首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Garnet in a staurolite–kyanite zone sample from central Vermont displays a bell‐shaped Mn growth zoning with diffusional modification over the outer 100 μm. The diffusion is driven by the prograde net transfer reaction garnet + chlorite = kyanite + biotite as is evidenced by a well‐defined resorption zone on the rim. Analysis of the reaction history and resorbed garnet composition suggests that the peak temperature attained was 620–660 °C. Diffusional modelling of the rim diffusion provides an estimate of the duration of the metamorphic episode over which significant garnet diffusion occurs. The duration is a function of the assumed peak temperature and garnet diffusivities and range from a few hundred thousand years to a few million years. Such short durations require rapid tectonic burial and exhumation of relatively thin tectonic slices.  相似文献   

2.
Paragonite- and garnet-bearing high-grade epidote-amphibolite (PGEA) in the Ise area of the Hida Mountains, Japan is characterized by the high-pressure (HP) epidote-amphibolite facies parageneses (M1), garnet + hornblende + clinozoisite + paragonite + quartz + rutile. Paragonite and garnet of the peak M1 stage are locally replaced by retrograde albite (+ oligoclase) and chlorite (M2), respectively. Phase equilibria constrain peak metamorphic conditions of P = 1.1–1.4 GPa and T = 530–570 °C, and a decompressional PT path for this rock. Mineral parageneses of prograde epidote-amphibolite facies are comparable to some HP rocks from the Hongan region of western Dabie, but differ from other HP mafic schists with cooling ages of c. 330 Ma in the Hida Mountains. New paragonite K–Ar dating for the PGEA yields a Triassic cooling event at 210 Ma that is coeval with regional cooling and exhumation of the Sulu–Dabie–Qinling (SDQ) belt. Both petrological and geochronological data of the Triassic HP epidote-amphibolite in Hida Mountains support our earlier hypothesis that the SDQ belt extends across the Korean Peninsula to SW Japan.  相似文献   

3.
In Kameng Valley of Arunachal Pradesh, the crystalline rocks of Se La Group of Higher Himalaya are thrust over the Lesser Himalayan rocks of Dirang Formation, Bomdila Group along the Main Central Thrust and exhibit well preserved structures on macro- to microscopic scales. Detailed analysis of structures reveals that the rocks of the area have suffered four phases of deformation D1, D2, D3 and D4. These structures have been grouped into (i) early structures (ii) structures related to progressive ductile thrusting and (iii) late structures. The early structures which developed before thrusting formed during D1 and D2 phases of deformation, synchronous to F1 and F2 phases of folding respectively. The structures related to progressive ductile shearing developed during D3 phase of deformation, when the emplacement of the crystalline rocks took place over the rocks of Dirang Formation along the Main Central Thrust. Different asymmetric structures/kinematic indicators developed during this ductile/brittle-ductile regime suggest top-to-SSW sense of movement of the crystalline rocks of the area. D4 is attributed to brittle deformation. Based on satellite data two new thrusts, i.e. Tawang and Se La thrusts have been identified parallel to Main Central Thrust, which are suggestive of imbricate thrusting. Strain analysis from the quartz grains of the gneissic rocks reveals constriction type of strain ellipsoid where k value is higher near the MCT, gradually decreases towards the north. Further, the dynamic analysis carried out on the mesoscopic ductile and brittle-ductile shear zones suggest a NNE-SSW horizontal compression corresponding to the direction of northward movement of Indian Plate.  相似文献   

4.
The spinel–quartz-bearing Al–Fe granulites from Ihouhaouene (In Ouzzal, West Hoggar) have a migmatitic appearance with quartzo-feldspathic layers intercalated with restitic layers. These granulites are characterized by a hercynitic spinel–quartz assemblage typical of high grade terranes. The stability of the spinel–quartz assemblage is attributed to an elevation of temperature (from 800 to >1100 °C) at high pressures (10–11 kbar), followed by an isothermal decompression from 9 to 5 kbar, an evolution typical of the In Ouzzal clockwise PT path. The Al–Fe granulites’ history can be subdivided into different successive crystallisation stages. During the first stage, the spinel–quartz assemblage formed, probably following a prograde event that also produced partial melting. During a second stage, the primary spinel–garnet–sillimanite–quartz paragenesis broke-down to give rise to the secondary assemblage. The metamorphic evolution and phase relations during this stage are shown in PTX pseudosections calculated for the simple FMASH system. These pseudosections show that the orthopyroxene–cordierite–spinel symplectite appeared during a high temperature decompression, as a product of destabilisation of garnet in sillimanite-free microdomains with high XMg values. At the same time, the spinel–quartz association broke-down into cordierite in Fe-rich microdomains. Average pressure and temperature estimates for the orthopyroxene–spinel–garnet–cordierite–quartz association are close to the thermal peak of metamorphism (1000 ± 116 °C at 6.3 ± 0.5 kbar). With decreasing temperatures garnet–sillimanite corona developed from the breakdown of the primary spinel–quartz assemblage in the Fe-rich microdomains, whereas cordierite–spinel formed at the expense of primary sillimanite and garnet in the Mg-rich microdomains.  相似文献   

