首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Sedimentary Geology》2007,193(1-4):21-31
Three basal-till facies from the Lower Vistula valley were examined. The lowest facies, a sandy diamicton with characteristic sand inclusions forming detached and attenuated folds, is overlain by a bedded till characterized by alternating diamictons and sorted sediment layers. The uppermost till facies is a homogeneous diamicton.The three till facies must have been formed by complex subglacial sedimentary processes during the first Late Weichselian ice advance. The lowest till facies is interpreted as a deformation till, and accumulated during the initial stage of the ice advance. The middle facies represents a stagnation phase during the initial ice advance, and was deposited during recurrent periods of subglacial melt-out followed by meltwater sedimentation. The upper till facies was deposited by direct subglacial melt-out during a stage of stagnant ice.It is suggested that bed deformation and temporarily enhanced basal sliding have been caused by ice streaming at the time of the ice-sheet advance and just before its stagnation.  相似文献   

2.
Composition and genesis of glacial hummocks, western Wisconsin, USA   总被引:1,自引:0,他引:1  
Glacial hummocks associated with the Superior Lobe in western Wisconsin are stagnant-ice features composed of melt-out till, meltwater-stream sediment, and flow till. The greater proportion of melt-out till in these hummocks than in hummocks described elsewhere suggests that a model of extensive, supraglacial reworking of supraglacially released debris does not apply to the western Wisconsin hummocks. Interpretation of melt-out till in hummock exposures is based on its strong fabric oriented parallel to regional ice-flow direction. Other features of this melt-out till include poorly developed stratification (color banding and discontinuous thin sandy lenses), and minor faulting, both of which support a melt-out origin. We suggest that as stagnant, debris-rich ice began to melt, supraglacially released debris was deposited as flow till and meltwater-stream sediment (with some debris-flow sediment and lake sediment), but as the thickness of supraglacial debris increased, debris melting out at depth was stabilized, allowing features characteristic of melt-out till to be retained. Because the supraglacial debris was sandy and the stagnant ice was likely at the pressure-melting point, the supraglacial debris was well drained and did not readily fail and flow. Debris volume in the glacier generally was greater at the glacier margin, but lateral and longitudinal variations within this zone were caused by thrusting, freezing-on, or ice-margin fluctuations, which in turn resulted in variations in hummock relief. Ice-walled-lake plains are commonly associated with the hummocks and developed where debris volume was small.  相似文献   

3.
Quaternary sedimentary successions are described from the Linda Valley, a small valley in western Tasmania that was dammed by ice during Early and Middle Pleistocene glaciations. Mapping and logging of exposures suggest that an orderly sequence of deposits formed during ice incursion, occupation and withdrawal from tributary valleys. Four principal sediment assemblages record different stages of ice occupation in the valley. As the glacier advanced, a proglacial, lacustrine sediment assemblage dominated by laminated silts and muds deposited from suspension accumulated in front of the glacier. A subglacial sediment assemblage consisting of deformed lacustrine deposits and lodgement till records the overriding of lake-bottom sediments as the glacier advanced up the valley into the proglacial lake. As the glacier withdrew from the valley, a supraglacial sediment assemblage of diamict, gravel, sand and silt facies formed on melting ice in the upper part of the valley. A lacustrine regression in the supraglacial assemblage is inferred on the basis of a change from deposits mainly resulting from suspension in a subaqueous setting to relatively thin and laterally discontinuous laminated sediments, occurrence of clastic dykes, and increasing complexity of the geometry of deposits that indicate deposition in a subaerial setting. A deltaic sediment assemblage deposited during the final stage of ice withdrawal from the valley consists of steeply dipping diamict and normally graded gravel facies formed on delta foresets by subaqueous sediment gravity flows. The sediment source for the delta, which prograded toward the retreating ice margin, was the supraglacial sediment assemblage previously deposited in the upper part of the valley. A depositional model developed from the study of the Linda Valley may be applicable to other alpine glaciated areas where glaciers flowed through or terminated in medium- to high-relief topography.  相似文献   

4.
A field of uraniferous boulders was discovered in a drift-covered valley west of Dismal Lakes. Glacial geological information was combined with boulder location and trace element till geochemical data to model the dispersal of the boulders; and to predict their likely bedrock source. Uraniferous bedrock was eroded by the last, westward flowing glacial ice to cover the area. The debris was englacially transported and subsequently deposited during subglacial melt-out of ice block(s) stagnating below active ice. The distribution of the boulders forms acrude, westward-opening fan centred on the easternmost boulder and oriented with the last ice-flow direction. The largest uranium values from surface till samples (-2 μm fraction) occur 6.2 km east of the main boulder concentration or 1.5 km east of the first boulder occurrence. The likely bedrock source is 6.0 to 6.6 km east of the main boulder concentration.  相似文献   

