首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Fluoride ion interaction with synthetically prepared goethite has been investigated over a range of pH values (4–9) and F concentrations (10–3–10–5 M). The amount of F retained by goethite suspensions was found to be a function of pH, media ionic strength, F concentration, and goethite concentration. The lowest ionic strength (0.001 M KNO3) gave the highest adsorption medium. Uptake was minimal at pH >7 and increased with decreasing pH. Thermodynamic properties for fluoride adsorption at 298 K and 323 K were investigated. The isosteric heat of adsorption (H r) was calculated and the heterogeneity and homogeneity of the surface examined for goethite. In view of the importance of fluoride in dental health, the interaction of fluoride on goethite in the physical environment has important implications on dental epidemiology.  相似文献   

2.
The study on the competitive adsorption shows that the magnitude order of metal ions adsorbed onto oxide and silicate minerals in near-neutral solution with low ionic strength is in mole/nm2 as follows: CaCO3 > quarte > hydromuscovite > kaolinite > Ca-montmorillonite > goethite > gibbsite. These minerals can be divided into three groups according to their surface equilibrium constantsK M of the adsorption reactions, which are the function of the dielectric constants ε of the absorbent minerals. The relationships between constantsK M and mineral dielectric constants ε are described as follows: lgK M 1 = 7.813-26.15/ε lgK M 2 = 9.030-26.15/ε lgK M 3 =11.63-26.15/ε for the adsorption reaction: >SO- + Mn+≥SOMn-1)+ (n = 1, 2, 3) The first group of minerals include quartz, goethite, 1:1 phyllosilicates and other oxide minerals; the second: gibbsite, brucite and 2:1 phyllosilicates; the third: carbonate, sulphate and phosphorate minerals. The appearance reaction constants have a variation of magnitude ±0.5 for different metal ions with the same mineral. This project was financially supported by the National Natural Science Foundation of China (No. 49572091).  相似文献   

3.
The adsorption of plutonium IV and V on goethite   总被引:1,自引:0,他引:1  
The adsorption of Pu(IV) and Pu(V) on goethite (αFeOOH) from NaNO3 solution shows distinct differences related to the different hydrolytic character of these two oxidation states. Under similar solution conditions, the adsorption edge of the more strongly hydrolyzable Pu(IV) occurs in the pH range 3 to 5 while that for Pu(V) is at pH 5 to 7. The adsorption edge for Pu(V) shifts with time to lower pH values and this appears to be due to the reduction of Pu(V) to Pu(IV) in the presence of the goethite surface. These results suggest that redox transformations may be an important aspect of Pu adsorption chemistry and the resulting scavenging of Pu from natural waters.Increasing ionic strength (from 0.1 M to 3 M NaCl or NaNO3 and 0.03 M to 0.3 M Na2SO4) did not influence Pu(IV) or Pu(V) adsorption. In the presence of dissolved organic carbon (DOC), Pu(V) reduction to Pu(IV) occurred in solution. Pu(IV) adsorption on goethite decreased by 30% in the presence of 240 ppm natural DOC found in Soap Lake, Washington waters. Increasing concentrations of carbonate ligands decreased Pu(IV) and Pu(V) adsorption on goethite, with an alkalinity of 1000 meq/l totally inhibiting adsorption.The Pu-goethite adsorption system provides the data base for developing a thermodynamic model of Pu interaction with an oxide surface and with dissolved ligands, using the MINEQL computer program. From the model calculations we determined equilibrium constants for the adsorption of Pu(IV) hydrolysis species. The model was then applied to Pu adsorption in carbonate media to see how the presence of CO3?2 could influence the mobility of Pu. The decrease in adsorption appears to be due to formation of a Pu-CO3 complex. Model calculations were used to predict what the adsorption curves would look like if Pu-CO3 complexes formed.  相似文献   