5.
Blocks of highly foliated amphibolite are locally embedded within a serpentinite mélange underlying the Yarlung Zangbo ophiolites in the Xigaze area of southern Tibet. The ophiolites are remnants of an Early Cretaceous back-arc basin within the Permo-Cretaceous Tethys Ocean, which are exposed along in the Yarlung Zangbo Suture Zone (YZSZ). These amphibolites are interpreted as fragments of a dismembered dynamothermal sole. Three types of amphibolite are present: (1) common amphibolite with assemblages of Hbl + Pl ± Ep ± Ap ± Ttn, (2) clinopyroxene-bearing amphibolite with Hbl ± Pl ± Cpx ± Ep ± Ttn ± Qtz ± Ap and (3) garnet–clinopyroxene-bearing amphibolite characterized by the assemblages Hbl + Cpx + Grt + Pl ± Rt and Grt + Hbl + Pl (corona assemblage). In all three types, plagioclase is pseudomorphed by late albite–prehnite. Retrograde cataclastic veins containing assemblages of Prh + Ab + Ep ± Chl are also present. P–T estimates indicate that the amphibolites reached peak metamorphic conditions of 13–15 kbar and 750–875 °C. Partial replacement of pyrope-rich (up to 35 mole%) garnet by Al-tschermakite (Al2O3 up to 21 wt%) reflects a high pressure (≈18 kbar, 600 °C) metamorphic event followed by rapid exhumation. Soon after exhumation, the amphibolites were intruded by very fine-grained diabase dykes that were then hydrothermally altered. The field relationships and metamorphic history of the amphibolites indicate formation during inception of subduction within a back-arc basin prior to obduction of the ophiolites onto the Indian passive margin.  相似文献   

6.
The Mg–Al granulites from Ganguvarpatti consist of orthopyroxene–sillimanite–garnet ± quartz as peak assemblage, with a few porphyroblasts of cordierite and sapphirine. These assemblages were strongly overprinted by late symplectites and coronas. Orthopyroxene inclusions in garnet and porphyroblast cores have the highest X Mg (0.80) and Al2O3 content (10.7 wt%). The estimated near-peak metamorphic conditions (1,000±50°C and 11 kbar) using garnet–orthopyroxene geothermobarometry are consistent with those determined using a petrogenetic grid. The proposed multi-stage evolution process implies an initial decompression, deduced from multi-phase symplectites, followed by cooling during biotite formation. Further late decompression is explained from the orthopyroxene rims on biotite. This proposed P–T path thus suggests a unique and complex evolution history for the UHT granulites of southern India. Present results are comparable with similar adjacent terranes in the Gondwana supercontinent, but the lack of structural and geochronological data makes a link with any major metamorphic event uncertain.  相似文献   

