首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on the Global Land Cover Characteristics Database (GLCCD) generated by the U.S. Geological Survey (USGS) and University of Nebraska-Lincoln (UNL), a new land cover dataset within a domain of 14.1–49.6°N, 84.6–140.5°E is extracted. This dataset is used to identify the achievements of constructing 3N (Northeast, North and Northwest of China) Shelterbelt in North China and to update the lower boundary conditions of the mesoscale model (MM5), a widely used mesoscale meteorological model. The model is then used to simulate the regional climate effects of the 3N Shelterbelt, the largest forestation engineering in the world. The simulation shows that the construction of the 3N Shelterbelt and the corresponding land use and land cover (LULC) variations in China have changed the roughness length in the cited model domain significantly. Consequently, the surface layer wind speed, air temperature, humidity, and the precipitation are all changed. As compared with the control run without the 3N Shelterbelt, the regional climate in North China is improved shown by the decreased wind speed, increased air humidity and precipitation. The paper also stresses that, in meteorological or climatic simulations, the lower boundary conditions related to the land cover has to be updated frequently by the satellite observed database since the LULC vary fast due to the increasing world population and human activities, this is especially true in developing countries like China.  相似文献   

2.
Using a recently developed global vegetation distribution, topography, and shorelines for the Early Eocene in conjunction with the Genesis version 2.0 climate model, we investigate the influences that these new boundary conditions have on global climate. Global mean climate changes little in response to the subtle changes we made; differences in mean annual and seasonal surface temperatures over northern and southern hemispheric land, respectively, are on the order of 0.5°C. In contrast, and perhaps more importantly, continental scale climate exhibits significant responses. Increased peak elevations and topographic detail result in larger amplitude planetary 4 mm/day and decreases by 7–9 mm/day in the proto Himalayan region. Surface temperatures change by up to 18°C as a direct result of elevation modifications. Increased leaf area index (LAI), as a result of altered vegetation distributions, reduces temperatures by up to 6°C. Decreasing the size of the Mississippi embayment decreases inland precipitation by 1–2 mm/day. These climate responses to increased accuracy in boundary conditions indicate that “improved” boundary conditions may play an important role in producing modeled paleoclimates that approach the proxy data more closely.  相似文献   

3.
Climate changes and recent glacier behaviour in the Chilean Lake District   总被引:1,自引:1,他引:0  
Atmospheric temperatures measured at the Chilean Lake District (38°–42°S) showed contrasting trends during the second half of the 20th century. The surface cooling detected at several meteorological stations ranged from − 0.014 to − 0.021 °C a− 1, whilst upper troposphere (850–300 gpm) records at radiosonde of Puerto Montt (41°26′S/73°07′W) revealed warming between 0.019 and 0.031 °C a− 1. Regional rainfall data collected from 1961 to 2000 showed the overall decrease with a maximum rate of − 15 mm a− 2 at Valdivia st. (39°38′S/73°05′W). These ongoing climatic changes, especially the precipitation reduction, seem to be related to El Niño–Southern Oscillation (ENSO) phenomena which has been more frequent after 1976. Glaciers within the Chilean Lake District have significantly retreated during recent decades, in an apparent out-of-phase response to the regional surface cooling. Moreover, very little is known about upper troposphere changes and how they can enhance the glacier responses. In order to analyse their behaviour in the context of the observed climate changes, Casa Pangue glacier (41°08′S/71°52′W) has been selected and studied by comparing Digital Elevation Models (DEMs) computed at three different dates throughout the last four decades. This approach allowed the determination of ice elevation changes between 1961 and 1998, yielding a mean thinning rate of − 2.3 ± 0.6 m a− 1. Strikingly, when ice thinning is computed for the period between 1981 and 1998, the resulting rate is 50% higher (− 3.6 ± 0.6 m a− 1). This enhanced trend and the related area loss and frontal retreat suggests that Casa Pangue might currently be suffering negative mass balances in response to the upper troposphere warming and decreased precipitation of the last 25–30 yr, as well as debris cover would not prevent the glacier from a fast reaction to climate forcing. Most of recent glaciological studies regarding Andean glaciers have concentrated on low altitude changes, namely frontal variations, however, in order to better understand the regional glacier changes, new data are necessary, especially from the accumulation areas.  相似文献   

