首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Non-linear probability distributions for Morison-type wave loading are used to indicate the effect of drag forces on the expected fatigue damage and the expected extreme response of quasi-statically responding (members of) offshore structures. Results are compared with those from commonly used equivalent linear methods of analysis. It is found that the expected fatigue damage and the expected extreme response based on non-linear methods are approximately equal to results from linear methods when inertia is the dominant force. However, in the event of the drag forces forming a considerable part of the total wave loading, both fatigue damage and extreme response can significantly exceed those predicted by linear methods. The difference between the two methods is quantified in terms of a drag-inertia parameter, which is directly related to the sea state under consideration.  相似文献   

2.
The lateral stability of a submarine hoseline in a slowly varying current is investigated. If the current force overcomes the sea bottom resistance, the hose segment is assumed to slide on the sea bottom without twisting. The stability is evaluated in terms of lateral deflections, hose tensions, and anchor loads. The behavior of a hoseline in a variable current is simulated based on nonlinear cable-like response to lift and Morison-type drag forces. Principles and the numerical algorithm of the simulation model are briefly summarized. A parametric analysis is conducted to study the influence on the hose response of the physical parameters considered in the simulation model. The results indicate that, for a practical hoseline, the most critical parameters are: the segment length-to-span ratio, the axial rigidity of the hose, the hose size, and the current velocity. The sea bottom resistance is negligible from a design point of view.  相似文献   

3.
The responses of a monopile offshore wind turbine subjected to irregular wave loads are investigated numerically and experimentally, considering a range of sea states. An extensive experimental campaign was carried out on a fully flexible model, representative of a 5 MW offshore wind turbine, at 1:40 scale. An assessment of the experimental results for the response amplitude operator for regular waves and the 90th percentile seabed bending moment in long-crested irregular waves is carried out using two models (analytical and numerical) for uncertainty propagation, suggesting that bias errors in the model properties and in the wave elevation contribute the most to the total uncertainty. The experimental results are also compared to a numerical model using beam elements and Morison-type wave loads with second order wave kinematics. The numerical model does not capture all of the responses within the level of uncertainty of the experiments, and possible reasons for the discrepancies are discussed.  相似文献   

4.
The paper presents a constitutive model to describe undrained cyclic stress-strain responses of soft clays based on the equivalent visco-elastic and creep theories. The hysteretic and nonlinear stress-strain responses of soft clays are described using the equivalent visco-elastic relationship and variations of the cyclic modulus and the damping ratio with the octahedral shear strain, respectively in the model. The cyclic accumulative strain is described using the Mises creeping potential function and the associated flow rule. The method determining the model parameters is given by static and cyclic triaxial tests. The finite element method to analyze deformation of anchor foundation in soft clay under static and cyclic loads is developed based on the model. For the method, a cyclic loading time history is divided into a series of incremental loading sub-processes which include one load cycle at least. The cyclic stress-strain responses of soil elements at any time are not tracked in detail and determined by the equivalent visco-elastic calculations for every loading sub-process. The accumulative deformation of anchor foundations is calculated using the initial strain algorithm. The method has been implemented in ABAQUS Software by developing interface programs. Model tests of the suction anchors are conducted and predicted using the method. Comparisons of predicted and model test results show that the method can be used to evaluate cyclic stability and reveal the failure process and mechanism of anchor foundations by analyzing deformation time-histories.  相似文献   

5.
Optimal Design of TMD Under Long-Term Nonstationary Wave Loading   总被引:3,自引:0,他引:3  
—Traditionally,the use of a tuned mass damper(TMD)is to improve the surviability of the pri-mary structure under extraordinary loading environment while the design loading condition is describedby either a harmonic function or a stationary random process that can be fully characterized by a powerspectral density(PSD)function.Aiming at prolonging the fatigue life of an offshore platform,this studyconsiders an optimal design of TMD for the platform under long-term nonstationary loading due tolong-term random sea waves characterized by a probabilistic power spectral density(PPSD)function.Inprinciple,a PPSD could be derived based on numerous ordinary PSD functions;and each of them is treat-ed as realization of the corresponding PPSD.This study provides a theoretical development for theoptimal TMD design by minimizing the cost function to be the mean square value of the expectedlong-term response.A numerical example is presented to illustrate the developed design procedure.  相似文献   