4.
5.
《Geochimica et cosmochimica acta》1999,63(19-20):2971-2987
Many sediment and soil systems have become significantly contaminated with cadmium, and earth scientists are now required to make increasingly accurate predictions of the risks that this contamination poses. This necessitates an improved understanding of the processes that control the mobility and bioavailability of cadmium in the environment. With this in mind, we have studied the composition and structure of aqueous cadmium sorption complexes on the iron oxyhydroxide minerals goethite (α-FeOOH), lepidocrocite (γ-FeOOH), akaganeite (β-FeOOH), and schwertmannite (Fe8O8(OH)6SO4) using extended X-ray adsorption fine structure spectroscopy. The results show that adsorption to all of the studied minerals occurs via inner sphere adsorption over a wide range of pH and cadmium concentrations. The bonding mechanism varies between minerals and appears to be governed by the availability of different types of adsorption site at the mineral surface. The geometry and relative stability of cadmium adsorption complexes on the goethite surface was predicted with ab initio quantum mechanical modelling. The modelling results, used in combination with the extended X-ray adsorption fine structure data, allow an unambiguous determination of the mechanism by which cadmium bonds to goethite.Cadmium adsorbs to goethite by the formation of bidentate surface complexes at corner sharing sites on the predominant (110) crystallographic surface. There is no evidence for significant cadmium adsorption to goethite at the supposedly more reactive edge sharing sites. This is probably because the edge sharing sites are only available on the (021) crystallographic surface, which comprises just ∼2% of the total mineral surface area. Conversely, cadmium adsorption on lepidocrocite occurs predominately by the formation of surface complexes at bi- and/or tridentate edge sharing sites. We explain the difference in extended X-ray adsorption fine structure results for cadmium adsorption on goethite and lepidocrocite by the greater availability of reactive edge sharing sites on lepidocrocite than on goethite. The structures of cadmium adsorption complexes on goethite and lepidocrocite appear to be unaffected by changes in pH and surface loading. There is no support for cadmium sorption to any of the studied minerals via the formation of an ordered precipitate, even at high pH and high cadmium concentration. Cadmium adsorption on akaganeite and schwertmannite also occurs via inner sphere bonding, but the mechanism(s) by which this occurs remains ambiguous.  相似文献   

6.
Iron–nickel-laterite deposits in the Balkan Peninsula and Turkey, located in the Mirdita–Sub-Pelagonian and Pelagonian geotectonic zones, extending into the Anatolides zone are a major source of nickel. Repeated marine transgression and regression, and the multistage development of allochthonous laterite deposits by re-working and re-deposition in a shallow sea environment are demonstrated by the alternation of Fe–Ni-laterite layers within marine sequences.Geochemical study of these Fe–Ni laterite deposits shows that arsenic contents are generally low, ranging from less than 2 to a few tens of ppm. However, in the Aghios Ioannis deposit, Lokris, Central Greece As varies significantly and attains values up to 0.26 wt.% As and in the Gordes deposit of W. Turkey, the As content ranges from 0.004 to 1.07 wt.% As (average 0.34), reaching values up to 1.94 in the hematite zone. Investigation of the mineral chemistry (SEM-EDS) shows that goethite is the main host of As, ranging between 0.5 and 1.2 wt.% As2O3 in the Aghios Ioannis deposit, and between 1.2 to 6.9 wt.% As2O3 in the Gordes deposit, whereas, in co-existing calcite As was not detectable. Goethite occurs in fine-grained porous and concretionary, concentric textures. As values are higher in concretionary goethite. Positive correlation (r > 0.74) between As and Al2O3, TiO2 and ∑ REE contents in the laterite deposits of Greece, coupled with the As-enrichment only in certain laterite deposits points to post depositional As-enrichment.Assuming that high pH facilitates the adsorption of As by goethite, due to its high surface area and low values of the activation energy of adsorption (literature data) As-adsorption by goethite is considered to play an important role in its retention. Elevated As-contents in goethite (Fe-oxides) in Fe–Ni-laterites of Greece and Turkey, due to its absorption capacity, are considered to be of particular significance in the remediation of aquifer and soil contamination rather than being a source of environmental risk.  相似文献   

