首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
新元古时期Rodinia超大陆研究进展述评   总被引:63,自引:7,他引:56  
陆松年 《地质论评》1998,44(5):489-495
新元古时期Rodinia超大陆的假说自1990年提出以来,引起国外许多地质学家的关注,其研究程度不断提高,本文在回顾Rodinia超大陆研究历史的基础上,介绍了Rodinia超大陆的古地理再造图,并着重介绍中国大陆古地块在超大陆中古地理位置的最新研究动向,文中对建立Rodinia超大陆的标志,特别是中元古代晚期-新元古代早期的造山运动和新元古代晚期的裂谷作用进行了评述。同时对我国中-新元古代与Ro  相似文献   

2.
The eastern Amery Ice Shelf (EAIS) and southwestern Prydz Bay are situated near the junction between the Late Neoproterozoic/Cambrian high-grade complex of the Prydz Belt and the Early Neoproterozoic Rayner Complex. The area contains an important geological section for understanding the tectonic evolution of East Antarctica. SHRIMP U–Pb analyses on zircons of felsic orthogneisses and mafic granulites from the area indicate that their protoliths were emplaced during four episodes of ca. 1380 Ma, ca. 1210–1170 Ma, ca. 1130–1120 Ma and ca. 1060–1020 Ma. Subsequently, these rocks experienced two episodes of high-grade metamorphism at > 970 Ma and ca. 930–900 Ma, and furthermore, most of them (except for some from the Munro Kerr Mountains and Reinbolt Hills) were subjected to high-grade metamorphic recrystallization at ca. 535 Ma. Two suites of charnockite, i.e. the Reinbolt and Jennings charnockites, intrude the Late Mesoproterozoic/Early Neoproterozoic and Late Neoproterozoic/Cambrian high-grade complexes at > 955 Ma and 500 Ma, respectively. These, together with associated granites of similar ages, reflect late- to post-orogenic magmatism occurring during the two major orogenic events. The similarity in age patterns suggests that the EAIS–Prydz Bay region may have suffered from the same high-grade tectonothermal evolution with the Rayner Complex and the Eastern Ghats of India. Three segments might constitute a previously unified Late Mesoproterozoic/Early Neoproterozoic orogen that resulted from the long-term magmatic accretion from ca. 1380 to 1020 Ma and eventual collision before ca. 900 Ma between India and the western portion of East Antarctica. The Prydz Belt may have developed on the eastern margin of the Indo-Antarctica continental block, and the Late Neoproterozoic/Cambrian suture assembling Indo-Antarctica and Australo-Antarctica continental blocks should be located southeastwards of the EAIS–Prydz Bay region.  相似文献   

3.
The role played by Paleoproterozoic cratons in southern South America from the Mesoproterozoic to the Early Cambrian is reconsidered here.This period involved protracted continental amalgamation that led to formation of the supercontinent Rodinia.followed by Neoproterozoic continental break-up,with the consequent opening of Clymene and Iapetus oceans,and finally continental re-assembly as Gondwana through complex oblique collisions in the Late Neoproterozoic to Early Cambrian.The evidence for this is based mainly on a combination of precise U-Pb SHRMP dating and radiogenic isotope data for igneous and metamorphic rocks from a large area extending from the Rio de la Plata craton in the east to the Argentine Precordillera in the west and as far north as Arequipa in Peru.Our interpretation of the paleogeographical and geodynamic evolution invokes a hypothetical Paleoproterozoic block(MARA) embracing basement ultimately older than 1.7 Ga in the Western Sierras Pampeanas(Argentina),the Arequipa block(Peru),the Rio Apa block(Brazil),and probably also the Paraguaia block(Bolivia).  相似文献   