6.
Abstract

Pile foundation is the most popular option for the foundation of offshore wind turbines. The degradation of stiffness and bearing capacity of pile foundation induced by cyclic loading will be harmful for structure safety. In this article, a modified undrained elastic–plastic model considering the cyclic degradation of clay soil is proposed, and a simplified calculation method (SCM) based on shear displacement method is presented to calculate the axial degradated capacity of a single pile foundation for offshore wind turbines resisting cyclic loadings. The conception of plastic zone thickness Rp is introduced to obtain the function between accumulated plastic strain and displacement of soil around pile side. The axial ultimate capacity of single piles under axial cyclic loading calculated by this simplified analysis have a good consistency with the results from the finite element analysis, which verifies the accuracy and reliability of this method. As an instance, the behavior of pile foundation of an offshore wind farm under cyclic load is studied using the proposed numerical method and SCM. This simplified method may provide valuable reference for engineering design.  相似文献   

7.
SPAR平台装船作业和运输过程中受到的风荷载对作业的安全性有极大的影响。采用计算流体动力学方法,针对作业和极限两种工况,对桁架式SPAR平台在不同方向下的风荷载进行数值模拟,然后将数值模拟的结果和规范计算的结果进行比较,证实了CFD计算方法对复杂结构风荷载的有效性,为计算桁架式SPAR平台这类复杂结构物的风荷载提供了一个新方法。  相似文献   

8.
复合加载下桶形基础循环承载性能数值分析   总被引:1,自引:0,他引:1  
作为一种新型基础形式,吸力式桶形基础除了承受海洋平台结构及自身重量等竖向荷载的长期作用之外,往往还遭受波浪等所产生的水平荷载及其力矩等其它荷载分量的瞬时或循环作用。对复合加载模式下软土地基中桶形基础及其结构的循环承载性能尚缺乏合理的分析与计算方法。应用Andersen等对重力式平台基础及地基所建议的分析方法,基于软黏土的循环强度概念,在大型通用有限元分析软件ABAQUS平台上,通过二次开发,将软土的循环强度与Mises屈服准则结合,针对吸力式桶形基础,基于拟静力分析建立了复合加载模式下循环承载性能的计算模型,并与复合加载作用下极限承载性能进行了对比。由此表明,与极限承载力相比,桶形基础的循环承载力显著降低。  相似文献   

9.
Optimal Active Control of Wave-Induced Vibration for Offshore Platforms   总被引:2,自引:0,他引:2  
An obvious motivation of this paper is to examine the effectiveness of the lateral vibration control of a jacket type offshore platform with an AMD control device, in conjunction with H2 control algorithm, which is an optimal frequency domain control method based on minimization of H2 norm of the system transfer function. In this study, the offshore platform is modeled numerically by use of the finite element method, instead of a lumped mass model. This structural model is later simplified to be single-degree-of-freedom (SDOF) system by extracting the first vibration mode of the structure. The corresponding "generalized" wave force is determined based on an analytical approximation of the first mode shape function, the physical wave loading being calculated from the linearized Morison equation. This approach facilitates the filter design for the generalized force. Furthermore, the present paper also intends to make numerical comparison between H2 active control and the corresponding passive control using a T  相似文献   

10.
Non-linear analysis of undrained cyclic strength of soft marine clay   总被引:2,自引:0,他引:2  
Iwan models are used to simulate the non-linear and hysteretic behaviour of soils under cyclic loading conditions. However, the model in its original form cannot take into account the stiffness degradation which is observed during cyclic loading of soft clays. Studies show that the stiffness reduction (expressed as degradation index) can be represented as a function of the number of cycles and of a degradation parameter depending on the strain amplitude in the case of strain controlled cyclic loading tests. This degradation index has been incorporated into Iwan's series–parallel model as a single fatigue parameter to account for the degradation during cyclic loading. The comparisons made with the existing results of two marine clays tested under undrained cyclic triaxial and simple shear conditions provided an opportunity to understand the capability of the one dimensional model.  相似文献   

