° C, well within the kyanite stability field. These temperatures are inconsistent with the presence of sillimanite and the high temperature stability fields of the actual mineral assemblages. Examination of available garnetcordierite experimental data suggests a possible large increase in the Gt-Cd Fe-MgK D with increasingX Mg of the cordierite (and pressure). New experiments designed to test this possibility were inconclusive because of the failure to attain satisfactory equilibrium, even at 1,000° C.Possible reasons for the exposure of these unusual granulites in Enderby Land are considered. Although they formed at much higher temperatures than other granulites exposed on a regional scale, suchP-T conditions are not exceptional for the base of the crust. Instead, the unusual isobaric cooling to low temperatures followed by uplift to the surface which these granulites are inferred to have undergone is considered of importance. The unusual tectonic conditions are reflected in the disctinctive type of mineral reaction coronas found in these rocks. The common occurrence elsewhere of mineral reaction during uplift, and the role of anatexis during uplift in obliterating such high temperature assemblages elsewhere in the world are considered.  相似文献   

18.
The Fe2+–Mg distribution coefficients between sapphirine and spinel:
were experimentally determined at pressures of 9–13 kbar and temperatures of 950–1150 °C using a natural ultrahigh-temperature (UHT) granulite with paragenesis of these minerals from the Napier Complex in East Antarctica [XMg = Mg / (Fe + Mg); XFe = Fe / (Fe + Mg)]. A new sapphirine–spinel geothermometer has been obtained as:

We applied the exchange thermometer to UHT or high-grade metamorphic rocks that were reported from various complexes in the world. If the KD values of 2.63–4.34 obtained from low-Cr mineral pairs such as XCrSpr < 0.016 and XCrSpl < 0.047 were substituted into the equation, their temperature conditions would be estimated as 806–1050 °C at 11 kbar. The XCr means Cr / (Al + Cr(+ Fe3+)). These temperatures are reasonable retrograde or near peak metamorphic condition.  相似文献   


19.
Aluminous reaction textures in orthoamphibole-bearing rocks from the Froland area, Bamble, south Norway, record the prograde pressure–temperature path of the high-grade Kongsbergian Orogeny (c. 1600–1500 Ma) and the low–mid amphibolite facies overprint during the Sveconorwegian Orogeny (c. 1100–1000 Ma). The rocks contain anthophyllite/gedrite, garnet, cordierite, biotite, quartz, andalusite, kyanite, Cr-rich staurolite, tourmaline, ilmenite, rutile and corundum in a variety of parageneses. The P–T path is deduced from petrographic observations, mineral chemistry and zoning, geothermometry and (N)FMASH equilibria. The results indicate the sequence of metamorphic stages outlined below. (a) An M1 phase characterized by the presence of strongly deformed andalusite, gedrite and tourmaline. (b) An M2 phase with the development of kyanite after andalusite and the growth of staurolite associated with strong Na–Al–Mg zoning in orthoamphibole, indicating an increase in pressure (4 8 kbar) and temperature (500° 650°C). (c) Pressure decrease at high P (6–7 kbar) and high T (600–700 °C) during M3a with the production of cordierite ° Corundum between kyanite, staurolite and orthoamphibole and cordierite growth between corundum and orthoamphibole. (d) Temperature increase to 740 ± 60 °C and 7 kbar; static growth of garnet (M3b) at the metamorphic climax (peak T). The heat supply necessary to explain the temperature increase between the M3a and M3b phases is correlated with synkinematic enderbitic–charnockitic and basic intrusions in the Arendal granulite facies terrain. (e) M3b metamorphic conditions were followed by an initial isobaric cooling path (early M4) and late-stage pressure decrease (late M4). Early M4 conditions of 6–7 kbar and 550–600 °C, assuming PH2O < Ptotal are indicated by a retrograde talc–kyanite–quartz assemblage in late quartz–cordierite veins. Late M4 conditions of 3–4 kbar and 420–530 °C are inferred from a kyanite–andalusite–chlorite–quartz assemblage in vein-cordierite. The M1–M3 stages are interpreted as being the result of the same metamorphic P–T path, which was caused by both tectonic and magmatic thickening. A prolonged crustal residence time is proposed for the Bamble sector before uplift during the later stages of M4 occurred.  相似文献   

20.
The Palghat Gap region is located near the centre of the large southern Indian granulite terrane. at the northern edge of the Kodaikanal charnockite massif. The dominant rock types in the region are hornblende-biotite ± orthopyroxene gneisses and charnockites along with minor amounts of intercalated mafic granulite, metapelite and calc-silicate. The P-T estimates from garnetiferous mafic granulites and metapelite samples are generally in the range 9-10 kbar and 800-900 C using both conventional thermobarometric methods and the TWEEQU thermobarometry program. These P-T estimates, which should be taken as minimum values, are among the highest yet reported for South Indian and Sri Lankan granulites. The occurrence of orthopyroxene + plagioclase symplectites around embayed garnet grains in the mafic granulites and cordierite rims around garnet grains in metapelite suggest an isothermal decompression-type path. Similarly, a core-rim P-T trajectory indicates c. 3 and 7 kbar decompression at high temperature in the mafic granulites and metapelite, respectively. In both rock types, the key to the determination of the retrograde P-T path was the recognition of small amounts of second generation plagioclase with a more anorthitic composition than the matrix plagioclase. The preservation of high garnet-pyroxene temperatures in the mafic granulites (despite small garnet grain size) suggests rapid cooling of the terrane. Calculated minimum cooling rates range from 8 to 80 C Ma-1. Such cooling rates are more rapid than those associated with normal isostatic processes and suggest that the terrane was tectonically exhumed at high temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号