首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 0 毫秒
1.
The Setouchi volcanic rocks include high-Mg andesites (HMAs) and garnet-bearing dacite–rhyolite, and are sporadically distributed along the Median Tectonic Line, Japan. New U–Pb zircon ages and geological and geochemical data are presented for those rocks in the Western Setouchi region (W-Setouchi). Previous studies referred to the altered andesite in the W-Setouchi as “pre-Setouchi volcanic rocks.” However, on the basis of the new U–Pb age (14.4 Ma ± 0.3 Ma) and geochemical characteristics, we redefine it as the Jikamuro Formation, part of the Setouchi volcanic rocks. Incompatible elements are more enriched in the Jikamuro Formation rocks than in the Setouchi HMAs. The characteristic element compositions may be explained by mixing of compositionally different magmas, including subducted sediment melts, plus a contribution from crustal contamination. A stress-inversion technique with Bingham distribution method was applied to the orientations of felsic and mafic dikes within the Setouchi volcanic rocks, and indicates paleo-stress conditions during the period of Setouchi volcanism in the W-Setouchi. The analysis reveals NNW-extensional stresses and a strike-slip stress. We infer that the former represents extensional conditions during the main period of volcanism and the latter represents a stress transition during the most recent period of volcanism (after 12 Ma).  相似文献   

2.
The opening of the Japan Sea led to the separation of southwest Japan from the Eurasian continent. Subsequent to this event, a diverse range of igneous activities occurred in southwest Japan. On the back-arc side of the region, igneous activity commenced at approximately 22 Ma and persisted for an extended period. In the trench-proximal region of southwest Japan, magmatism initiated around 15.6 Ma, immediately following the cessation of the Japan Sea opening, in correlation with the subduction of the Philippine Sea plate beneath southwest Japan. The Amakusa Islands in western Kyushu host felsic to intermediate igneous rocks with Miocene radiometric ages. There has been a debate regarding the attribution of the igneous rocks in Amakusa Island among the Miocene igneous rocks in southwest Japan. To address this issue, we conducted zircon U–Pb dating and analyzed the major- and trace-element compositions of felsic igneous rocks in the Amakusa Islands to elucidate their characteristics. The obtained U–Pb ages range from 14.5 to 14.8 Ma, suggesting contemporaneity between magmatism in the Amakusa Islands and the Setouchi Volcanic Rocks in the trench-proximal region of southwest Japan. The major and trace element compositions of the felsic igneous rocks exhibit similarities to the dacites of the Setouchi Volcanic Rocks. These findings support previous suggestions that the magmatism in the Amakusa Islands can be correlated with the Setouchi Volcanic Rocks, based on the discovery of a high-Mg andesite dike and paleo-stress analysis utilizing the direction of dikes and sills. Therefore, the Setouchi Volcanic Belt is proposed to extend further west than the previously identified Ohno volcanic rocks in eastern Kyushu. The subduction of the Shikoku Basin of the Philippine Sea plate toward western Kyushu supports the hypothesis that the Kyushu-Palau Ridge was positioned west of Kyushu at ~15 Ma.  相似文献   

3.
The Gangdese magmatic belt is located in the southern margin of the Lhasa terrane, south Tibet. Here zircon U–Pb ages and Hf isotopic data, as well as whole‐rock geochemistry and Sr–Nd isotopes on andesites from the Bima Formation with a view to evaluating the history of the Gangdese magmatism and the evolution of the Neotethys Ocean. Zircon U–Pb dating yields an age of ca 170 Ma from six samples, representing the eruptive time of these volcanic rocks. Zircon Hf isotopes show highly positive εHf(t) values of +13 to +16 with a mean of +15.2. Whole‐rock geochemical and Sr–Nd isotopic results suggest that the magma source of these andesites was controlled by partial melting of a depleted mantle source with addition of continental‐derived sediments, similar to those in the southern arcs of the Lesser Antilles arc belt. In combination with published data, the volcanic rocks of the Bima Formation are proposed to have been generated in an intra‐oceanic arc system, closely associated with northward subduction of the Neotethyan oceanic lithosphere.  相似文献   