7.
The Achankovil Zone of southern India, a NW–SE trending lineament of 8–10 km in width and > 100 km length, is a kinematically debated crustal feature, considered to mark the boundary between the Madurai Granulite Block in the north and the Trivandrum Granulite Block in the south. Both these crustal blocks show evidence for ultrahigh-temperature metamorphism during the Pan-African orogeny, although the exhumation styles are markedly different. The Achankovil Zone is characterized by discontinuous strands of cordierite-bearing gneiss with an assemblage of cordierite + garnet + quartz + plagioclase + spinel + ilmenite + magnetite ± orthopyroxene ± biotite ± K-feldspar ± sillimanite. The lithology preserves several peak and post-peak metamorphic assemblages including: (1) orthopyroxene + garnet, (2) perthite and/or anti-perthite, (3) cordierite ± orthopyroxene corona around garnet, and (4) cordierite + quartz symplectite after garnet. We estimate the peak metamorphic conditions of these rocks using orthopyroxene-bearing geothermobarometers and feldspar solvus which yield 8.5–9.5 kbar and 940–1040 °C, the highest PT conditions so far recorded from the Achankovil Zone. The retrograde conditions were obtained from cordierite-bearing geothermobarometers at 3.5–4.5 kbar and 720 ± 60 °C. From orthopyroxene chemistry, we record a multistage exhumation history for these rocks, which is closely comparable with those reported in recent studies from the Madurai Granulite Block, but different from those documented from the Trivandrum Granulite Block. An evaluation of the petrologic and geochronologic data, together with the nature of exhumation paths leads us to propose that the Achankovil Zone is probably the southern flank of the Madurai Granulite Block, and not a unit of the Trivandrum Granulite Block as presently believed. Post-tectonic alkali granites that form an array of “suturing plutons” along the margin of the Madurai Granulite Block and within the Achankovil Zone, but are absent in the Trivandrum Granulite Block, suggest that the boundary between the Madurai Granulite Block and the Trivandrum Granulite Block might lie along the Tenmalai shear zone at the southern extremity of the Achankovil Zone.  相似文献   

8.
A fluid inclusion study on metamorphic minerals of successive growth stages was performed on highly deformed paragneisses from the Nestos Shear Zone at Xanthi (Central Rhodope), in which microdiamonds provide unequivocal evidence for ultrahigh-pressure (UHP) metamorphism. The correlation of fluid inclusion density isochores and fluid inclusion reequilibration textures with geothermobarometric data and the relative chronology of micro- and macro-scale deformation stages allow a better understanding of both the fluid and metamorphic evolution along the PTd path. Textural evidence for subduction towards the NE is recorded by the orientation of intragranular NE-oriented fluid inclusion planes and the presence of single, annular fluid inclusion decrepitation textures. These textures occur within quartz “foam” structures enclosed in an earlier generation of garnets with prolate geometries and rarely within recrystallized matrix quartz, and reequilibrated both in composition and density during later stages of exhumation. No fluid inclusions pertaining to the postulated ultrahigh-pressure stage for microdiamond-bearing garnet–kyanite–gneisses have yet been found. The prolate shape of garnets developed during the earliest stages of exhumation that is recorded structurally by (L  S) tectonites, which subsequently accommodated progressive ductile SW shearing and folding up to shallow crustal levels. The majority of matrix kyanite and a later generation of garnet were formed during SW-directed shear under plane-strain conditions. Fluid inclusions entrapped in quartz during this stage of deformation underwent density loss and transformed to almost pure CO2 inclusions by preferential loss of H2O. Those inclusions armoured within garnet retained their primary 3-phase H2O–CO2 compositions. Reequilibration of fluid inclusions in quartz aggregates is most likely the result of recrystallization along with stress-induced, preferential H2O leakage along dislocations and planar lattice defects which results in the predominance of CO2 inclusions with supercritical densities. Carbonic fluid inclusions from adjacent kyanite–corundum-bearing pegmatoids and, the presence of shear-plane-parallel fluid inclusion planes within late quartz boudin structures consisting of pure CO2-fluid inclusions with negative crystal shapes, bear witness of the latest stage of deformation by NE-directed extensional shear.This study shows that the textures of early fluid inclusions that formed already during the prograde metamorphic path can be preserved and used to derive information about the kinematics of subduction that is difficult to obtain from other sources. The textures of early inclusions, together with later generations of unaltered primary and secondary inclusions in metamorphic index minerals that can be linked to specific deformation stages and even PT conditions, are a welcome supplement for the reconstruction of a rather detailed PTd path.  相似文献   