5.
Hilda Glacier, a small cirque glacier in the Canadian Rocky Mountains, yields two principal types of sediment: ablation till, deficient in fine material and produced by rockfalls and avalanches falling on to the glacier surface, and basal lodgement till, rich in fines and formed mainly by subglacial erosion. Recent recession from its Neoglacial maximum has exposed large areas of basal till with thin veneers of ablation till which, when combined with present subglacial and supraglacial debris, provide abundant material for erosion and transport by the mcltwatcr stream. Sediment transport measurements over two summers (1977–1978) showed that bed load and suspended load occur in approximately equal proportions and that dissolved loads are minor. Local source variations, especially bank slumps, are a major cause of scatter in sediment rating curves. Suspended-sediment concentrations are greater early in the melt season due to availability of loose sediment produced by freezing and thawing. Other contributors to scatter in suspended-sediment rating curves include rain showers and diurnal hysteretic effects. Although the distinction between bed load and suspended load is never sharp, available data suggest that the sand/ gravel grain-size boundary (-1ø) approximates the suspendcd-load/bed-load division for characteristic Hilda flows transporting gravel. This approximation, combined with till grain-size analyses, suspended-sediment measurements, and spatial distributions of till types, leads to the following computations of fluvial sediment sources: for suspended load - 6% supraglacial, 47% subglacial, 47% channel banks; for bed load - 46% supraglacial, 27% each subglacial and channel banks. Supraglacial debris provides only about one-fourth of all fluvial sediment, but nearly half of the bed load.  相似文献   

6.
ABSTRACT Pebble fabric data are available from several facies of glacigenic sediments deposited by modern glaciers, where sedimentary processes can be observed or inferred with relatively little ambiguity. Over 100 samples from contemporary environments illustrate fabrics characterizing melt-out till, deformed and undeformed lodgement till, sediment flow deposits and ice slope colluvium. Lodgement till fabric variability is related to the two-layer structure of these sediments; a structureless, friable upper layer with low shear strength and high consolidation coefficient, overlying a very compact material of horizontal platy structure. Fabric strength (assessed by eigenvalue analysis) is weaker and pebble dip is more dispersed in the upper structureless horizon. Stronger fabrics in the lower platy horizon may be primary depositional fabrics which are destroyed by subglacial shearing to give weaker fabrics in the upper horizon. Alternatively, upper horizon fabrics may be characteristic of all recently-deposited lodgement tills, with stronger fabrics developing at depth by dewatering and consolidation. There is a general reduction in fabric strength and an increase in particle dip associated with the transition from melt-out tills, through undeformed and deformed lodgement tills, to sediment flow deposits and ice slope colluvium. There is, however, considerable overlap in the fabric strengths characteristic of sediment flow deposits and deformed lodgement tills. Fabric data from modern glacial sedimentary facies are used to assist in interpreting the mode of deposition of some Quaternary glacial sediments. Relatively strong fabrics characteristic of melt-out tills and undeformed lodgement tills are more likely to be diagnostic of genesis than weaker fabrics associated with deformed sediments.  相似文献   

7.
Shaw, John 1979 1201: Genesis of the Sveg tills and Rogen moraines of central Sweden: a model of basal melt out. Boreas, Vol. 8, pp. 409–426. Oslo. ISSN 0300–9483. Climatic amelioration in permafrozen regions causes basal melting of Polar glaciers. Supraglacial debris concentrated at the ice surface by ablation at first inhibits the ablation process. When the surface debris is equal in thickness to the active layer no further surface melting occurs. Till deposition processes in permafrozen areas are consequently dominated by melt out from a basal isothermal zone at melting point. The basal melt-out process is influenced by englacial structures and forms which are also largely responsible for the resultant landforms and deposits. Such basal melt out may also occur in areas with less severe climate. A model for deposition largely by basal melt out is documented by field observations in central Sweden. Melt-out tills in areas of former extending or uniform glacier flow show an upward facies change corresponding to poorly attenuated and highly attenuated englacial facies. The till facies are recognised in terms of stratigraphic position, surface form, internal structure, and clast lithology, size, shape, and long-axis orientation and dip. Areas of former compressive flow are characterised by basal melt out of folded and dislocated englacial debris zones in which the stacking of debris produced transverse moraine ridges. The internal structure of the ridges includes folded till bodies dislocated by thrust planes, horizontal, stratified layers cross-cutting the tectonic structures, and characteristic distributions of clast long-axis orientation and dip. The morphology of the ridges at both the macro and micro scales is in accord with the proposed model of formation. The morphological and sedimentological associations produced largely by basal melt out are summarized. An additional implication of the proposed model is that gradual lowering of the supraglacial sediment surface by bottom melting of regionally stagnant ice may be the cause of widespread marine or lacustrine transgression.  相似文献   