7.
In order to better understand the influence and mechanism of soil-derived humic acid (SHA) on adsorption of P onto particles in soils, the amounts of PO4 adsorbed by synthetic goethite (α-FeOOH) were determined at different concentrations of SHA, pH, ionic strength and order of addition of adsorbents. Addition of SHA can significantly reduce the amount of PO4 adsorption as much as 27.8%. Both generated electrostatic field and competition for adsorption sites were responsible for the mechanism by which SHA inhibited adsorption of PO4 by goethite. This conclusion was supported by measurement of total organic C (TOC), infrared spectral features and Zeta potential. Adsorption of PO4 onto goethite was inversely proportional to pH. Order of addition of PO4 and SHA can influence adsorption of PO4 as follows: prior addition of PO4  simultaneous addition > prior addition of SHA. Iron and SHA apparently form complexes due to prior addition of SHA. Observations made during this study emphasized that PO4 forms different types of complexes on the surface of goethite at different pH, which dominated the interaction of SHA and PO4 adsorption on goethite. Based on these observations, the possible modes of SHA inhibition of PO4 adsorption on goethite were proposed.  相似文献   

8.
This study documents the first example of in vitro solid-phase mineral oxide reduction by enzyme-containing membrane fractions. Previous in vitro studies have only reported the reduction of aqueous ions. Total membrane (TM) fractions from iron-grown cultures of Shewanella oneidensis MR-1 were isolated and shown to catalyze the reduction of goethite, hematite, birnessite, and ramsdellite/pyrolusite using formate. In contrast, nicotinamide adenine dinucleotide (NADH) and succinate cannot function as electron donors. The significant implications of observations related to this cell-free system are: (i) both iron and manganese mineral oxides are reduced by the TM fraction, but aqueous U(VI) is not; (ii) TM fractions from anaerobically grown, but not aerobically grown, cells can reduce the mineral oxides; (iii) electron shuttles and iron chelators are not needed for this in vitro reduction, documenting conclusively that reduction can occur by direct contact with the mineral oxide; (iv) electron shuttles and EDTA stimulate the in vitro Fe(III) reduction, documenting that exogenous molecules can enhance rates of enzymatic mineral reduction; and (v) multiple membrane components are involved in solid-phase oxide reduction. The membrane fractions, consisting of liposomes of cytoplasmic and outer membrane segments, contain at least 100 proteins including the enzyme that oxidizes formate, formate dehydrogenase. Mineral oxide reduction was inhibited by the addition of detergent Triton X-100, which solubilizes membranes and their associated proteins, consistent with the involvement of multiple electron carriers that are disrupted by detergent addition. In contrast, formate dehydrogenase activity was not inhibited by Triton X-100. The addition of anthraquinone-2,6-disulfonate (AQDS) and menaquinone-4 was unable to restore activity; however, menadione (MD) restored 33% of the activity. The addition of AQDS and MD to reactions without added detergent increased the rate of goethite reduction. The Michaelis-Menten Km values of 71 ± 22 m2/L for hematite and 50 ± 16 m2/L for goethite were calculated as a function of surface area of the two insoluble minerals. Vmax was determined to be 123 ± 14 and 156 ± 13 nmol Fe(II)/min/mg of TM protein for hematite and goethite, respectively. These values are consistent with in vivo rates of reduction reported in the literature. These observations are consistent with our conclusion that the enzymatic reduction of mineral oxides is an effective probe that will allow elucidation of molecular chemistry of the membrane-mineral interface where electron transfer occurs.  相似文献   