4.
The Altaids are an orogenic collage of Neoproterozoic–Paleozoic rocks located in the center of Eurasia. This collage consists of only three oroclinally bent Neoproterozoic–Early Paleozoic magmatic arcs (Kipchak, Tuva–Mongol, and Mugodzhar–Rudny Altai), separated by sutures of their former backarc basins, which were stitched by new generations of overlapping magmatic arcs. In addition, the Altaids host accreted fragments of the Neoproterozoic to Early Paleozoic oceanic island chains and Neoproterozoic to Cenozoic plume-related magmatic rocks superimposed on the accreted fragments. All these assemblages host important, many world-class, Late Proterozoic to Early Mesozoic gold, copper–molybdenum, lead–zinc, nickel and other deposits of various types.In the Late Proterozoic, during breakup of the supercontinent Rodinia, the Kipchak and Tuva–Mongol magmatic arcs were rifted off Eastern Europe–Siberia and Laurentia to produce oceanic backarc basins. In the Late Ordovician, the Siberian craton began its clockwise rotation with respect to Eastern Europe and this coincides with the beginning of formation of the Mugodzhar–Rudny Altai arc behind the Kipchak arc. These earlier arcs produced mostly Cu–Pb–Zn VMS deposits, although some important intrusion-related orogenic Au deposits formed during arc–arc collision events in the Middle Cambrian and Late Ordovician.The clockwise rotation of Siberia continued through the Paleozoic until the Early Permian producing several episodes of oroclinal bending, strike–slip duplication and reorganization of the magmatic arcs to produce the overlapping Kazakh–Mongol and Zharma-Saur–Valerianov–Beltau-Kurama arcs that welded the extinct Kipchak and Tuva–Mongol arcs. This resulted in amalgamation of the western portion of the Altaid orogenic collage in the Late Paleozoic. Its eastern portion amalgamated only in the early Mesozoic and was overlapped by the Transbaikal magmatic arc, which developed in response to subduction of the oceanic crust of the Paleo-Pacific Ocean. Several world-class Cu–(Mo)-porphyry, Cu–Pb–Zn VMS and intrusion-related Au mineral camps, which formed in the Altaids at this stage, coincided with the episodes of plate reorganization and oroclinal bending of magmatic arcs. Major Pb–Zn and Cu sedimentary rock-hosted deposits of Kazakhstan and Central Asia formed in backarc rifts, which developed on the earlier amalgamated fragments. Major orogenic gold deposits are intrusion-related deposits, often occurring within black shale-bearing sutured backarc basins with oceanic crust.After amalgamation of the western Altaids, this part of the collage and adjacent cratons were affected by the Siberian superplume, which ascended at the Permian–Triassic transition. This plume-related magmatism produced various deposits, such as famous Ni–Cu–PGE deposits of Norilsk in the northwest of the Siberian craton.In the early Mesozoic, the eastern Altaids were oroclinally bent together with the overlapping Transbaikal magmatic arc in response to the northward migration and anti-clockwise rotation of the North China craton. The following collision of the eastern portion of the Altaid collage with the Siberian craton formed the Mongol–Okhotsk suture zone, which still links the accretionary wedges of central Mongolia and Circum-Pacific belts. In the late Mesozoic, a system of continent-scale conjugate northwest-trending and northeast-trending strike–slip faults developed in response to the southward propagation of the Siberian craton with subsequent post-mineral offset of some metallogenic belts for as much as 70–400 km, possibly in response to spreading in the Canadian basin. India–Asia collision rejuvenated some of these faults and generated a system of impact rifts.  相似文献   

5.
塔里木盆地碎屑锆石年龄分布对前寒武纪基底的指示   总被引:7,自引:0,他引:7  
应用碎屑锆石LA-ICP-MS U-Pb定年方法研究塔里木盆地前寒武纪基底与超大陆的关系, 对盆地内部不同地区井下11个碎屑岩样品进行锆石年代学分析。塔里木盆地南部与北部分别检测到早元古代、中元古代产生的物源, 结合周边造山带测年资料分析佐证了早中元古代塔里木南北块体演化有差异, 北部大量的中元古代早期年代数据可能预示塔北微块体存在与Columbia超大陆裂解时间相近的构造-热事件。南北塔里木在新元古代早期才发生碰撞拼合形成统一的基底与演化进程, 所有样品都检测到南华纪年龄数据证实塔里木板块及其周缘在此期发生大规模裂解事件, 南华纪大规模火成岩活动形成了盆地显生宙碎屑岩最主要的蚀源, 塔里木板块存在与Rodinia超大陆裂解时间相当的构造-热事件。碎屑锆石测年资料为研究塔里木板块与超大陆的关系提供了来自盆地内部的证据。  相似文献   