4.
The possible effects of trace-gas induced climatic changes on Pyramid and Yellowstone Lakes are assessed using a model of lake temperature. The model is driven by years of hourly meteorological data obtained directly from the output of double-CO2 experiments (2 × CO2) conducted with a regional climate model nested in a general circulation model. The regional atmospheric model is the climate version of the National Center for Atmospheric Research/Pennsylvania State University mesoscale model, MM4.Average annual surface temperature of Pyramid Lake for the 2 × CO2 climate is 15.5 ± 5.4°C (±1 σ), 2.8°C higher than the control. Annual overturn of the lake ceases as a result of these higher temperatures for the 2 × CO2 climate. Evaporation increases from 1400 mm yr−1 in the control to 1595 mm yr−1 in the 2 × CO2 simulation, but net water supplied to the Pyramid Lake basin increases from −6 mm yr−1 in the control to +27 mm yr−1 in the 2 × CO2 simulation due to increased precipitation.For the open water periods, the average annual surface temperature of Yellowstone Lake is 13.2 ± 5.1°C for the 2 × CO2 climate, a temperature 1.6°C higher than the control. The annual duration of ice cover on the lake is 152 days in the 2 × CO2 simulation, a reduction of 44 days relative to the control. Warming of the lake for the 2 × CO2 climate is mostly confined to the near-surface. Simulated spring overturn for the 2 × CO2 climate occurs earlier in the year and fall overturn later than in the control. Evaporation increases from 544 mm yr−1 to 600 mm yr−1 in the 2 × CO2 simulation, but net water supplied to the Yellowstone Lake basin increases from +373 mm yr−1 in the control to +619 mm yr−1 due to increased precipitation. The effects of these climatic changes suggest possible deterioration of water quality and productivity in Pyramid Lake and possible enhancement of productivity in Yellowstone Lake.  相似文献   

5.
An investigation is made of the “white earth” scenario, wherein the positive feedback mechanism, involving temperature, snow/ice cover,and albedo, renders the earth's surface covered with permanent snow freezes the oceans when the solar input is sufficiently low. A three-dimensional energy budget climate model is used to stimulate the earth's response to a 30% decrease in the solar constant. The decrease occurs over a period of 90 years. The model simulates an additional 100 years to allow conditions to stabilize. At the end of the model run, the planetary mean surface temperature is 204.8°K, the oceans are completely frozen over, and the maximum seasonal mean temperature any grid point of the planet is 251.6°K in the western Gobi Desert in JJA. The highest average annual temperature is 238.7°K in western Zaire. A significant portion of the planet's land surface is free of permanent snow cover. The result of this model run suggest that the hydrologic balance may provide a significant negative feedback mechanism to counter the snow/ice-albedo positive feedback mechanism and that the earth's climate may be less sensitive to variations in the solar constant than previously believed.  相似文献   

6.
Anthony Mallama   《Icarus》2007,192(2):404-416
A comprehensive set of magnitudes obtained between 1954 and 2006 are analyzed. The martian brightness and its variations are characterized empirically at UBVRI wavelengths. Geometrical factors including phase angle, orbital longitude and rotation angle are distinguished from geophysical factors including dust storms and changing albedo features. The phase function indicates a brightness surge near opposition at all wavelengths except possibly in the U band. The color indices reveal increased reddening with phase angle. No significant brightness difference between morning and evening hemisphere observations is indicated with the possible exception of the I band. There is no conclusive evidence for inter-annual brightness variation during the years from 1991 to 2006 when abundant photometry is available. Major dust storms caused brightness excesses that were strongest in the R band at an average of 0.15 mag more luminous than the empirical model for dust-free conditions. The storm of 2001 produced a rapid increase at the onset followed by a slower decline, while the 2003–2004 event show a more gradual increase. The return to normal brightness was linear in magnitude for both storms. Brightness excesses at longer wavelengths were about 0.20 to 0.25 mags at the peak of the 2001 storm. The observed geometric albedo of Mars is 0.059±0.001 in U, 0.089±0.001 in B, 0.170±0.002 in V, 0.289±0.003 in R, and 0.330±0.003 in I. The corresponding albedo values for all five colors exceed those recorded in the literature, with larger percentage increases at shorter wavelengths.  相似文献   