4.
Ar-Ar dating results of late Mesozoic-Cenozoic volcanic rocks from the Yanji area, NE China provide a new volcano-sedimentary stratigraphic framework. The previously defined “Triassic-Jurassic” volcanic rocks (including those from Sanxianling, Tuntianying, Tianqiaoling and Jingouling Fms.) were erupted during 118―106 Ma, corresponding to Early Cretaceous. The new eruption age span is slightly younger than the main stage (130―120 Ma) of the extensive magmatism in the eastern Central Asian Orogenic Belt and its adjacent regions. Subduction-related adakites occurring in the previously defined Quanshuicun Fm. were extruded at ca. 55 Ma. Based on these new Ar-Ar ages, the late Mesozoic to Palaeocene volcano-sedimentary sequences is rebuilt as: Tuopangou Fm., Sanxianling/Tuntianying Fm. (118―115 Ma), Malugou/Tianqiaoling Fm. (K1), Huoshanyan/Jingouling Fm. (108―106 Ma), Changcai Fm. (K2), Quanshuicun Fm. (~55 Ma) and Dalazi Fm. Our results suggest that subduction of the Pa- laeo-Pacific Ocean beneath the East Asian continental margin occurred during 106 to 55 Ma, consistent with the paleomagnetic observations and magmatic records which indicated that the Izanagi-Farallon ridge subduction beneath the southwestern Japan took place during 95―65 Ma.  相似文献   

5.
There are wide spread Cenozoic volcanic rocks in Tengchong (CVRT), Yunnan province, SW China. These rocks comprise three rock types: basalt, andesite (dominant type) and dacite. Most samples are sub‐alkaline, and among the sub‐alkaline rocks, most are high‐K calc‐alkaline. These rocks have a SiO2 range of 49.1 wt.% to 66.9 wt.%. TiO2 contents are not high and have a variation of 0.7 wt.%–1.6 wt.%. Trace element concentrations and element ratios (such as Nb/U, Ce/Pb, Nb/La, etc.) of these rocks have a large variation. 87Sr/86Sr values fall in the range of 0.7057–0.7093 and 143Nd/144Nd values change from 0.5120 to 0.5125. 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios are in the range of 17.936–19.039, 15.614–15.810, and 38.894–39.735, respectively. These geochemical characteristics of CVRT make them resemble island‐arc volcanic rocks. We suggest that the magmas were generated in the lithospheric mantle that had already been metasomatized by previous subduction processes. By the study of the uplift history of the Tibetan Plateau, we found that the beginning of the geotectonic processes to the eruption of CVRT was coeval with one uplift event. Therefore, we propose that the uplift of the Tibetan Plateau caused collapse of the collisional orogeny in Tengchong, which further triggered the generation and eruption of the CVRT magmas.  相似文献   

6.
Ar–Ar dating, major and trace element analyses, and Sr–Nd–Pb isotope results of two groups of Lower Cretaceous (erupted at 126 and 119 Ma, respectively) intermediate–felsic lava from the northeastern North China Block (NCB) suggest their derivation from melting of mixtures between the heterogeneous lower crust and underplated basalts. Both groups exhibit high‐K calc‐alkaline to shoshonitic affinities, characterized by light rare earth element (LREE) and large ion lithophile element (LILE) enrichment and variable high field strength element (HFSE, e.g. Nb, Ta and Ti) depletion, and moderately radiogenic Sr and unradiogenic Nd and Pb isotopic compositions. Compared with Group 2, Group 1 rocks have relatively higher K2O and Al2O3/(CaO + K2O + Na2O) in molar ratio, higher HFSE concentrations and lower Nb/Ta ratios, and higher Sr–Nd–Pb isotope ratios. Group 1 rocks were derived from a mixture of an enriched mantle‐derived magma and a lower crust that has developed radiogenic Sr and unradiogenic Nd and Pb isotopic compositions, whereas the Group 2 magmas were melts of another mixture between the same mantle‐derived component and another type of lower crust having even lower Sr, Nd, and Pb isotopic ratios. Shift in source region from Group 1 to Group 2 coincided with a change in melting conditions: hydrous melting of both the underplated basalt and the lower crust produced the earlier high‐Nb and low‐Nb/Ta melts with little or no residual Ti‐rich phases; while the younger low‐Nb and high‐Nb/Ta magmas were melted under a water‐deficient system, in which Ti‐rich phases were retained in the source. Generation of the two groups of intermediate–felsic volcanic rocks was genetically linked with the contemporaneous magma underplating event as a result of lithospheric thinning in the eastern NCB.  相似文献   