6.
《Gondwana Research》2003,6(3):409-416
Most of the geological and palaeogeographical models consider the Neoproterozoic supercontinent Gondwana (∼650-550 Ma) as the direct offspring of the disintegrated Mesoproterozoic supercontinent Rodinia (∼1300-750 Ma). One of the main classical sutures along which the dispersing Rodinia fragments were fused into a new supercontinent (Godwana) is identified as the Mozambique belt of East Africa. The calc-alkaline magmatism (∼1200-950 Ma) in northern Mozambique, southern Malawi and southern Tanzania is regarded as the sole evidence for fragmentation of Rodinia, which is traced within this Neoproterozoic orogenic belt. There are no unequivocal Mesoproterozoic (Kibaran) sediments in this orogen. Concrete evidence for Kibaran metamorphism and deformation is missing. Thus, these solitary documented Kibaran magmatic vestiges in the belt do not ascribe to a true complete orogenesis, which involved the disintegration and dispersal of Rodinia. Consequently, the available sparse Mesoproterozoic (Kibaran) geological and isotopic data from the Mozambique belt of East Africa contentiously suggest its involvement in the aggregation of the supercontinent Rodinia at about 1300-1100 Ma ago.  相似文献   

7.
Supercontinent evolution and the Proterozoic metallogeny of South America   总被引:2,自引:1,他引:2  
The cratonic blocks of South America have been accreted from 2.2 to 1.9 Ga, and all of these blocks have been previously involved in the assembly and breakup of the Paleoproterozoic Atlantica, the Mesoproterozoic to Neoproterozoic Rodinia, and the Neoproterozoic to Phanerozoic West Gondwana continents. Several mineralization phases have sequentially taken place during Atlantica evolution, involving Au, U, Cr, W, and Sn. During Rodinia assembly and breakup and Gondwana formation, the crust-dominated metallogenic processes have been overriding, responsible for several mineral deposits, including Au, Pd, Sn, Ni, Cu, Zn, Mn, Fe, Pb, U, P2O5, Ta, W, Li, Be and precious stones. During Rodinia breakup, epicontinental carbonate-siliciclastic basins were deposited, which host important non-ferrous base metal deposits of Cu–Co and Pb–Zn–Ag in Africa and South America. Isotope Pb–Pb analyses of sulfides from the non-ferrous deposits unambiguously indicate an upper crustal source for the metals. A genetic model for these deposits involves extensional faults driving the circulation of hydrothermal mineralizing fluids from the Archean/Paleoproterozoic basement to the Neoproterozoic sedimentary cover. These relations demonstrate the individuality of metal associations of every sediment-hosted Neoproterozoic base-metal deposit of West Gondwana has been highly influenced by the mineralogical and chemical composition of the underlying igneous and metaigneous rocks.  相似文献   

8.
The analysis of the basement of the Andes shows the strong Grenville affinities of most of the inliers exposed in the different terranes from Colombia to Patagonia. The terranes have different histories, but most of them participated in the Rodinia supercontinent amalgamation during the Mesoproterozoic between 1200 and 1000 Ma. After Rodinia break-up some terranes were left in the Laurentian side such as Cuyania and Chilenia, while others stayed in the Gondwanan side. Some of the terranes once collided with the Amazon craton remained attached, experiencing diverse rifting episodes all along the Phanerozoic, as the Arequipa and Pampia terranes. Some other basement inliers were detached in the Neoproterozoic and amalgamated again to Gondwana in the Early Cambrian, Middle Ordovician or Permian times. A few basement inliers with Permian metamorphic ages were transferred to Gondwana after Pangea break-up from the Laurentian side. Some of them were part of the present Middle America terrane. An exceptional case is the Oaxaquia terrane that was detached from the Gondwana margin after the Early Ordovician and is now one of the main Mexican terranes that collided with Laurentia. These displacements, detachments, and amalgamations indicate a complex terrane transfer between Laurentia and Gondwana during Paleozoic times, following plate reorganizations and changes in the absolute motion of Gondwana.  相似文献   