9.
L. Millonig  A. Zeh  A. Gerdes  R. Klemd 《Lithos》2008,103(3-4):333-351
The Bulai pluton represents a calc-alkaline magmatic complex of variable deformed charnockites, enderbites and granites, and contains xenoliths of highly deformed metamorphic country rocks. Petrological investigations show that these xenoliths underwent a high-grade metamorphic overprint at peak P–T conditions of 830–860 °C/8–9 kbar followed by a pressure–temperature decrease to 750 °C/5–6 kbar. This P–T path is inferred from the application of P–T pseudosections to six rock samples of distinct bulk composition: three metapelitic garnet–biotite–sillimanite–cordierite–plagioclase–(K-feldspar)–quartz gneisses, two charnoenderbitic garnet–orthopyroxene–biotite–K-feldspar–plagioclase–quartz gneisses and an enderbitic orthopyroxene–biotite–plagioclase–quartz gneiss. The petrological data show that the metapelitic and charnoenderbitic gneisses underwent uplift, cooling and deformation before they were intruded by the Bulai Granite. This relationship is supported by geochronological results obtained by in situ LA-ICP-MS age dating. U–Pb analyses of monazite enclosed in garnet of a charnoenderbite gneiss provide evidence for a high-grade structural-metamorphic–magmatic event at 2644 ± 8 Ma. This age is significantly older than an U–Pb zircon crystallisation age of 2612 ± 7 Ma previously obtained from the surrounding, late-tectonic Bulai Granite. The new dataset indicates that parts of the Limpopo's Central Zone were affected by a Neoarchaean high-grade metamorphic overprint, which was caused by magmatic heat transfer into the lower crust in a ‘dynamic regional contact metamorphic milieu’, which perhaps took place in a magmatic arc setting.  相似文献   

10.
《Lithos》2007,93(1-2):107-125
Sapphirine, spinel, orthoamphibole ± quartz and kyanite are included in porphyroblastic garnet in biotitic gneiss enclosed in a lens of metamorphosed ultramafic rocks in the Cambrian granulite-facies metamorphic complex of the eastern Sør Rondane Mountains, Queen Maud Land, East Antarctica. A bulk analysis of the biotitic gneiss reveals features characteristic both of ultramafic rocks, e.g., high contents of Cr and Ni, and of metasomatism associated with fluids having a crustal source, e.g., relatively elevated contents of Li, Rb, Mo, Cs, Ba, Tl, and Pb. This trace element signature is consistent with the biotitic gneiss being a slice of blackwall skarn that developed between harzburgite and the enclosing biotite–hornblende ± garnet ± orthopyroxene ± clinopyroxene gneiss and was subsequently infolded or inserted by faulting. The matrix assemblage of the biotitic gneiss is garnet + corundum + hercynite + biotite +plagioclase +allanite + zircon. The included associations (all with biotite and rutile) are (1) sapphirine + kyanite, (2) spinel + kyanite, (3) sapphirine +spinel, (4) kyanite, and (5) orthoamphibole + plagioclase ± quartz. The garnet porphyroblasts are compositionally zoned with broad pyropic cores (XMg(=Mg / (total Fe + Mg)) = 0.45–0.55) surrounded by Fe-richer rims (XMg  0.3 at the outermost part). The garnet cores preserve compositions homogenized under peak conditions of the granulite-facies metamorphism (760–800 °C and 7–8 kb), whereas the Fe-enriched rims are attributed to an amphibolite-facies overprint at 500–600 °C. Theoretical calculations of garnet + corundum + spinel ± sapphirine + kyanite equilibria in the FMAS system constrain possible P–T conditions for a sapphirine + spinel + kyanite + garnet (XMg  0.55) assemblage to form near 450 °C and 4 kb on the prograde path. In contrast, a modified calibration of the Das et al. (Das, K., Fujino, K., Tomioka, N., Miura, H., 2006. Experimental data on Fe and Mg partitioning between coexisting sapphirine and spinel: an empirical geothermometer and its application. Eur. J. Mineral., 18, 49–58). sapphirine–spinel thermometer gives 860–895 °C for the included associations; pressures would have to be at least 12 kb to stabilize kyanite at these temperatures. Neither estimate is satisfactory and the stability range of kyanite + spinel–hercynite ± sapphirine assemblages remains an unresolved question. The Sør Rondane Mountains constitute the third region for kyanite, sapphirine and spinel–hercynite inclusions in garnet in granulite-facies rocks of the Neoproterozoic–Cambrian orogen extending from the Sør Rondane Mountains to Lützow–Holm Bay and onward to Sri Lanka, southern India and southern Madagascar, and thus determining the stability range of kyanite + spinel–hercynite ± sapphirine is critical for deducing the tectonic evolution of this orogen.  相似文献   