9.
Desferrioxamine-B (DFOB) is a bacterial trihydroxamate siderophore and probably the most studied to date. However, the manner in which DFOB adsorbs at mineral surfaces and promotes dissolution is still under discussion. Here we investigated the adsorption and dissolution reactions in the goethite-DFOB system using both in situ infrared spectroscopic and quantitative analytical methods. Experiments were carried out at a total DFOB concentration of 1 μmol/m2, at pH 6, and in the absence of visible light. Our infrared spectroscopic results indicated that the adsorption of DFOB was nearly complete after a 4-h reaction time. In an attempt to determine the coordination mode at the goethite surface, we compared the spectrum of adsorbed DFOB after a 4-h reaction time to the spectra of model aqueous species. However, this approach proved too simplistic in the case of such a complex ligand as DFOB, and we suggest that a more detailed investigation (IR in D2O, EXAFS of adsorbed model complexes) is needed to elucidate the structure of the adsorbed siderophore. Between a 4-h and 4-day reaction time, we observed the growth of carboxylate stretching bands at 1548 and 1404 cm−1, which are indicators of DFOB hydrolysis. Acetate, a product of DFOB hydrolysis at its terminal hydroxamate group, was quantified by ion chromatography. Its rate of formation was linear and nearly the same as the rate of Fe(III) dissolution. The larger hydrolysis product, a hydroxylamine fragment, was not detected by LC-MS. However, a signal due to the oxidized form of this fragment, a nitroso compound, was found to increase linearly with time, which is an indirect indication for Fe(III) reduction. Based on these findings, we propose that DFOB undergoes metal-enhanced hydrolysis at the mineral surface followed by the reduction of surface Fe(III). While Fe(II) was not detected in solution, this is likely because it remains adsorbed at the goethite surface or becomes buried in the goethite crystal by electron conduction. Taking into account the extent and similarity between the rates of hydrolysis and dissolution, we suggest that a reductive mechanism could play an important part in the dissolution of goethite by DFOB. This possibility has not been considered previously in the absence of light and at circumneutral pH.  相似文献   

10.

Background

Many important geochemical and biogeochemical reactions occur in the mineral/formation water interface of the highly abundant mineral, goethite [α-Fe(OOH)]. Ab initio molecular dynamics (AIMD) simulations of the goethite α-FeOOH (100) surface and the structure, water bond formation and dynamics of water molecules in the mineral/aqueous interface are presented. Several exchange correlation functionals were employed (PBE96, PBE96 + Grimme, and PBE0) in the simulations of a (3 × 2) goethite surface with 65 absorbed water molecules in a 3D-periodic supercell (a = 30 Å, FeOOH slab ~12 Å thick, solvation layer ~18 Å thick).

Results

The lowest energy goethite (100) surface termination model was determined to have an exposed surface Fe3+ that was loosely capped by a water molecule and a shared hydroxide with a neighboring surface Fe3+. The water molecules capping surface Fe3+ ions were found to be loosely bound at all DFT levels with and without Grimme corrections, indicative that each surface Fe3+ was coordinated with only five neighbors. These long bonds were supported by bond valence theory calculations, which showed that the bond valence of the surface Fe3+ was saturated and surface has a neutral charge. The polarization of the water layer adjacent to the surface was found to be small and affected only the nearest water. Analysis by density difference plots and localized Boys orbitals identified three types of water molecules: those loosely bound to the surface Fe3+, those hydrogen bonded to the surface hydroxyl, and bulk water with tetrahedral coordination. Boys orbital analysis showed that the spin down lone pair orbital of the weakly absorbed water interact more strongly with the spin up Fe3+ ion. These weakly bound surface water molecules were found to rapidly exchange with the second water layer (~0.025 exchanges/ps) using a dissociative mechanism.