9.
寒武系是塔里木盆地当前油气增储上产的重点层系,恢复寒武纪的盆地原型是油气勘探的重要基础。利用最新的钻井、地震及露头资料,以沉积相为研究实体,将盆地充填与周缘构造演化相结合,由点→线→面进行分析,恢复了塔里木盆地寒武纪不同时期的构造-沉积环境,并建立了相应的盆地充填演化模式。塔里木盆地寒武纪经历了一次完整的海侵-海退旋回,包括早寒武世早期快速海侵→中寒武世海退、晚寒武世缓慢海侵→寒武纪末海退两个次级旋回,分别对应沉积演化的2个阶段:塔西克拉通内坳陷早寒武世的碎屑滨岸-陆棚相→局限台地相→中寒武世的蒸发台地相,晚寒武世的局限台地相→寒武纪末期的台地暴露不整合;塔东克拉通边缘坳陷为深水盆地相,经历了硅质泥岩→泥岩与灰岩薄互层→碳酸盐岩的岩相演化。寒武纪塔里木原型盆地特征及演化主要受控于Rodinia超大陆的裂解,其构造-沉积格局经历了由震旦纪末的南北分异格局向中-晚寒武世的东西分异格局的演变。  相似文献   

10.
Geological, geochronological and isotopic data are integrated in order to present a revised model for the Neoproterozoic evolution of Western Gondwana. Although the classical geodynamic scenario assumed for the period 800–700 Ma is related to Rodinia break-up and the consequent opening of major oceanic basins, a significantly different tectonic evolution can be inferred for most Western Gondwana cratons. These cratons occupied a marginal position in the southern hemisphere with respect to Rodinia and recorded subduction with back-arc extension, island arc development and limited formation of oceanic crust in internal oceans. This period was thus characterized by increased crustal growth in Western Gondwana, resulting from addition of juvenile continental crust along convergent margins. In contrast, crustal reworking and metacratonization were dominant during the subsequent assembly of Gondwana. The Río de la Plata, Congo-São Francisco, West African and Amazonian cratons collided at ca. 630–600 Ma along the West Gondwana Orogen. These events overlap in time with the onset of the opening of the Iapetus Ocean at ca. 610–600 Ma, which gave rise to the separation of Baltica, Laurentia and Amazonia and resulted from the final Rodinia break-up. The East African/Antarctic Orogen recorded the subsequent amalgamation of Western and Eastern Gondwana after ca. 580 Ma, contemporaneously with the beginning of subduction in the Terra Australis Orogen along the southern Gondwana margin. However, the Kalahari Craton was lately incorporated during the Late Ediacaran–Early Cambrian. The proposed Gondwana evolution rules out the existence of Pannotia, as the final Gondwana amalgamation postdates latest connections between Laurentia and Amazonia. Additionally, a combination of introversion and extroversion is proposed for the assembly of Gondwana. The contemporaneous record of final Rodinia break-up and Gondwana assembly has major implications for the supercontinent cycle, as supercontinent amalgamation and break-up do not necessarily represent alternating episodic processes but overlap in time.  相似文献   

11.
The final assembly of the supercontinent Gondwana during the Pan-African orogenic episodes (ca. 550–520 Ma) almost simultaneously took place with the Cambrian explosion that is best manifested by a number of Cambrian Burgess Shale-type Lagerstätten in South China. The relationship between South China and Gondwana during the Cambrian is far from consensus. Burgess Shale-type Lagerstätten may have potential importance for the paleogeographic reconstruction. However, such Lagerstätten have been known in large number only in Laurentia and South China, far less common in Gondwana and other continents. Burgess Shale-type Lagerstätten in South China are not evenly spaced through the Cambrian. They appear to be concentrated in the Lower Cambrian, particularly in the Canglangpuian and Qiongzhusian stages, much reduced in number from the uppermost Lower Cambrian. Of ten reported such Lagerstätten, only the Kaili biota (basal Middle Cambrian) is known to be younger than Early Cambrian. This reduction could be explained by the fact that vast areas of siliciclastic facies in both the western plate interior (platform) and the eastern slope basin during most time of Early Cambrian (Meishucunian to Canglangpuian) is evolved into carbonate facies at the very end of Early Cambrian (Longwangmiaoian). It has been known from this study that both siliciclastic platform facies and slope basin facies (shale basin) could preserve soft-bodied fossils. Cambrian Burgess Shale-type Lagerstätten in South China are of great significance for providing a sequences of exceptionally preserved biota in a chronological succession. Comparison of such Lagerstätten in a chronological framework may give us more details on the Cambrian explosion events.  相似文献   