7.
A previous study of Fox [Fox, A.N. 1993. Snowline altitude and climate at present and during the Last Pleistocene Glacial Maximum in the Central Andes (5°–28°S). Ph.D. Thesis. Cornell University.] showed that for a fixed 0 °C isotherm altitude, the equilibrium-line altitude (ELA) of the Peruvian and Bolivian glaciers from 5 to 20°S can be expressed based on a log–normal expression of local mid-annual rainfall amount (P). In order to extrapolate the function to the whole Andes (10°N to 55°S) a local 0 °C isotherm altitude is introduced. Two applications of this generalised function are presented. One concerns the space evolution of mean inter-annual ELA for three decades (1961–1990) over the whole South American continent. A high-resolution data set (grid data: 10′ for latitude/longitude) of mean monthly air surface temperature and precipitation is used. Mean annual values over the 1961–1990 period were calculated. On each grid element, the mean annual 0 °C isotherm altitude is determined from an altitudinal temperature gradient and mean annual temperature (T) at ground level. The 0 °C isotherm altitude is then associated with the annual precipitation amount to compute the ELA. Using computed ELA and the digital terrain elevation model GTOPO30, we determine the extent of the glacierised area in Andean regions under modern climatic conditions. The other application concerns the ELA time evolution on Zongo Glacier (Bolivia), where inter-annual ELA variations are computed from 1995 to 1999. For both applications, the computed values of ELA are in good agreement with those derived from glacier mass balance measurements.  相似文献   

8.
Analyses of Eemian climate dynamics based on different reconstruction methods were conducted for several pollen sequences in the northern alpine foreland. The modern analogue and mutual climate sphere techniques used, which are briefly presented, complement one another with respect to comparable results. The reconstructions reveal the occurrence of at least two similar thermal periods, representing temperate oceanic conditions warmer and with a higher humidity than today. Intense changes of climate processes become obvious with a shift of winter temperatures of about 15 °C from the late Rissian to the first thermal optimum of the Eemian. The transition shows a pattern of summer temperatures and precipitation increasing more rapidly than winter temperatures. With the first optimum during the PinusQuercetum mixtumCorylus phase (PQC) at an early stage of the Eemian and a second optimum period at a later stage, which is characterised by widespread Carpinus, climate gradients across the study area were less intense than today. Average winter temperatures vary between −1.9 and 0.4 °C (present-day −3.6 to 1.4 °C), summer temperatures between 17.8 and 19.6 °C (present-day 14 to 18.9 °C). The timberline expanded about 350 m when compared to the present-day limit represented by Pinus mugo. Whereas the maximum of temperature parameters is related to the first optimum, precipitation above 1100 mm is higher during the second warm period concomitant to somewhat reduced temperatures. Intermediate, smaller climate oscillations and a cooling becomes obvious, which admittedly represent moderate deterioration but not extreme chills. During the boreal semicontinental Eemian PinusPiceaAbies phase, another less distinct fluctuation occurs, initiating the oscillating shift from temperate to cold conditions.  相似文献   