8.
Hummocky terrain composed of boulder gravel and a wavy contact between stratified till and sand are described and explained as products of subglacial meltwater activity beneath the Saginaw Lobe of the Laurentide Ice Sheet in south-central Michigan. Exposures and geophysical investigations of hummocky terrain in a tunnel channel reveal that hummocks (˜100m diameter) are glaciofluvial bedforms with a supraglacial melt-out till or till flow veneer. The hummocky terrain is interpreted as a subglacial glaciofluvial landscape rather than one of stagnant ice processes commonly assumed for hummocky landscapes. Sandy bedforms at another site are in-phase with a wavy contact at the base of a stratified till exposed for 50m along the margin of a tunnel channel. The 0.4m thick stratified till is overlain by up to 5m of compact, pebble-rich, sandy subglacial melt-out till. The contact between the till and sand has a wave form with a 0.5m amplitude and 3-5m wavelength. Bedding within the stratified till, sandy bedforms and melt-out till are mostly in-phase with each other. Clasts from the overlying stratified till penetrate and deform the underlying sand recording recoupling of the ice to its bed. Ice ripples cut into the base of river ice have a similar morphology and are considered analogs for cavities cut into the base of the glacier and subsequently filled with sand. Subglacial meltwater activity was not coeval at each study site, indicating that subglacial meltwater played important roles in the evolution of the subglacial environment beneath the Saginaw Lobe at different times.  相似文献   

9.
Current views on the internal structure of many glacial landforms need further definition. For example, drumlinized Halton till plain near the Scarborough Bluffs, Ontario would traditionally be. viewed as a lodgement till sheet, but it was found to consist of complex sedimentary assemblages including sediment flows, melt-out, deformation and lodgement tills. These facies vary spatially depending on whether deposition occurred beneath grounded ice or within subglacial cavities. Proglacial sediments bury portions of the till plain. Surface Rutings and drumlins clearly indicate the action of subglacial processes on the surface of Halton drift. Sedimentary structures at the contact between stratified sediments and diamictons within the Late Wisconsinan Halton drift are similar to those in older beds exposed at Scarborough Bluffs. The demonstration of the role of grounded ice in Halton drift and the similarity of sedimentary structures to those of the underlying Thorncliffe and Sunnybrook sediments suggests that the action of grounded ice cannot be ruled out in the case of the lower beds, as has been done by Eyles & Eyles ( Geology 11 , 146–152, 1983). Thus, surface Halton drift may be a model for recognition of similar environments of deposition in older beds beneath Halton. This analysis indicates flaws in a recent re-evaluation of Scarborough Bluffs sediment interpreted as solely lacustrine and not directly affected by glaciers.  相似文献   

10.
Tillites, conglomerates and sandstones occurring in the basal part of the Smalfjord Formation along the Varangerfjord, East Finnmark, North Norway are believed to have formed during the retreat of a glacier. At Kvalnes, on the south side of the fjord, the following sequence, up to 20 m thick, is found: (1) massive monomict tillite interpreted as a subglacial till, (2) massive polymict tillite with lenticular intercalations of stratified sandstone and tillite, interpreted as supraglacial/proglacial drift, (3) polymict conglomerate interstratified with laminated sandstones, interpreted as braided stream deposits. The last named interfingers laterally and is overlain by marine sandstones. At Bigganjargga, near the head of the fjord, a lens of tillite about 3 m thick rests on a striated pavement and is overlain by sandstones and shales. Part of the tillite, containing irregular patches of slightly winnowed tillite, is interpreted as a melt-out till, while a marginal part consisting of inclined tillite beds is interpreted as a series of flow till deposits. The lens is believed to be an oblique section through what was originally an ice-cored moraine ridge. During a subsequent transgression, the moraine was partially eroded, a lag conglomerate was formed, and overlying marine sediments were deposited. Bedded flow tills formed in a supraglacial/proglacial environment may be preserved where the extent of current reworking is very low (such as an isolated end moraine). Stratified conglomerate and sandstone, intimately intercalated with tillite, is to be expected at a glacier margin where glacial meltwater is locally and occasionally abundant, and glacier ablation permits downslope flowage of mobilized supraglacial fluid till.  相似文献   