12.
塔里木盆地库鲁克塔格地区是重要的油气资源战略接替区域之一,其特殊的构造背景成为研究盆山耦合及区域构造演化的有效切入点。冰川、火山、风暴、浊流等事件沉积的产物,广泛发育于塔东北库鲁克塔格地区震旦—奥陶系的地层中。这些地质事件的发生时期与库鲁克塔格地区的构造演化具有明显的耦合关系。Rodinia超大陆的裂解是全球新元古代冰川沉积的诱发因素,也使库鲁克塔格地区在震旦纪发育冰川相的沉积。发生于早寒武世的火山事件也是Rodinia超大陆同期裂解的表现。在塔东北地区,裂解导致的持续拉张作用一直延续到早奥陶世末期,但在晚寒武世曾发生过一次持续时间较短的构造反转,区域构造应力场由拉张转为挤压,导致南、北沉积相区水体变浅,受到风暴作用影响。在挤压的区域构造背景下,中—晚奥陶世库鲁克塔格急剧隆升,物源供给的加大,为浊流事件的沉积提供了有利条件。另外,区域的构造背景变化也对于该地区的源岩和储层的产生起了决定性的因素。在震旦—早奥陶世晚期拉张的大地构造背景下,早—中寒武世及早奥陶世成为烃源岩的主要形成时期。优质储层主要为碳酸盐岩及碎屑岩,发育于晚震旦世、晚寒武世、中—晚奥陶世。孔隙类型主要为晶间孔、溶孔、裂缝等。这些源岩和储层与地层中的泥岩在垂向上组成多套生储盖组合。  相似文献   

13.
湘西北花垣县及邻区,在下寒武统清虚洞组下部发育一套地质特征典型、沉积序列明显的浊积岩。其底面侵蚀构造清楚,覆盖于底面上的各层段厚度变化较大,在各层段内由下往上碎屑粒度依次变细,并相继出现有变形纹层、平行纹层和波痕纹层理等沉积构造,是典型的浅海浊积岩。据各层段的发育情况可总结为5种剖面结构。因冰川消融而使海平面上升,故清水洞组浊积期海水深度增大。浊流活动受北东东向保靖—花垣断裂控制,其活动与新元古代发生并延续到早古生代的罗迪尼亚超大陆裂解事件有关。  相似文献   