11.
The dynamic response of a tapered pile (considering its construction disturbance effect) is investigated when the tapered pile is subjected to a time-harmonic torsional loading. For most engineering conditions, the surrounding soil may be weakened or strengthened owing to the construction disturbance effect of the tapered pile, resulting in the soil becoming radially inhomogeneous. In order to consider this problem, the circumferential shear complex stiffness transfer model is proposed to simulate the radial inhomogeneity of soil. Then, the governing equations of a tapered pile-soil system subjected to torsional dynamic loading are established. By virtue of the circumferential shear complex stiffness transfer method and the impedance function transfer method, the analytical solution of torsional dynamic impedance at the head of the tapered pile is derived. Based on the presented solution, the influence of the construction disturbance effect of the surrounding soil on the torsional dynamic impedance at the pile head is investigated within the low-frequency range concerned in the design of a dynamic foundation. The results show that, even if the hardening range and softening range of the surrounding soil vary within a smaller scale, the hardening effect and softening effect also have a notable influence on the torsional dynamic impedance at the pile head.  相似文献   

12.
Strengthening soft foundation by vacuum loading from lower position is a new method of ac-celerating the consolidation of dredger fill.This paper presents the mechanism of soft foundation strength-ening by vacuum loading from lower position and evaluates the effectiveness of this method under variousboundary conditions by means of finite element method(FEM)on the basis of Biot's consolidationtheory.  相似文献   

13.
The degree of bending (DoB) characterizing the through-the-thickness stress distribution has a profound effect on the fatigue behavior of tubular joints commonly found in steel offshore structures and the determination of DoB values is essential for improving the accuracy of fatigue life estimation. Probability density functions of the involved random variables are necessary for the fatigue reliability analysis of offshore structures. The objective of present research was the derivation of probability density function (PDF) for the DoB in tubular KT-joints commonly found in jacket-type offshore platforms. A total of 162 finite element (FE) analyses were carried out on 81 FE models of KT-joints subjected to two types of axial loading. Generated FE models were validated using experimental data, previous FE results, and available parametric equations. Based on the results of parametric FE study, a sample database was prepared for the DoB values and density histograms were generated for respective samples based on the Freedman-Diaconis rule. Thirteen theoretical PDFs were fitted to the developed histograms and the maximum likelihood (ML) method was applied to evaluate the parameters of fitted PDFs. In each case, the Kolmogorov-Smirnov test was used to evaluate the goodness of fit. Finally, the Generalized Extreme Value model was proposed as the governing probability distribution function for the DoB. After substituting the values of estimated parameters, six fully defined PDFs were presented for the DoB in tubular KT-joints subjected to two types of axial loading.  相似文献   

14.
- An approximate method is presented to investigate the earthquake response of the fluid-single leg (shortened for S. L.) gravity platform-soil interaction system. By assuming a suitable form of the velocity potential of the radiation waves and by using the motion equation and the boundary conditions, the unknown coefficients can be obtained. Thereafter the function of frequency for the interaction system may also be obtained. In this paper, the difference of the system dynamic response between rigid foundation is analyzed and the influences of the various foundation geometric dimension and the various water-depth on the hydrodynamic loading and dynamic response of the system is illustrated.  相似文献   

15.
南海及邻近海峡垂向位移负荷潮和自吸?负荷潮   总被引:1,自引:1,他引:0  
本文采用Green函数方法,基于高分辨率南海海潮模型、DTU10全球海洋潮汐模型以及Gutenberg-Bullen A地球模型计算了南海及邻近海峡的负荷潮。结果表明,M2垂向位移负荷潮振幅最大值出现在台湾海峡,其值超过18 mm;另一个极大值区出现在加里曼丹岛西北外海,其值超过14 mm。K1和O1垂向位移负荷潮振幅在南海南部最大,分别超过18 mm和14 mm;另一个极大值区出现在北部湾,振幅超过8 mm。在研究海区内,全日潮的垂向位移负荷潮不出现无潮点。自吸?负荷潮分布特征与垂向位移负荷潮相近,其振幅大约是垂向位移负荷潮的1.2~1.7倍,其位相与垂向位移负荷潮基本上相反。M2自吸?负荷潮最大振幅值也出现台湾海峡和加里曼丹岛西北外海,其值分别超过24 mm和18 mm。  相似文献   