11.
A Pleistocene drift sequence in hummocky terrain along part of the southern Avalon Peninsula of Newfoundland is interpreted to comprise complexly interrelated lodgement till, melt-out till, flow till, supraglacial and proglacial outwash, and supraglacial rhythmites. The gray and tan melt-out tills are stacked in imbricate fashion, giving rise to exceptionally thick stratigraphic sections. Contacts between melt-out tills are interpreted as remnants of shear planes because they are sharp, they dip in the up-ice direction, and they converge toward valley margins. Overlying flow tills interdigitate with supraglacial outwash. The drift sequence was deposited during a single episode of glaciation, rather than by repeated glacier advance, as previously proposed. It is the product of thrusting of englacial debris along ice-marginal shear planes, subsequent melting-out of englacial debris, and formation of supraglacial flow till and outwash. Preservation of this sequence probably is due to high content of englacial debris within the Wisconsinan ice. The sedimentary, glacitectonic, and morphologic features of this sequence are similar to those found at the margins of certain Arctic glaciers of subpolar thermal regime which have recently been the subject of Pleistocene glacial sedimentation models for west-central Canada and Great Britain. Recognition of these distinct elements indicates wisconsinan glacier lobes were of the cold Arctic type in southeastern Newfoundland. Alternative explanations for this sequence, such as deposition by glaciers of temperate thermal regime or by surging glaciers, are discounted. Because the features described here are complex and difficult to recognize, they may be more widespread in Pleistocene drift than has previously been interpreted.  相似文献   

12.
Although analysis of clast macrofabrics has been used to differentiate between different types of glacial diamictons and to determine palaeo‐ice flow directions, no account appears to have been made of preferred clast orientations inherited from the parental source material. Clast macrofabrics in tills are typically interpreted as having developed in response to an imposed subglacial deformation and as such provide a link between the sedimentary record and glacier dynamics. They rely on the assumption that any preferred clast orientation is a result of deformation/flow. The results of the micromorphological study of the Langholm Till exposed at North Corbelly near Dumfries (southwestern Scotland) clearly demonstrate that bedrock structure can influence clast orientation (macrofabric) within diamictons. In the lower part of the till, the orientation of elongate clasts preserves the geometry of the tectonic cleavage present within the underlying bedrock. The intensity of this steeply inclined, ‘inherited’ clast fabric decreases upward through the till, to be replaced by a more complex pattern of successive generations of clast microfabrics developed in response to deformation/flow. These results indicate potential limitations of applying clast macrofabric or microfabric analysis in isolation to establish till genesis or palaeo ice‐flow directions. Consequently, due account should be made of other glacial palaeo‐environmental and ice flow indicators, as well as rockhead depth and morphology in relation to the selection of fabric measurements sites. © British Geological Survey/Natural Environment Research Council copyright 2007. Reproduced with the permission of BGS/NERC. Published by John Wiley & Sons, Ltd.  相似文献   

13.
Menzies, J. & Ellwanger, D. 2010: Insights into subglacial processes inferred from the micromorphological analyses of complex diamicton stratigraphy near Illmensee‐Lichtenegg, Höchsten, Germany. Boreas, 10.1111/j.1502‐3885.2010.00194.x. ISSN 0300‐9483. Investigations of a 30‐m‐high section of Pleistocene sediments at Illmensee‐Lichtenegg, Höchsten in Baden‐Württemberg provide detailed information on subglacial conditions beneath the Rhine Glacier outlet of the Alpine ice sheet in southern Germany. The sediment exposure extends from an upper cemented sand and gravel (Deckenschotter) into diamictic units that extend down to weathered Molasse bedrock. The exposure reveals sediments symptomatic of active syndepositional stress/strain processes ongoing beneath the ice sheet. Macrosedimentology reveals diamicton subfacies units and a strong uni‐direction of ice motion based on clast fabric analyses. At the microscale level, thin‐section analyses provide a substantially clearer picture of the dynamics of subglacial sediment deformation and till emplacement. Evidence based on detailed micromorphological analyses reveals microstructural strain and depositional markers that indicate a subglacial environment of ongoing soft bed deformation in which the diamictons can be readily identified as subglacial tills. Within this subglacial environment, distinct changes in pore‐water pressure and sediment rheology can be detected. These changes reveal fluctuating conditions of progressive, non‐pervasive deformation associated with rapid changes in effective stress and shear strain leading to till emplacement. This site, through the application of micromorphology, increases our understanding of localized subglacial conditions and till formation.  相似文献   