14.
We discuss the question whether the late Mesoproterozoic and early Neoproterozoic rocks of eastern, central and southern Africa, Madagascar, southern India, Sri Lanka and South America have played any role in the formation and dispersal of the supercontinent Rodinia, believed to have existed between about 1000 and 750 Ma ago. First, there is little evidence for the production of significant volumes of ˜1.4–1.0 Ga (Kibaran or Grenvillian age) continental crust in the Mozambique belt (MB) of East Africa, except, perhaps, in parts of northern Mozambique. This is also valid for most terranes related to West Gondwana, which are made up of basement rocks older than Mesoproterozoic, reworked in the Brasiliano/Pan-African orogenic cycle. This crust cannot be conclusively related to either magmatic accretion processes on the active margin of Rodinia or continental collision leading to amalgamation of the supercontinent. So far, no 1.4–1.0 Ga rocks have been identified in Madagascar. Secondly, there is no conclusive evidence for a ˜1.0 Ga high-grade metamorphic event in the MB, although such metamorphism has been recorded in the presumed continuation of the MB in East Antarctica. In South America, even the Sunsas mobile belt, which is correlated with the Grenville belt of North America, does not include high-grade metamorphic rocks. All terranes with Mesoproterozoic ages seem to have evolved within extensional, aulacogen-type structures, and their compressional deformation, where observed, is normally much younger and is related to amalgamation of Gondwana. This is also valid for the Trans-Saharan and West Congo belts of West Africa.Third, there is also no evidence for post-1000 Ma sedimentary sequences that were deposited on the passive margin(s) of Rodinia. In contrast, the MB of East Africa and Madagascar is characterized by extensive structural reworking and metamorphic overprinting of Archaean rocks, particularly in Tanzania and Madagascar, and these rocks either constitute marginal parts of cratonic domains or represent crustal blocks (terranes or microcontinents?) of unknown derivation. This is also the case for most terranes included in the Borborema/Trans-Saharan belt of northeastern Brazil and west-central Africa, as well as those of the Central Goíás Massif in central Brazil and the Mantiqueira province of eastern and southeastern Brazil.Furthermore, there is evidence for extensive granitoid magmatism in the period ˜840 to <600 Ma whose predominant calc-alkaline chemistry suggests subduction-related active margin processes during the assembly of the supercontinent Gondwana. The location of the main Neoproterozoic magmatic arcs suggests that a large oceanic domain separated the core of Rodinia, namely Laurentia plus Amazonia, Baltica and West Africa, from several continental masses and fragments now in the southern hemisphere, such as the São Francisco/Congo, Kalahari and Rio de La Plata cratons, as well as the Borborema/Trans-Saharan, Central Goiás Massif and Paraná blocks. Moreover, many extensional tectonic events detected in the southern hemisphere continental masses, but also many radiometric ages of granitois that are already associated with the process of amalgamation of Gondwana, are comprised within the 800–1000 age interval. This seems incompatible with current views on the time of disintegration of Rodinia, assumed to have occurred at around 750 Ma.  相似文献   

15.
祁连山在构造上是一条经历了多期构造旋回叠加的早古生代复合型造山带,花岗质岩浆作用研究对揭示其构造演化具有重要意义。锆石U-Pb年代学统计结果表明,祁连地区花岗质岩浆活动可以分为7个大的阶段,包括古元古代早期(2 470~2 348 Ma)、古元古代晚期(1 778~1 763 Ma)、中元古代晚期-新元古代早期(1 192~888 Ma)、新元古代中期(853~736 Ma)、中寒武世-志留纪(516~419 Ma),泥盆纪-早石炭世(418~350 Ma)以及中二叠世-晚三叠世(271~211 Ma)。其中古元古代早期发育强过铝质高钾钙碱性S型和准铝质低钾拉斑-高钾钙碱性I型花岗岩,记录了早期的陆壳增生及改造事件。古元古代晚期为准铝质-弱过铝质高钾钙碱性-钾玄质A型花岗岩,是Columbia超大陆裂解事件的产物。中元古代晚期-新元古代早期以过铝质-强过铝质钙碱性-钾玄质S型花岗岩为主,新元古代中期以准铝质-强过铝质钙碱性-高钾钙碱性A型花岗岩为主,分别对应Rodinia超大陆的汇聚和裂解事件。中寒武世-志留纪花岗岩是洋陆转换过程中的产物,约440 Ma加厚基性下地壳部分熔融形成的低Mg埃达克岩的广泛出现指示祁连地区全面进入碰撞造山阶段。泥盆纪-早石炭世花岗岩代表后碰撞伸展阶段岩浆岩组合,发育准铝质-强过铝质低钾拉斑-钾玄质等一系列花岗岩。中二叠世-晚三叠世花岗岩以准铝质-弱过铝质钙碱性-高钾钙碱性I型花岗岩为主,有少量弱过铝质高钾钙碱性A型花岗岩,是宗务隆洋俯冲消减以及碰撞后伸展过程的产物。  相似文献   