7.
Abstract Rb–Sr and Sm–Nd isochron ages were determined for whole rocks and mineral separates of hornblende‐gabbros and related metadiabases and quartz‐diorite from Shodoshima, Awashima and Kajishima islands in the Ryoke plutono‐metamorphic belt of the Setouchi area, Southwest Japan. The Rb–Sr and Sm–Nd whole‐rock‐mineral isochron ages for six samples range from 75 to 110 Ma and 200–220 Ma, respectively. The former ages are comparable with the Rb–Sr whole‐rock isochron ages reported from neighboring Ryoke granitic rocks and are thus due to thermal metamorphism caused by the granitic intrusions. On the contrary, the older ages suggest the time of formation of the gabbroic and related rocks. The initial 87Sr/86Sr and 143Nd/144Nd ratios of the gabbroic rocks (0.7070–0.7078 and 0.51217–0.51231 at 210 Ma, respectively) are comparable with those of neighboring late Cretaceous granites and lower crustal granulite xenoliths from Cenozoic andesites in this region. Because the gabbroic rocks are considered to be fragments of the lower crustal materials interlayered in the granulitic lower crust, their isotopic signature has been inherited from an enriched mantle source or, less likely, acquired through interaction with the lower crustal materials. The Sr and Nd isotopic and petrologic evidence leads to a plausible conclusion that the gabbroic rocks have formed as cumulates from hydrous mafic magmas of light rare earth element‐rich (Sm/Nd < 0.233) and enriched isotopic (?Sr > 0 and ?Nd < 0) signature, which possibly generated around 220–200 Ma by partial melting of an upper mantle. We further conclude that they are fragments of refractory material from the lower crust caught up as xenoblocks by granitic magmas, the latter having been generated by partial melting of granulitic lower crustal material around 100 Ma.  相似文献   

8.
Quaternary lavas from the Northern Mariana Islands have respective O- and S-isotope ranges ofδ18O = +5.7 to +6.6 (‰ SMOW) andδ34S = +2.0to+20.7 (‰ CDT). Chemically evolved andesites and dacites with meanδ18O = +6.3 ± 0.2 are slightly enriched in18O with respect to unfractionated basalts of<53%SiO2 with meanδ18O = +6.0 ± 0.1. This18O enrichment can be explained in terms of differentiation of parental mafic magmas havingδ18O values between +5.7 to +6.2‰ through closed-system crystal fractionation because the lavas from all nine islands of the arc define a coherentδ18OSiO2 trend. The S-isotope composition of oxidized magmas is not modified extensively through the degassing of SO2; therefore, the meanδ34S value of ca. +11‰ for the Mariana lavas is considered to be representative of their source region.The enrichment of18O and34S in Mariana Arc parental magmas relative to ocean floor basalts withδ18O ca. + 5.7‰ andδ34S = ca.0.3‰ is attributed to the recycling of18O- and34S-rich crustal components (sediment withδ18O = ca. + 25‰ and seawater sulfate withδ34S = ca. +20‰ into the upper mantle source region for these arc magmas. This interpretation is consistent with enrichments of radiogenic Sr and Pb in the same lavas relative to ocean-floor basalts erupted either side of the arc, which are presumed to share a common upper mantle source. This enrichment is considered to reflect the mixing of two components, one having a typical upper mantle composition and the other having a more radiogenic character similar to that of western Pacific pelagic sediments.  相似文献   

9.
High spatial resolution U–Pb dates of zircons from two consanguineous ignimbrites of contrasting composition, the high-silica rhyolitic Toconao and the overlying dacitic Atana ignimbrites, erupted from La Pacana caldera, north Chile, are presented in this study. Zircons from Atana and Toconao pumice clasts yield apparent 238U/206Pb ages of 4.11±0.20 Ma and 4.65±0.13 Ma (2σ), respectively. These data combined with previously published geochemical and stratigraphic data, reveal that the two ignimbrites were erupted from a stratified magma chamber. The Atana zircon U–Pb ages closely agree with the eruption age of Atana previously determined by K–Ar dating (4.0±0.1 Ma) and do not support long (>1 Ma) residence times. Xenocrystic zircons were found only in the Toconao bulk ignimbrite, which were probably entrained during eruption and transport. Apparent 238U/206Pb zircon ages of 13 Ma in these xenocrysts provide the first evidence that the onset of felsic magmatism within the Altiplano–Puna ignimbrite province occurred approximately 3 Myr earlier than previously documented.  相似文献   