11.
Medium‐temperature ultrahigh pressure (MT‐UHP) eclogites from the south Dabie orogen, as represented by samples from the Jinheqiao, Shuanghe and Bixiling areas, consist of garnet, omphacite, phengite, epidote, hornblendic amphibole, quartz/coesite and rutile with or without kyanite and talc. Garnet is mostly anhedral and unzoned, but a few porphyroblasts are weakly zoned with core–mantle increasing grossular (Xgr) and decreasing pyrope (Xpy) contents. Garnet compositions are closely correlated with the bulk compositions. For instance, the Xpy and Xgr contents are positively correlated with the bulk MgO and CaO contents. Phengite is occasionally zoned with core–rim deceasing Si content, and phengite grains as inclusions in garnet show higher Si than in the matrix, suggesting differently resetting during post‐peak stages. The maximum Si contents are mostly 3.60–3.63 p.f.u. for the three areas. Pseudosections calculated using THERMOCALC suggest that the MT‐UHP eclogites should have a peak assemblage of garnet + omphacite + lawsonite + phengite + coesite in most rocks of higher MgO content. In this assemblage, the Xpy in garnet mostly depends on bulk compositions, whereas the Xgr in garnet and the Si contents in phengite regularly increase, respectively, as temperature and as pressure rise, and thus, can provide robust thermobarometric constraints. Using the Xgr and Si isopleths in pseudosections, the peak P–T conditions were estimated to be 40 kbar/730 °C for the Jinheqiao, 41 kbar/726 °C for the Shuanghe, and 37–52 kbar and 700–830 °C for the Bixiling eclogites. Some eclogites with higher FeO are predicted to have a peak assemblage of garnet + omphacite + coesite ± phengite without lawsonite, where the garnet and phengite compositions highly depend on bulk compositions and generally cannot give available thermobarometric constraints. Decompression of the eclogites with lawsonite in the peak stage is inferred to be accompanied with cooling and involves two stages: an early‐stage decompression is dominated by lawsonite dehydration, resulting in increase in the mode of anhydrous minerals, or further eclogitization, and formation of epidote porphyroblasts and kyanite‐bearing quartz veins in eclogite. As lawsonite dehydration can facilitate evolution of assemblages under fluid‐present conditions, it is difficult to recover real peak P–T conditions for UHP eclogites with lawsonite. This may be a reason why the P–T conditions estimated for eclogites using thermobarometers are mostly lower than those estimated for the coherent ultramafic rocks, and lower than those suggested from the inclusion assemblages in zircon from marble. A late‐stage decompression is dominated by formation of hornblendic amphibole and plagioclase with fluid infiltration. The lawsonite‐absent MT‐UHP eclogites have only experienced a decompression metamorphism corresponding to the later stage and generally lack the epidote overprinting.  相似文献   

12.
Mantle xenoliths brought to the surface by kimberlite magmas along the south-western margin of the Kaapvaal craton in South Africa can be subdivided into eclogites sensu stricto, kyanite eclogites and orthopyroxene eclogites, all containing omphacite, and garnet clinopyroxenites and garnet websterites characterised by diopside. Texturally, chemically (major elements) and thermally, we observe an evolution from garnet websterites (TEG = 742–781 °C) towards garnet clinopyroxenites (TEG = 715–830 °C) and to eclogites (TEG = 707–1056 °C, mean value of 913 °C). Pressures calculated for orthopyroxene-bearing samples suggest upper mantle conditions of equilibration (P = 16–33 kb for the garnet websterites, 18 kb for a garnet clinopyroxenite and 23 kb for an opx-bearing eclogite). The overall geochemical similarity between the two groups of xenoliths (omphacite-bearing and diopside-bearing) as well as the similar trace element patterns of clinopyroxenes and garnet suggest a common origin for these rocks. Recently acquired oxygen isotope data on garnet (δ18Ognt = 5.25–6.78 ‰ for eclogites, δ18Ognt = 5.24–7.03 ‰ for garnet clinopyroxenites) yield values ranging from typical mantle values to other interpreted as resulting from low-temperature alteration or precursors sea-floor basalts and associated rocks. These rocks could then represent former magmatic oceanic rocks that crystallised from a same parental magma as plagioclase free diopside-bearing and plagioclase-bearing crustal rocks. During subduction, these oceanic rock protoliths equilibrated at mantle depth, with the plagioclase-bearing rocks converting to omphacite and garnet-bearing lithologies (eclogites sensu largo), whereas the plagioclase-free diopside-bearing rocks converted to diopside and garnet-bearing lithologies (garnet websterites and garnet clinopyroxenites).  相似文献   