16.
Early Cambrian and Mid-Late Neoproterozoic volcanic rocks in China are widespread on several Precambrian continental blocks,which had aggregated to form part of the Rodinia supercontinent by ca.900 Ma.On the basis of petrogeochemical data,the basic lavas can be classified into two major magma types:HT(Ti/Y>500) and LT(Ti/Y<500) that can be further divided into HT1 (Nb/La>0.85) and HT2(Nb/La≤0.85),and LT1(Nb/La>0.85) and LT2(Nb/La≤0.85) subtypes, respectively.The geochemical variation of the HT2 and LT2 lavas can be accounted for by lithospheric contamination of asthenosphere-(or plume-) derived magmas,whereas the parental magmas of the HT1 and LT1 lavas did not undergo,during their ascent,pronounced lithospheric contamination.These volcanics exhibit at least three characteristics:(1) most have a compositional bimodality;(2) they were formed in an intracontinental rift setting;and(3) they are genetically linked with mantle plumes or a mantle surperplume.This rift-related volcanism at end of the MidNeoproterozoic and Early Cambrian coincided temporally with the separation between AustraliaEast Antarctica,South China and Laurentia and between Australia and Tarim,respectively. The Mid—Late Neoproterozoic volcanism in China is the geologic record of the rifting and break-up of the supercontinent Rodinia.  相似文献   

17.
《Geodinamica Acta》2001,14(6):373-385
The Early Cryogenian groups of Sidi Flah, Kelaat Mgouna and Boumalne (Saghro, Anti-Atlas, Morocco) are constituted by turbiditic deposits and interbedded lavas, accumulated in tectonic basins. At Sidi Flah, volcanics are transitional showing initial rift tholeiites (IRT) fingerprint and alkali basalts of oceanic island basalt (OIB) compositions. At Kelaat Mgouna, volcanics consist of low-Nb continental tholeiites. At Boumalne, basalts are of IRT composition. The volcanic and sedimentary formations belong to a nascent rift caused by thermal doming along a SW-NE axis, the Saghro rift. The continental break-up occurred in the early Neoproterozoic and during the Rodinia supercontinent dislocation, within a continent called “Ibero-saharian Craton” which was in front of the West-African Craton located near the South Pole. The Saghro rift is contemporaneous to the opening of an oceanic domain represented by Central Anti-Atlas ophiolites and related to the extension of the Brazialiano Ocean.  相似文献   

18.
The available geological, geochronological and isotopic data on the felsic magmatic and related rocks from South Siberia, Transbaikalia and Mongolia are summarized to improve our understanding of the mechanisms and processes of the Phanerozoic crustal growth in the Central Asian mobile belt (CAMB). The following isotope provinces have been recognised: ‘Precambrian’ (TDM=3.3–2.9 and 2.5–0.9 Ga) at the microcontinental blocks, ‘Caledonian’ (TDM=1.1–0.55 Ga), ‘Hercynian’ (TDM=0.8–0.5 Ma) and ‘Indosinian’ (TDM=0.3 Ga) that coincide with coeval tectonic zones and formed at 570–475, 420–320 and 310–220 Ma. Continental crust of the microcontinents is underlain by, or intermixed with, ‘juvenile’ crust as evidenced by its isotopic heterogeneity. The continental crust of the Caledonian, Hercynian and Indosinian provinces is isotopically homogeneous and was produced from respective juvenile sources with addition of old crustal material in the island arcs or active continental margin environments. The crustal growth in the CAMB had episodic character and important crust-forming events took place in the Phanerozoic. Formation of the CAMB was connected with break up of the Rodinia supercontinent in consequence of creation of the South-Pacific hot superplume. Intraplate magmatism preceding and accompanying permanently other magmatic activity in the CAMB was caused by influence of the long-term South-Pacific plume or the Asian plume damping since the Devonian.  相似文献   