10.
Eclogite, a high-pressure–temperature metamorphic rock characterized by garnet + omphacite, is usually considered to be a product of regional metamorphism under a low geothermal gradient. However, in the Sebadani area of the Sambagawa metamorphic belt most petrologists agree that the eclogite formed by localized contact metamorphism due to intrusion of a body in the solid-state (the Sebadani mass). This process is termed ‘high-pressure contact metamorphism'. However, geological considerations suggest that the effect of such a process would be limited, firstly because the speed of emplacement for solid-state material will generally be much lower than that for magma and secondly because in the solid-state there is no heat of fusion in the body available for thermal effects. Thermal modelling of a solid-state intrusion, based on the heat conduction equation, allows the relationship between size of intrusion, velocity of emplacement and thermal effects to be calculated. Two cases have been considered: (1) a hot model, where none of the heat conducted into the surroundings is lost during the rise of the body; and (2) a cold model where all the heat conducted into the surroundings is lost. These models bracket possible thermal histories of the body. Calculations suggest that in the Sebadani region, production of the observed metamorphic features requires unrealistically high velocity and a much larger intruded body than is observed. These conclusions suggest that it is unlikely that eclogite in the Sebadani area was formed by high-pressure contact metamorphism, but rather that it represents the highest-grade part of the regional Sambagawa metamorphism.  相似文献   

11.
Masahiro  Fujii  Yasutaka  Hayasaka  Kentaro  Terada 《Island Arc》2008,17(3):322-341
Abstract The Maizuru terrane, distributed in the Inner Zone of southwest Japan, is divided into three subzones (Northern, Central and Southern), each with distinct lithological associations. In clear contrast with the Southern zone consisting of the Yakuno ophiolite, the Northern zone is subdivided into the western and eastern bodies by a high-angle fault, recognized mainly by the presence of deformed granitic rocks and pelitic gneiss. This association suggests an affinity with a mature continental block; this is supported by the mode of occurrence, and petrological and isotopic data. Newly obtained sensitive high mass-resolution ion microprobe (SHRIMP) zircon U–Pb ages reveal the intrusion ages of 424 ± 16 and 405 ± 18 Ma (Siluro–Devonian) for the granites from the western body, and 249 ± 10 and 243 ± 19 Ma (Permo–Triassic) for the granodiorites from the eastern body. The granites in the western body also show inherited zircon ages of around 580 and 765 Ma. In addition, electron probe microanalysis (EPMA) monazite U–Th–total Pb dating gives around 475–460 Ma. The age of intrusion, inherited ages, mode of occurrence, and geological setting of the Siluro–Devonian granites of the Northern zone all show similarities with those of the Khanka Massif, southern Primoye, Russia, and the Hikami granitic rocks of the South Kitakami terrane, Northeast Japan. We propose that both the Siluro–Devonian and Permo–Triassic granitic rocks of the Northern zone are likely to have been juxtaposed through the Triassic–Late Jurassic dextral strike-slip movement, and to have originated from the Khanka Massif and the Hida terrane, respectively. This study strongly supports the importance of the strike-slip movement as a mechanism causing the structural rearrangement of the Paleozoic–Mesozoic terranes in the Japanese Islands, as well as in East Asia.  相似文献   

12.
Abstract The Ogcheon fold belt and the Ryeongnam massif in the Korean Peninsula are made up of Precambrian igneous and sedimentary rocks that have been metamorphosed, tectonically deformed and extensively intruded by mafic to felsic plutonic rocks of Permian to Jurassic age. In the present study, we report seven new U–Pb zircon ages and Sr‐Nd‐Pb isotopic data for Permian to Jurassic plutons in the Ogcheon belt and the Ryeongnam massif. In the Ogcheon belt, these are: the Cheongsan porphyritic granite (217 ± 3.1 My), the Baegrog foliated granodiorite (206.4 ± 3.6 My), the Sani granite (178.8 ± 2.9 My) and the Yeonggwang foliated granite (173.0 ± 1.7 My). For the Ryeongnam massif, we report on the Yeongdeog foliated granodiorite (252.2 ± 2.9 My), the Sancheong gabbro (203.8 ± 3.3 My) and the Baegseogri foliated granodiorite (177.8 ± 2.4 My). All of these ages are lower concordia intercepts; the upper concordia intercepts indicate derivation from a Precambrian protolith. Sr, Nd and Pb isotopes also reveal that much of the Permian–Jurassic (252–173 Ma) plutonism in Korea was generated by recycling of Precambrian rocks. These new ages, together with other published zircon ages indicate that the plutonism in the Ogcheon fold belt is coeval with that in the Ryeongnam massif, but based on the Sr‐Nd‐Pb isotopic evidence, they are not cogenetic. In addition, zircon ages provide information on the movement along the Honam shear zone, which cuts across the whole Korean Peninsula and along most of its length provides the boundary between the Ogcheon fold belt and the Ryeongnam massif. It has a prolonged history of movement and deformation and appears to have been active from the Precambrian through to the Mesozoic, from before 1924 Ma to at least 180 Ma. The Permian–Jurassic igneous and tectonic activity in Korea is a manifestation of the more extensive orogenic activities that affected the East Asian continent at that time. In China, ultra high‐pressure rocks of the Qinling–Dabie belt formed between 210 and 230 Ma as result of the collision between the South China block and the North China block. In central Japan, corresponding plutonic activity is dated as 175 to 231 Ma. The absence of ultra high‐pressure rocks in Korea and Japan precludes a simple extension of the Qinling–Dabie belt eastwards; however, the effects of the continental collision eastwards are apparent from the igneous and tectonic activity.  相似文献   