13.
Ferrous granulites in the area of Tidjénouine (Central Hoggar) exhibit a remarkable mineralogical composition characterized by the association orthoferrossilite–fayalite–quartz. These granulites are metamorphosed mafic igneous rocks showing the juxtaposition of different metamorphic parageneses. Peak paragenesis with garnet–clinopyroxene–amphibole–plagioclase–quartz reach to assemblage with orthopyroxene–plagioclase2. Secondary orthopyroxene reacted with garnet to produce symplectites with fayalite + plagioclase + quartz. The latest stage corresponds to an orthopyroxene–fayalite–quartz–plagioclase assemblage. The metamorphic history of the ferrous granulites is inferred by combining the study of phase relations with the construction of a petrogenetic grid and pseudosection in the CFMASH and CFAS systems using the Thermocalc program of [J. Metamorph. Geol. 6 (1988) 173]. The evolution of paragenetic minerals indicates a metamorphic PT path through the following conditions: 7.1 ± 1 kbar at 880 °C, 4.9 ± 1.6 kbar at 750 °C and 3–4 kbar at 700 °C, which is consistent with a clockwise PT path recorded throughout the area.  相似文献   

14.
The metamorphic evolution of dolomitic marbles and associated calc-silicate rocks from Punta Tota (NE Tandilia belt, Buenos Aires province, Argentina) has been evaluated through petrographic, geothermobarometric, and fluid inclusion studies. Thin beds of dolomitic marble are intercalated in amphibolites and constitute the upper part of a stratified basement sequence, which starts at the base with garnet migmatites showing a great abundance of pegmatitic segregates, overlain by biotite–garnet gneisses. Peak metamorphic conditions are estimated at 750–800 °C and 5–6 kb, followed by near isobaric cooling to about 500–450 °C and 5.5–6.5 kb. Anhydrous progressive metamorphic assemblages in both marbles (Fo + Cal + Dol + Cpx + Spl) and adjacent calc-silicate rocks (Cpx + An + Cal + Qtz) strongly retrogressed to hydrous minerals (Tr, Tlc, Grs, Czo, Srp) with decreasing temperatures and increasing water activities. The intense rehydration of the rocks relates to the emplacement of volatile-rich pegmatitic bodies (Qtz + Pl + Kfs + Bt + Grt), which also resulted in the crystallization of clinochlore + phlogopite in the marble and biotite + muscovite in the adjacent calc-silicate rocks. Metamorphic reactions based on textural relations and evaluated on a suitable petrogenetic grid, combined with geothermobarometric results and fluid inclusion isochores, indicate a metamorphic evolution along a counterclockwise PT path. Two probable geotectonic settings for the determined PT trajectory are proposed: (1) thinning of the crust and overlying supracrustal basin in an ensialic intraplate tectonic setting and (2) development of a marginal back-arc basin, associated with an oceanic–continental convergent plate margin. In both models, the initial extensional regime is followed by a compressional stage, with overthickening of the basement and supracrustal rocks, during the climax of the Transamazonian cycle at approximately 1800 Ma ago. Continuous convergence and blockage of structures produce transition to transcurrent tectonics (transpression) with a consequent moderate uplift.  相似文献   

15.
Jadeite‐bearing kyanite eclogite has been discovered in the Iratsu body of the Sanbagawa belt, SW Japan. The jadeite + kyanite assemblage is stable at higher pressure–temperature (PT) conditions or lower H2O activity [a(H2O)] than paragonite, although paragonite‐bearing eclogite is common in the Sanbagawa belt. The newly discovered eclogite is a massive metagabbro with the peak‐P assemblage garnet + omphacite + jadeite + kyanite + phengite + quartz + rutile. Impure jadeite is exclusively present as inclusions in garnet. The compositional gap between the coexisting omphacite (P2/n) and impure jadeite (C2/c) suggests relatively low metamorphic temperatures of 510–620 °C. Multi‐equilibrium thermobarometry for the assemblage garnet + omphacite + kyanite + phengite + quartz gives peak‐P conditions of ~2.5 GPa, 570 °C. Crystallization of jadeite in the metagabbro is attributed to Na‐ and Al‐rich effective bulk composition due to the persistence of relict Ca‐rich clinopyroxene at the peak‐P stage. By subtracting relict clinopyroxene from the whole‐rock composition, pseudosection modelling satisfactorily reproduces the observed jadeite‐bearing assemblage and mineral compositions at ~2.4–2.5 GPa, 570–610 °C and a(H2O) >0.6. The relatively high pressure conditions derived from the jadeite‐bearing kyanite eclogite are further supported by high residual pressures of quartz inclusions in garnet. The maximum depth of exhumation in the Sanbagawa belt (~80 km) suggests decoupling of the slab–mantle wedge interface at this depth.  相似文献   