16.
研究外荷载为长期非平稳随机过程。考虑长期荷载的特性 ,采用 1个概率谱密度函数来反映长期非平稳随机荷载及其特征 ;概率谱密度函数是基于大量的一般谱密度函数的统计特性获得。以延长结构的抗疲劳使用寿命为目标函数 ,提出了调谐质量减振阻尼器的优化设计方法 ,这在实际工程中有着极为广阔的应用前景。本文旨在从理论上发展长期非平稳随机荷载作用下调谐质量减振阻尼器的优化设计方法 ;文中采用长期波浪实测数据 ,给出了 1个数值算例说明整个设计过程。  相似文献   

17.
Conventional drainage consolidation methods cause significant energy consumption and environmental issues. In this paper, a method combining siphon drainage and surcharge loading is proposed to drain water from soft soil with vertically installed prefabricated vertical drains (PVDs) and a siphon tube. To investigate the availability and effectiveness of this method, a laboratory physical modeling test was conducted to investigate the drainage and consolidation behavior. The laboratory modeling test results of this method were compared with the calculated results of the ideal sand-drained ground consolidation method to clarify the advantages and mechanism of this method. Comparison results show that the pore pressure and settlement in the proposed method developed faster than the calculation results of ideal sand-drained consolidation theory. About 10?m thickness of unsaturated zone can be formed by siphon drainage which produce a surcharge loading effect on the soil below the flow profile. Drainage is a very slow process in soft soil, and siphon drainage can work continually. Siphon drainage combined with surcharge loading is potentially a good alternative to drain water from soft clay economically and environmentally.  相似文献   

18.
The fatigue flexural performance of RC beams attacked by salt spray was studied. A testing method involving electro osmosis, electrical accelerated corrosion and salt spray was proposed. This corrosion process method effectively simulates real-world salt spray and fatigue loading exerted by RC components on sea bridges. Four RC beams that have different stress amplitudes were tested. It is found that deterioration by corrosion and fatigue loading reduces the fatigue life of the RC and decreases the ability of deformation. The fatigue life and deflection ability could be reduced by increasing the stress amplitude and the corrosion duration time. The test result demonstrates that this experimental method can couple corrosion deterioration and fatigue loading reasonably. This procedure may be applied to evaluate the fatigue life and concrete durability of RC components located in a natural salt spray environment.  相似文献   

19.
以壳聚糖和CuCl2·2H2O为原料,分别采用直接负载法和吸附法成功制备了壳聚糖/纳米铜复合微球,运用傅里叶变换红外光谱(FT-IR)、X-射线衍射(XDR)和扫描电镜(SEM)对催化剂结构进行了表征。以刚果红(CR)染料为目标污染物,评价了催化剂的制备方法、制备条件及氢转移催化反应条件对其催化性能的影响。结果表明,由直接负载法(CS/CuNPs)和吸附法(CS/CuNPs-X)制备的壳聚糖/纳米铜复合微球在CR染料浓度为100 mg/L,催化剂投加量为0.05 g,供氢体浓度为0.05 mol/L的氢转移催化反应条件下,催化反应进行180和60 min时CR脱色率可分别达95.8%和96.8%。CS/CuNPs-X比CS/CuNPs表现了更高的对CR氢转移催化反应的催化速率。两种催化剂催化还原CR染料的反应均符合准一级动力学模型。在连续循环使用10次后,CS/CuNPs和CS/CuNPs-X对CR的脱色率分别为93.9%和89.4%,表明催化剂具有良好的重复使用性能。  相似文献   

20.
A static drill rooted nodular pile is a new type of composite pile foundation with high bearing capacity, and mud emissions can be largely reduced using the static drill rooted method. This report presents a model test on the behavior of this composite pile in a test box. The load-displacement response, axial force, skin friction, and mobilized base load are discussed in the report; in particular, the force in the cemented soil was investigated based on the measured data. Moreover, the finite element software ABAQUS was used to help investigate this behavior more thoroughly. It was determined that the function of the cemented soil around the pile shaft was different from that at the enlarged pile base; the stress in the cemented soil around the shaft increased suddenly when nearing the pile base; the ultimate skin friction obtained in the model test was larger than that estimated in the field test; and the relative displacement between the precast nodular pile and the cemented soil could be ignored during the loading process, which corresponded to the result of the field test and demonstrated that the nodular pile and cemented soil act as one entity during the loading process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号