Conclusions

Water molecules adjacent to the surface were found to only weakly interact with the surface and as a result were readily able to exchange with the bulk water. To account for the large surface Fe–OH2 distances in the DFT calculations it was proposed that the surface Fe3+ atoms, which already have their bond valence fully satisfied with only five neighbors, are under-coordinated with respect to the bulk coordination.
Graphical abstract All first principle calculations, at all practically achievable levels, for the goethite 100 aqueous interface support a long bond and weak interaction between the exposed surface Fe3+ and water molecules capping the surface. This result is supported by bond valence theory calculations and is indicative that each surface Fe3+ is coordinated with only 5 neighbors.
  相似文献   

11.
The adsorption of pentachlorophenol (PCP) onto quartz, kaolinite, illite, montmorillonite and iron oxides has been investigated by batch equilibrium techniques. The pH-dependent isotherms are curves with peak values, the position of which is at about pH = 5-6 depending on the mineral species. Based on distribution of both speciation of surface hydroxyls on minerals and PCP in solution a surface reaction model involving surface complexation and surface electrostatic attraction is presented to fit the pH-dependent isotherms, and both reaction constants are calculated. The results show that on quartz and phyllosilicate minerals the predominant adsorption reaction is surface complexation, meanwhile both of surface electrostatic attraction and surface complexation are involved on the iron oxide minerals. The reaction constants of surface electrostatic adsorption are usually one to three orders in magnitude, larger than that of surface complexation. The concentration-dependent isotherms can be well fitted by Langmnir equation with the correlation coefficient R〉0.93 for kaolinite and iron oxides. The maximum adsorption is found in the order: hematite 〉 lepidocrocite 〉 goethite 〉 kaolinite 〉 quartz 〉 montmorillonite ≈ illite, which can be interpreted by consideration of both reaction mechanism and surface hydroxyl density. The significant adsorption of PCP onto mineral surfaces suggests that clay and iron oxide minerals will play an important role as HIOCs are adsorbed in laterite or latertoid soil, which is widespread in South China.  相似文献   

12.
It has long been recognized that the Pu4+ ion can be readily adsorbed on solid surfaces, but it has been assumed that the generally more abundant Pu(V)O2+ ion should have little affinity for surfaces. Our results indicate that Pu(V)O2+ can be adsorbed from dilute solutions and seawater on goethite, aragonite, calcite, and δ-MnO2. Adsorption on δ-MnO2 is severely depressed in seawater, probably as a result of site competition with seawater cations.The sorption behavior of PuO2+ is influenced by oxidation-reduction reactions occurring on the mineral surfaces. Adsorption on δ-MnO2 results in oxidation of adsorbed Pu(IV) and Pu(V) to Pu(VI). However, adsorption on goethite results in a reaction in which Pu(IV) and Pu(VI) are formed on the mineral surface. The Pu(VI) is slowly reduced to Pu(IV), leaving Pu(IV) as the dominant surface Pu species. This reaction can be photochemically catalyzed. PuO2+ adsorbed on carbonate minerals behaves similarly to Np(V)O2+ and undergoes little change in oxidation state after adsorption.  相似文献   

13.
Uranium U(VI) adsorption was measured as function of pH (3–10) on goethite, kaolinite, quartz, two binary mixtures of goethite and kaolinite, and a vadose zone sediment collected on The Department of Energy’s Savannah River Site (SRS), the clay mineral fraction of which is composed largely of kaolinite and goethite. Diffuse-layer surface complexation models were parameterized using the code PEST together with PHREEQC to fit U(VI) sorption data for the pure goethite, kaolinite, and quartz. U(VI) adsorption on kaolinite and goethite was modeled as the formation of two bidentate U(VI) complexes at mineral edge sites on a variable charge site. U(VI) adsorption on quartz was described using a one-site diffuse-layer with the formation of bidentate complex on a variable charge site. These models were used to predict U(VI) adsorption on the binary sorbent mixtures and the SRS sediment using a simple component-additivity approach. In general, the predicted adsorption edges were in good agreement with measured data, with statistically similar goodness of fit compared to that obtained for the pure mineral systems.  相似文献   