16.
A Nappe system south to southwest of the São Francisco Craton represents the southern extension of the Brasília belt and describes an inverted metamorphic pile of greenschist facies toward amphibolite facies. The Aiuruoca-Andrelândia nappe is one of the nappes of this system. The hind portion of the Aiuruoca-Andrelândia nappe, south of Caxambu and Aiuruoca (MG), consists of a structural-metamorphic domain transported toward the E-NE. There is a metamorphic transition, from the kyanite zone to kyanite and sillimanite coexistence, until the sillimanite zone. Metapelitic rocks preserve high-pressure parageneses (Rt–Ky–Grt–Ms–Bt–Pl–Qtz) and contain retrograde eclogitic rocks. Sil–Pl–Qtz coronitic intergrowths around garnets are common decompressive textures. Kyanite schists register the Pmax of 11 kbar at 660 °C and define a decompressive path until 6–7.5 kbar at 650 °C. These PT conditions represent the equilibrium in S2 schistosity (amphibolite facies) and the beginning of the cooling path in the Ky–Sil transition. The decompressive path suggests an extrusional process, immediately after burying at about 60 km. Exhumation controlled by convergent events, related to the São Francisco Plate subduction and tectonic erosion, took these units, isothermally, to higher levels (20–33 km). Later, the metamorphic path shifted toward near-isobaric cooling.  相似文献   

17.
In the system CaO-MgO-A12O3-SiO2 the tie lines connecting anorthite with other phases are sequentially broken down with increasing pressure according to the following univariant reactions: anorthite+ enstatitess+sillimanite pyrope-grossularss+quartz (3), anorthite+enstatitess pyrope-grossularss+diopsidess+quartz (2), anorthite+pyrope-grossularss+ quartz diopsidess+kyanite (4) and anorthite+diopsidess grossular-pyropess +kyanite+quartz (8). At 1,200 ° C these reactions occur at 14.5± 0.5, 15.5±0.5, 19.5±0.5 and 26.4±1 kilobar and have positive slopes (dP/dT) of 1±0.5, 2.8±0.5, 13.3±0.5 and 24±2bars/°C respectively. An invariant point involving kyanite rather than sillimanite, occurs at 850 °C±25 °C and 14.5±0.5kbar at the intersection of reactions (3), (2) and (4). Reaction(4) exhibits significant curvature with an increase in dP/dT from 13.3±0.5 to 18.5± 0.5 bars/°C between 1,050° and 850° C. The pressure at which the complete grossular-pyrope join is stable with quartz is estimated at 41 ± 1 kbar at 1,200 ° C. The pressure at which garnet appears according to reaction (2) is lowered by 5 kbar for a composition with anorthite and orthopyroxene (En0.5Fs0.5). Enstatite and plagioclase (An0.5Ab0.5) first produce garnet at 2 kbar higher pressure than enstatite and pure anorthite (reaction (2)). The calcium content of garnet in various divariant assemblages is relatively insensitive to temperature but very sensitive to pressure, it is therefore a useful geobarometer. At metamorphic temperatures of 700–850 °C pressures of 8–10 kbar are required for the formation of quartz-bearing garnet granulites containing calcic plagioclase and with (Mg/Mg+Fe) bulk = 0.5.  相似文献   