13.
Abstract The Ryoke Belt in the Ikoma Mountains, Nara Prefecture, Japan, is composed mainly of various granitic, intermediate and gabbroic rocks. Igneous activity in this area is divided into two periods, early–middle Jurassic and late Cretaceous, based on isotopic dating. The intermediate plutonic rocks in the Fukihata area are composed of two rock types: Kyuanji quartz diorite and Fukihata tonalite. Rb–Sr whole-rock isochron ages have been determined for both plutonic rocks. Their ages and initial 87Sr/86Sr ratios are as follows: the Kyuanji quartz diorite has an age of 161.0 ± 17.9 Ma with an initial 87Sr/86Sr ratio of 0.70727 ± 0.00007, while the Fukihata tonalite has an age of 121.4 ± 24.6 Ma with an initial 87Sr/86Sr ratio of 0.70753 ± 0.00020. Our chronological results indicate that the Kyuanji quartz diorite belongs to the Jurassic mafic rocks, such as the Ikoma gabbroic mass, while the Fukihata tonalite belongs to the early Cretaceous granitic rocks. Both these intermediate plutonic rocks have different chemical characteristics and were derived from different magmas.  相似文献   

14.
Volcanic eruptions can produce large magnetic field changes by thermomagnetic effects, especially when magma cools from high temperatures and acquires a permanent magnetisation from the Earth's magnetic field. After the 2000 eruption of Mt Usu, Japan, significant magnetic field changes were observed not only in the vicinity of the magmatic intrusion but also in an area some distance away that was unlikely to be at a temperature near the Curie Point.  相似文献   

15.
Blocks and tectonic slices within the Mersin Mélange (southern Turkey), which are of Northern Neotethyan origin (Izmir–Ankara–Erzincan Ocean (IAE)), were studied in detail by using radiolarian, conodont, and foraminiferal assemblages on six different stratigraphic sections with well‐preserved Permian succesions. The basal part of the Permian sequence, composed of alternating chert and mudstone with basic volcanics, is assigned to the late Asselian (Early Permian) based on radiolarians. The next basaltic interval in the sequence is dated as Kungurian. The highly alkaline basic volcanics in the sequence are extremely enriched, similar to kimberlitic/lamprophyric magmas generated at continental intraplate settings. Trace element systematics suggest that these lavas were generated in a continental margin involving a metasomatized subcontinental lithospheric mantle source (SCLM). The middle part of the Permian sequences, dated by benthic foraminifera and conodont assemblages, includes detrital limestones with chert interlayers and neptunian dykes of middle Wordian to earliest Wuchiapingian age. Higher in the sequence, detrital limestones are overlain by alternating chert and mudstone with intermittent microbrecciated beds of early Wuchiapingian to middle Changhsingian (Late Permian) age based on the radiolarians. A large negative shift at the base of the Lopingian at the upper part of section is correlated to negative shifts at the Guadalupian/Lopingian boundary associated with the end‐Guadalupian mass extinction event. All these findings indicate that a continental rift system associated with a possible mantle plume existed during the late Early to Late Permian period. This event was responsible for the rupturing of the northern Gondwanan margin related to the opening of the IAE Ocean. When the deep basinal features of the Early Permian volcano‐sedimentary sequence are considered, the proto IAE oceanic crust formed possibly before the end of the Permian. This, in turn, suggests that the opening of the IAE Ocean dates back to as early as the Permian.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号