14.
设施农业中土壤重金属污染问题日趋严重.由于土壤中矿物、腐植酸、微生物等多相组分之间存在交互作用,重金属与土壤单组分体系中所获得的结合机制并不能真实有效地评价其在自然条件下的转化与归趋.本研究以蒙脱石(Mont)和高岭石(Kao)为辽宁蔬菜大棚及农田土壤层状硅酸盐代表矿物,选取胡敏酸(HA)为有机质代表,土著微生物革兰氏...  相似文献   

15.
The biologically-mediated reduction of synthetic samples of the Fe(III)-bearing minerals hematite, goethite, lepidocrocite, feroxhyte, ford ferrihydrite, akaganeite and schwertmannite by Geobacter sulfurreducens has been investigated using microbiological techniques in conjunction with X-ray Diffraction (XRD), Transmission Electron Microscopy (TEM) and X-ray Photoelectron Spectroscopy (XPS). This combination of approaches offers unique insights into the influence of subtle variations in the crystallinity of a given mineral on biogeochemical processes, and has highlighted the importance of (oxyhydr)oxide crystallite morphology in determining the changes occurring in a given mineral phase. Problems arising from normalising the biological Fe(III) reduction rates relative to the specific surface areas of the starting materials are also highlighted. These problems are caused primarily by particle aggregation, and compounded when using spectrophotometric assays to monitor reduction. For example, the initial rates of Fe(III) reduction observed for two synthetic feroxyhytes with different crystallinities (as shown by XRD and TEM studies) but almost identical surface areas, differ substantially. Both microbiological and high-resolution TEM studies show that hematite and goethite are susceptible to limited amounts of Fe(III) reduction, as evidenced by the accumulation of Fe(II) during incubation with G. sulfurreducens and the growth of nodular structures on crystalline goethite laths during incubation. Lepidocrocite and akaganeite readily transform into mixtures of magnetite and goethite, and XRD data indicate that the proportion of magnetite increases within the transformation products as the crystallinity of the starting material decreases. The presence of anthraquinone-2,6-disulfonate (AQDS) as an electron shuttle increases both the initial rate and longer term extent of biological Fe(III) reduction for all of the synthetic minerals examined. High-resolution XPS indicates subtle but measurable differences in the Fe(III):Fe(II) ratios at the mineral surfaces following extended incubation. For example, for a poorly crystalline schwertmannite, deconvolution of the Fe2p3/2 peak suggests that the Fe(III):Fe(II) ratio of the near-surface regions varies from 1.0 in the starting material to 0.9 following 144 h of incubation with G.sulfurreducens, and to 0.75 following the same incubation period in the presence of 10 μM AQDS. These results have important implications for the biogeochemical cycling of iron.  相似文献   

16.
Computer modelling techniques were used to elucidate the hydration behaviour of three iron (hydr)oxide minerals at the atomic level: white rust, goethite and hematite. A potential model was first adapted and tested against the bulk structures and properties of eight different iron oxides, oxyhydroxides and hydroxides, followed by surface simulations of Fe(OH)2, α-FeO(OH) and α-Fe2O3. The major interaction between the adsorbing water molecules and the surface is through interaction of their oxygen ions with surface iron ions, followed by hydrogen-bonding to surface oxygen ions. The energies released upon the associative adsorption of water range from 1 to 17 kJ mol−1 for Fe(OH)2, 26 to 80 kJ mol−1 for goethite and 40 to 85 kJ mol−1 for hematite, reflecting the increasing oxidation of the iron mineral. Dissociative adsorption at goethite and hematite surfaces releases larger hydration energies, ranging from 120 to 208 kJ mol−1 for goethite and 76 to 190 kJ mol−1 for hematite.The thermodynamic morphologies of the minerals, based on the calculated surface energies, agree well with experimental morphologies, where these are available. When the partial pressures required for adsorption of water from the gas phase are plotted against temperature for the goethite and hematite surfaces, taking into account experimental entropies for water, it appears that these minerals may well be instrumental in the retention of water during the cyclic variations in the atmosphere of Mars.  相似文献   