19.
An important role of the early Neoproterozoic juvenile crustal growth in the formation of the Khangai group of Precambrian terranes in the Central Asian Orogenic Belt was demonstrated by the example of the Holbo Nur Zone of the Songin Block. Magmatic complexes of this zone correspond to different settings of the Early Neoproterozoic ocean: oceanic islands, mid-ocean ridges, intraoceanic island arcs, and turbidite basins. Obtained data on volcanic rocks and associated granitoids constrain a timing of the island-arc magmatic complexes, at least within the interval of 888–859 Ma. The comparison of structures of the Songino and Tarbagatai blocks of the Khangai group of terranes showed that they share many common features in their geology and evolution and may be united into the single Songino–Tarbagatai terrane. This terrane was formed owing to the Early Neoproterozoic (~800 Ma) accretion of the ocean island, spreading, island-arc, and turbidite complexes of the oceanic plate to a stable continental massif represented by the Early Neoproterozoic Ider Complex of the Tarbagatai Block. The involvement of the Dzabkhan terrane into a Khangai collage of terranes is constrained between the formation of the volcanic rocks of the Dzabkhan Formation (~770–755 Ma), which are unknown in the Songino–Tarbagatai terrane, and the Tsagaan-Olom carbonate cover (~630 Ma), overlying both the Dzabkhan and Songino–Tarbagatai terranes. It was proposed that the formation of the Precambrian terranes of the Central Asian Orogenic Belt began from the Early Neoproterozoic accretion to the Rodinia supercontinent. The fragmentation of the latter above a mantle superplume at the end of the Early Neoproterozoic spanned also the newly formed fold area. This led to the formation of terranes, which included both fragments of the Paleoproterozoic craton and Early Neoproterozoic structures. Subsequent amalgamation of these Precambrian crustal fragments into composite terranes possibly occurred at the end of the early Baikalian tectonic phase.  相似文献   

20.
There are several pre-orogenic Neoproterozoic granitoid and metavolcanic rocks in the Lufilian–Zambezi belt in Zambia and Zimbabwe that are interpreted to have been emplaced in a continental-rift setting that is linked to the break-up of the Rodinia supercontinent. However, no geochemical data were previously available for these rocks in the Zambian part of the belt to support this model. We conducted petrographic and whole-rock chemical analyses of the Neoproterozoic Nchanga Granite, Lusaka Granite, Ngoma Gneiss and felsic metavolcanic rocks from the Lufilian–Zambezi belt in Zambian, in order to evaluate their chemical characteristics and tectonic settings. Other magmatic rocks of importance for understanding the evolution of the belt in Zambia, included in this study, are the Mesoproterozoic Munali Hills Granite and associated amphibolites and the Mpande Gneiss. The Neoproterozoic rocks have monzogranitic compositions, aluminum-saturation indices (ASI) < 1.1, and high contents of high field strength elements (HFSE) and rare earth elements (REE). The chondrite-normalised spider diagrams are similar to those of A-type granites from the Lachlan fold belt and show negative Sr, P, and Ti anomalies. On various tectonic discrimination diagrams the Neoproterozoic rocks plot mainly in A-type granite fields. These petrographic and trace element compositions indicate that these rocks are A-type felsic rocks, but they do not have features of granites and rhyolites emplaced in true continental-rift settings, as previously suggested. On the basis of the A-type features and independent regional geological and geochronological data, we suggest that the Neoproterozoic granitoid and felsic metavolcanic rocks were emplaced during the earliest extensional stages of continental rifting in the Lufilian–Zambezi belt. The apparent continental-arc like chemistry of the granitoid and felsic metavolcanic rocks is thus inferred to be inherited from calcalkaline sources. The Mesoproterozoic Munali Hills Granite and Mpande Gneiss have trace element features e.g., Nb–Ta depletions, which indicate that that these gneisses were emplaced in a convergent-margin setting. The MORB-normalised spider diagram of co-magmatic amphibolites exhibit a fractionated LILE/HFSE pattern recognized in subduction zones. This inference is consistent with remnants of ocean crust, juvenile Island arcs and ophiolites elsewhere in the Mesoproterozoic Irumide belt in Zambia and Zimbabwe. In addition, we report the first U–Pb zircon age of 1090.1 ± 1.3 Ma for the Munali Hills Granite. The age for the Munali Hills Granite provides new constraints on correlation and tectono-thermal activity in the Lufilian–Zambezi belt. The age of the Munali Hills Granite indicates that some supracrustal rocks in the Zambezi belt of Zambia, which were previously thought to be Neoproterozoic and correlated with the Katanga Supergroup in the Lufilian belt, are Mesoproterozoic or older. Consequently, previous regional lithostratigraphic correlations in the Lufilian–Zambezi belt would require revision.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号