14.
The Mount Cook area in the Southern Alps of New Zealand is heavily glacierized with numerous peaks over 3000 m a.s.l. feeding several large valley glaciers. The region is subject to rapid tectonic uplift and heavy precipitation (up to 15 m per year). This paper describes the clast roundness, clast shape and textural characteristics associated with five glaciers (Fox, Franz Josef, Hooker, Mueller and Tasman) in terms of inputs to the glacier system, transport by the glaciers and reworking following glacial deposition. Inputs include rockfall, alluvial fan and avalanche material delivered to the surface of valley glaciers. Basal debris, where observed at the terminus of two glaciers, consists mainly of incorporated fluvial material. Following deposition, reworking is mainly by subglacial and proglacial streams. The dominant facies are (i) boulder gravel with mainly angular clasts on the steep slopes above the glaciers, (ii) sandy boulder gravel, with mainly angular and subangular clasts, forming lateral and end moraines, and (iii) sandy boulder/cobble gravel with mainly subrounded clasts, and sand, which represent glacially transported sediment reworked by braided rivers. Diamicton is rare in the contemporary glacial environment. Since most sediment associated with glaciers in the Southern Alps lacks unambiguous indications of glacial transport, interpretation of similar sediments in the geological record should not necessarily exclude the involvement of glacial processes.  相似文献   

15.
A history and conception of glacial events for the central Karakoram Himalaya, proposed some 80 years ago by Giotto Dainelli, are largely accepted today. However, certain deposits identified as terminal moraine complexes marking glacial episodes were actually emplaced by rock avalanches. In the Skardu and Shigar intermontane basins of Baltistan, at least 15 rock avalanche events were previously mapped as moraine or till. Criteria used for distinguishing these catastrophic landslide deposits emphasize homogeneous lithology of rubble and matrix, clast shape, facies characteristics, the large scale unity of emplacement, and morphological relations to valley topography. The deposits of three events, at Katzarah, Satpura, and the north end of Shigar Valley, have been reconstructed in detail. Thick supraglacial debris does not result in similar deposits. Extensive valley fills, river terraces, large sediment fans, and lacustrine sediments formerly attributed to late-glacial conditions are reinterpreted as postglacial events involving rock avalanches that interrupted fluvial development. Existing reconstructions of glaciations are left in doubt, especially late-glacial events in the central Karakoram, as are the roles assigned to Karakoram, main Indus Valley, and western Himalayan ice.  相似文献   

16.
Pebble counts of the lithology of glacial sediments in the King Valley show that the content of distantly derived erratics of many sections decreases upwards in near surface sediments. Two factors that contribute to this lithological stratification are dilution of the erratic content of surface sediments by locally derived rocks and lithological stratification of debris within the Pleistocene King Glacier. The common diluting mechanism appears to have been slope detritus derived from the valley sides and small hills that crop out on the valley floor. Lithological stratification of debris in the King Glacier resulted from the altitude of the equilibrium line of the King Glacier relative to the position and altitude of the rock source areas and the thermal regime at the ice-bed interface. The Jurassic dolerite and Permian sediments that crop out above the equilibrium line altitude were transported in subglacial and englacial positions. In contrast, below the equilibrium line sediments that accumulated and were transported in a supraglacial position contained no erratic lithologies. When deposited, the supraglacial sediments formed a siliceous, non-erratic cover over sediments that were transported in subglacial and englacial positions. The model of the mode of sediment transport in the King Valley may have application to areas of alpine glaciation where the distribution of some rock types is restricted to areas above the equilibrium lines of glaciers.  相似文献   