17.
《Geochimica et cosmochimica acta》1999,63(19-20):3003-3008
Hydroxamate siderophores are biologically-synthesized, Fe(III)-specific ligands which are common in soil environments. In this paper, we report an investigation of their adsorption by the iron oxyhydroxide, goethite; their influence on goethite dissolution kinetics; and their ability to affect Pb(II) adsorption by the goethite surface. The siderophores used were desferrioxamine B (DFO-B), a fungal siderophore, and desferrioxamine D1, an acetyl derivative of DFO-B (DFO-D1). Siderophore adsorption isotherms yielded maximum surface concentrations of 1.5 (DFO-B) or 3.5 (DFO-D1) μmol/g at pH 6.6, whereas adsorption envelopes showed either cation-like (DFO-B) or ligand-like (DFO-D1) behavior. Above pH 8, the adsorbed concentrations of both siderophores were similar. The dissolution rate of goethite in the presence of 240 μM DFO-B or DFO-D1 was 0.02 or 0.17 μmol/g hr, respectively. Comparison of these results with related literature data on the reactions between goethite and acetohydroxamic acid, a monohydroxamate ligand, suggested that the three hydroxamate groups in DFO-D1 coordinate to Fe(III) surface sites relatively independently. The results also demonstrated a significant depleting effect of 240 μM DFO-B or DFO-D1 on Pb(II) adsorption by goethite at pH > 6.5, but there was no effect of adsorbed Pb(II) on the goethite dissolution rate.  相似文献   

18.
The toxicity and mobility of the redox-active metalloid As strongly depends on its oxidation state, with As(III) (arsenite) being more toxic and mobile than As(V) (arsenate). It is, therefore, necessary to know the biogeochemical processes potentially influencing As redox state to understand and predict its environmental behavior. The first part of this presentation will discuss the quantification of As redox changes by pH-neutral mineral suspensions of goethite [α-FeIIIOOH] amended with Fe(II) using wet-chemical and synchrotron X-ray absorption (XANES) analysis (Amstaetter et al., 2010). First, it was found that goethite itself did not oxidize As(III). Second, in contrast to thermodynamic predictions, Fe(II)–goethite systems did not reduce As(V). However, surprisingly, rapid oxidation of As(III) to As(V) was observed in Fe(II)–goethite systems. Iron speciation and mineral analysis by Mössbauer spectroscopy showed rapid formation of 57Fe–goethite after 57Fe(II) addition and the formation of a so far unidentified additional Fe(II) phase. No other Fe(III) phase could be detected by Mössbauer spectroscopy, EXAFS, scanning electron microscopy, X-ray diffraction or high-resolution transmission electron microscopy. This suggests that reactive Fe(III) species form as an intermediate Fe(III) phase upon Fe(II) addition and electron transfer into bulk goethite but before crystallization of the newly formed Fe(III) as goethite.The second part of the presentation will show that semiquinone radicals produced during microbial or chemical reduction of a humic substance model quinone (AQDS, 9,10-anthraquinone-2,6-disulfonic acid) can react with As and change its redox state (Jiang et al., 2009). The results of these experiments showed that these semiquinone radicals are strong oxidants and oxidize arsenite to arsenate, thus decreasing As toxicity and mobility. The oxidation of As(III) depended strongly on pH. More arsenite (up to 67.3%) was oxidized at pH 11 compared to pH 7 (12.6% oxidation) and pH 3 (0.5% oxidation). In addition to As(III) oxidation by semiquinone radicals, hydroquinones that were also produced during quinone reduction, reduced As(V) to As(III) at neutral and acidic pH values (less than 12%) but not at alkaline pH. In an attempt to understand the observed redox reactions between As and reduced/oxidized quinones present in humic substances, the radical content in reduced AQDS solutions was quantified and Eh-pH diagrams were constructed. Both the radical quantification and the Eh-pH diagram allowed explaining the observed redox reactions between the reduced AQDS solutions and the As.In summary these studies indicate that in the simultaneous presence of Fe(III) oxyhydroxides, Fe(II), and humic substances as commonly observed in environments inhabited by Fe-reducing microorganisms, As(III) oxidation can occur. This potentially explains the presence of As(V) in reduced groundwater aquifers.  相似文献   