18.
Estimation of metamorphic pressures in low temperature eclogite (Type C) is difficult because of the high variance mineral assemblages and problems in geothermometry, solution properties of low-temperature omphacite, and the thermodynamic properties of clinozoisite. We have considered equilibria in the CaO–FeO–MgO–TiO2–Al2O3–SiO2–H2O (CFMTASH) system involving the phase components, quartz, rutile, kyanite, ilmenite, almandine, pyrope, grossular, clinozoisite, sphene, diopside, and H2O-fluid There are four linearly independent equilibria involving the phase components in this system. Because kyanite can crystallize as a nearly pure phase, the lack of kyanite in a rock indicates that a Al2SiO5 is<1.0. If we can estimate temperature independently, we can solve for a Al2SiO5 and pressure by using two of the equilibria in isothermal pressure-activity diagrams. We have applied this approach to eclogites from New Caledonia and from southwestern Oregon. For the New Caledonia eclogites, calculated pressures range from 11.2 to 13.6 kbar at 500°C, and are consistent with the minimum pressures based upon the presence of jadeitic pyroxene+quartz and the lack of stable albite. Oregon eclogites come from different tectonic blocks and calculated minimum pressures of 11–12 kbar are based upon the presence of jadeitic pyroxene+rutile+garnet and lack of stable albite and ilmenite at reduced values of a SiO2 (0.7–0.9).  相似文献   

19.
《Lithos》2007,93(1-2):1-16
Metamorphic peak PT conditions of five kyanite eclogites from the Tauern Window, Austria, are evaluated on the basis of recent calibrations of the assemblage garnet + omphacite + phengite + kyanite + quartz. Results are about 25 kbar, 630 °C according to the dataset of Holland and Powell [Holland, T.J.B., Powell, R., 1998. An internally consistent thermodynamic data set for phases of petrological interest. Journal of Metamorphic Geology 16, 309–343 (updated 2002)]. Mostly higher PT values are calculated with the calibrations of Krogh Ravna and Terry [Krogh Ravna, E.J., Terry, M.P., 2004. Geothermobarometry of UHP and HP eclogites and schists—an evaluation of equilibria among garnet–clinopyroxene–kyanite–phengitecoesite/quartz. Journal of Metamorphic Geology 22, 579–592] and Brandelik and Massonne [Brandelik, A., Massonne, H.-J., 2004. PTGIBBS—an EXCEL Visual Basic program for computing and visualizing thermodynamic functions and equilibria of rock forming minerals. Computers and Geosciences 30, 909–923], in part already in the stability field of coesite. However, no indications for this phase are evident from the Tauern samples. The presence of talc is consistent with these PT values and high H2O activities. In contrast, the stability limits of paragonite and zoisite are situated at lower pressure and suggest a later formation during the decompression stage. THERMOCALC pseudosections in the NCFMASH system are constructed with the incorporation of fractional crystallization of garnet. Calculated garnet zonations are in better agreement with the observed compositions at peak pressures of about 25 kbar than results at lower pressures. This is also consistent with values from thermobarometry obtained with the same program.  相似文献   

20.
Experiments with synthetic starting materials of muscovite, phlogopite, zoisite, kyanite and quartz were performed in the pressure temperature range 10–25 kbar, 640–780° C under water excess conditions. The reaction muscovite+zoisite+quartz+vapor=liquid+kyanite was bracketed at 10.5 kbar/689–700° C, 15.5 kbar/709–731° C and 20 kbar/734–745° C. The equivalent reaction in the Mg-bearing system muscovitess +zoisite+quartz+vapor=liquid+kyanite+phlogopitess lies at the same temperature around 10 kbar and approximately 10° C higher around 20 kbar, compared with the Mg-free reaction. At slightly higher temperatures formation of melt and tremolitess was reversibly observed from the assemblage phlogopitess+zoisite +kyanite+quartz around 10.5 kbar/690–710° C, 15.5 kbar/720–750° C and 20.5 kbar/745–760° C. In the subsolidus region, the reaction muscovitess+talcss+ tremolitess=phlogopitess+zoisite+quartz+vapor were located in the range 700° C/16.7–19.0 kbar and 740° C/19.7–20.8 kbar. From these data, a wedge shaped stability field of phlogopitess+zoisite+quartz appears with a high P, T termination around 21 kbar/755° C. Muscovite+tremolite+talc or kyanite comes in at higher pressures. These phase relations are in qualitative accord with petrographic observations from high pressure metamorphic areas. Formation and crystallization of melts in rocks of a wide compositional range involving zoisite/epidote has been ascribed to relatively high pressures and is consistent with experimentally determined stability fields in the simplified KCMASH system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号