17.
The nature and origin of glacial sediments at Wylfa Head are described, and their significance with regard to sedimentary environments during Late Devensian deglaciation of the Irish Sea Basin is discussed. Recent models of deglaciation under glaciomarine conditions are challenged. The Quaternary sequence at Wylfa consists of eroded and glaciotectonically deformed bedrock, locally derived lodgement till, calcareous silt-rich lodgement till containing northern erratics, discontinuous units of orange-brown silty sand of possible aeolian origin, and grey laminated freshwater silts filling a small kettle hole. The till units thicken to the south where the surface is drumlinised. It is concluded that the landforms and deposits result from a warm-based Irish Sea glacier, which moved towards the southwest. Spatial variation in basal water pressure resulted from localised drainage through zones of more heavily jointed bedrock. Rapid glacial erosion occurred in areas where subglacial water pressure was relatively high, while deposition of the resulting basal sediment took place where water pressures were reduced. The glacier also carried basal calcareous silty till onshore, which was deposited by lodgement processes. None of the deposits at Wylfa are interpreted as glaciomarine in origin, and there is no evidence at this site for an isostatically induced marine transgression prior to deglaciation.  相似文献   

18.
Episodes of glacial advance and retreat can be recognized through analysis of vertical facies sequences in the Permo-Carboniferous Pagoda Formation of the Beardmore Glacier area, Antarctica. The formation includes a remarkably complete record of continental sedimentation near the terminus of a temperate glacier. Facies sequence is pre-eminent for inferring glacial advance and retreat. Other important criteria are abundance and geometry of sandstone interbedded with diamictite, diamictite character and nature of bed contacts. Using these characteristics advance and retreat sequences 5–60 m thick are recognized. A sharp contact, with a striated surface and erosional relief, overlain by structureless diamictite (lodgement till) is typical of grounded ice advance. Grounded ice retreat is characterized by structureless diamictite (lodgement till), overlain by crudely stratified diamictite (melt-out till) and then by diamictite interbedded with sandstone and conglomerate (flow till and glacio-fluvial or glacio-lacustrine deposits). Gradational contacts between shale overlain by diamictite and diamictite overlain by shale characterize advance and retreat, respectively, in subaqueous settings. Pauses in sediment accumulation, minor(?) fluctuations of the ice margin, and/or changes in subglacial dynamics are indicated by specific features within diamictite units such as probable frost-wedge casts, single layer boulder beds, sharp sedimentary contacts and changes in diamictite character. These minor(?) events are superimposed upon the main advance-retreat cycles. Study of both the overall facies sequence and of individual diagnostic structures, albeit in an incomplete stratigraphic record, permits a distinction between major and minor advance-retreat events. As many as six major advance-retreat cycles exist in some Pagoda sections, but the number of cycles present varies in different sections.  相似文献   

19.
The glacial succession in the western part of the Cheshire-Shropshire lowland records the advance, coalescence and subsequent uncoupling of Irish Sea and Welsh ice-sheets during the Late Devensian stage. During advance a discontinuous sheet of basal till was emplaced across the floor of the region by subglacial lodgement. On retreat, compression of the Irish Sea ice sheet against bedrock obstruction generated a zone of supraglacial sedimentation resulting in the creation of the Wrexham-Ellesmere-Wem-Whitchurch moraine system, and the formation of a wide range of sedimentary environments, including ice-marginal sandur troughs, ice-front alluvial fans, proglacial ribbon sandur, and subglacial, ice-contact and proglacial lakes. The geometry of sedimentary units, and their lithologic and geomorphic characteristics, display spatially ordered patterns of sediment-landform assemblage which show that the statigraphic succession is a response to rapidly changing depositional conditions at a retreating supraglacial ice-margin punctuated by minor still-stands and ice-front oscillations.  相似文献   

20.
The Blackspring Ridge (BSR), located in south-central Alberta, Canada, is dominated by a prominent flute field. Flutes (elongated streamlined depressions) and ridges (elongate streamlined hills) are up to 15 km long and are composed of two material types: in situ bedrock, and in situ pre-Laurentide glaciation fluvial sand and gravel beds. The preglacial beds are Tertiary or early Quaternary in age. The beds are undisturbed, maintain primary bedding structures, and even maintain clast imbrication. No till overlies the gravel beds, although in places large granite boulder erratics lie on the surface, indicating that ice was present in the region in the past. Because the ridges are composed of preglacial materials, they are remnant erosional landforms rather than constructional landforms. Geomorphic and sedimentary evidence favor subglacial meltwater as the erosional agent, rather than ice. We suggest that the elevation of the BSR relative to basal ice would have resulted in confined subglacial meltwater flow, with associated flow acceleration and increased scouring resulting in flute formation. This meltwater stripped away any till cover, leaving behind only a few boulders. Observations at the BSR flute field preclude the possibility that flutes and remnant ridges are the result of deformation of soft clayey beds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号