19.
Iron (hydr)oxides not only serve as potent sorbents and repositories for nutrients and contaminants but also provide a terminal electron acceptor for microbial respiration. The microbial reduction of Fe (hydr)oxides and the subsequent secondary solid-phase transformations will, therefore, have a profound influence on the biogeochemical cycling of Fe as well as associated metals. Here we elucidate the pathways and mechanisms of secondary mineralization during dissimilatory iron reduction by a common iron-reducing bacterium, Shewanella putrefaciens (strain CN32), of 2-line ferrihydrite under advective flow conditions. Secondary mineralization of ferrihydrite occurs via a coupled, biotic-abiotic pathway primarily resulting in the production of magnetite and goethite with minor amounts of green rust. Operating mineralization pathways are driven by competing abiotic reactions of bacterially generated ferrous iron with the ferrihydrite surface. Subsequent to the initial sorption of ferrous iron on ferrihydrite, goethite (via dissolution/reprecipitation) and/or magnetite (via solid-state conversion) precipitation ensues resulting in the spatial coupling of both goethite and magnetite with the ferrihydrite surface. The distribution of goethite and magnetite within the column is dictated, in large part, by flow-induced ferrous Fe profiles. While goethite precipitation occurs over a large Fe(II) concentration range, magnetite accumulation is only observed at concentrations exceeding 0.3 mmol/L (equivalent to 0.5 mmol Fe[II]/g ferrihydrite) following 16 d of reaction. Consequently, transport-regulated ferrous Fe profiles result in a progression of magnetite levels downgradient within the column. Declining microbial reduction over time results in lower Fe(II) concentrations and a subsequent shift in magnetite precipitation mechanisms from nucleation to crystal growth. While the initial precipitation rate of goethite exceeds that of magnetite, continued growth is inhibited by magnetite formation, potentially a result of lower Fe(III) activity. Conversely, the presence of lower initial Fe(II) concentrations followed by higher concentrations promotes goethite accumulation and inhibits magnetite precipitation even when Fe(II) concentrations later increase, thus revealing the importance of both the rate of Fe(II) generation and flow-induced Fe(II) profiles. As such, the operating secondary mineralization pathways following reductive dissolution of ferrihydrite at a given pH are governed principally by flow-regulated Fe(II) concentration, which drives mineral precipitation kinetics and selection of competing mineral pathways.  相似文献   

20.
Adsorption of Cu2+, Zn2+, Cd2+, and Pb2+ onto goethite is enhanced in the presence of sulfate. This effect, which has also been observed on ferrihydrite, is not predicted by the diffuse layer model (DLM) using adsorption constants derived from single sorbate systems. However, by including ternary surface complexes with the stoichiometry FeOHMSO4, where FeOH is a surface adsorption site and M2+ is a cation, the effect of SO42− on cation adsorption was accurately predicted for the range of cation, goethite and SO42− concentrations studied. While the DLM does not provide direct molecular scale insights into adsorption reactions there are several properties of ternary complexes that are evident from examining trends in their formation constants. There is a linear relationship between ternary complex formation constants and cation adsorption constants, which is consistent with previous spectroscopic evidence indicating ternary complexes involve cation binding to the oxide surface. Comparing the data from this work to previous studies on ferrihydrite suggests that ternary complex formation on ferrihydrite involves complexes with the same or similar structure as those observed on goethite. In addition, it is evident that ternary complex formation constants are larger where there is a stronger metal-ligand interaction. This is also consistent with spectroscopic studies of goethite-M2+-SO42− and phthalate systems showing surface species with metal-ligand bonding. Recommended values of ternary complex formation constants for use in SO4-rich environments, such as acid mine drainage, are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号