9.
Atmospheric water vapor abundances in Mars’ north polar region (NPR, from 60° to 90°N) are mapped as function of latitude and longitude for spring and summer seasons, and their spatial, seasonal, and interannual variability is discussed. Water vapor data are from Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) and the Viking Orbiter (VO) Mars Atmospheric Water Detector (MAWD). The data cover three complete northern spring-summer seasons in 1977-1978, 2000-2001 and 2002-2003, and shorter periods of spring-summer seasons during 1975, 1999 and 2004. Long term interannual variability in the averaged NPR abundances may exist, with Viking MAWD observations showing twice as much water vapor during summer as the MGS TES observations more than 10 martian years (MY) later. While the averaged abundances are very similar in TES observations for the same season in different years, the spatial distributions in the early summer season do vary significantly year over year. Spatial and temporal variabilities increase between Ls ∼ 80-140°, which may be related to vapor sublimation from the North Polar Residual Cap (NPRC), or to changes in circulation. Spatial variability is observed on scales of ∼100 km and temporal variability is observed on scales of <10 sols during summer. During late spring the TES water vapor spatial distribution is seen to correlate with the low topography/low albedo region of northern Acidalia Planitia (270-360°E), and with the dust spatial distribution across the NPR during late spring-early summer. Non-uniform vertical distribution of water vapor, a regolith source or atmospheric circulation ‘pooling’ of water vapor from the NPRC into the topographic depression may be behind the correlation with low topography/low albedo. Sublimation winds carrying water vapor off the NPRC and lifting surface dust in the areas surrounding the NPRC may explain the correlation between the water vapor and dust spatial distributions. Correlation between water vapor and dust in MAWD data are only observed over low topography/low albedo area. Maximum water vapor abundances are observed at Ls = 105-115° and outside of the NPRC at 75-80°N; the TES data, however, do not extend over the NPRC and thus, this conclusion may be biased. Some water vapor appears to be released in plumes or ‘outbursts’ in the MAWD and TES datasets during late spring and early summer. We propose that the sublimation rate of ice varies across the NPRC with varying surface winds, giving rise to the observed ‘outbursts’ at some seasons.  相似文献   

10.
The effect of vegetation on the Younger Dryas (YD) climate is studied by comparing the results of four experiments performed with the ECHAM-4 atmospheric general circulation model (AGCM): (1) modern control climate, (2) simulation with YD boundary conditions, but with modern vegetation, (3 and 4) identical to (2), but with paleo-vegetation. Prescribing paleo-vegetation instead of modern vegetation resulted in temperature anomalies (both positive and negative) of up to 4°C in the Northern Hemisphere mid-latitudes, mainly as an effect of changes in forest cover (change in albedo). Moreover, changes in precipitation and evaporation were found, most notably during December–January–February (DJF) in the tropics and were caused by the replacement of forests by grasslands. These results are consistent with other model studies on the role of vegetation changes on climate and they suggest that it is important in paleoclimate simulation studies to prescribe realistic vegetation types, belonging to the period of interest. However, in our case the addition of YD vegetation did not improve the agreement with proxy data in Europe, as the temperatures were increasing during winter compared to the YD simulation with modern vegetation. It must be noted that this increase was not statistically significant. The model-data mismatch suggests that other factors probably played an important role, such as permafrost and atmospheric dust. We infer that during the last glacial-interglacial transition, the time lag between the first temperature increase and the northward migration of trees, estimated at 500–1000 years, could have delayed the warming of the Eurasian continent. The relatively open vegetation that existed during the early stages of the last glacial-interglacial transition had a relatively high albedo, thus tempering warming up of the Eurasian land surfaces.  相似文献   

11.
Today, most land surface process models have prescribed seasonal change of vegetation with regard to the exchange processes between land and the atmosphere. However, in order to consider the real interaction between vegetation and atmosphere and represent it best in a climate model, the vegetation growth process should be included. In other words, “life” should be brought into climate models. In this study, we have coupled the physical and biological components of AVIM (Atmosphere–Vegetation Interaction Model), a land surface model including plant ecophysiological processes, into the IAP/LASG L9 R15 GOALS GCM. To exhibit terrestrial vegetation information, the vegetation is given a high resolution of 1.5° by 1.5° to nest and couple the fine grid cells of land with the coarse grid cells of atmosphere, which is 7.5° longitude and 4.5° latitude. The simulated monthly mean surface air temperature and precipitation is close to the observations. The monthly mean Leaf Area Index (LAI) is consistent with the observed data. The global annual mean net primary production (NPP) simulation is also reasonable. The coupled model is stable, providing a good platform for research on two-way interaction between land and atmosphere, and the global terrestrial ecosystem carbon cycle.  相似文献   

12.
Changes in the extent of glaciers and rates of glacier termini retreat in the eastern Terskey–Alatoo Range, the Tien Shan Mountains, Central Asia have been evaluated using the remote sensing techniques. Changes in the extent of 335 glaciers between the end of the Little Ice Age (LIA; mid-19th century), 1990 and 2003 have been estimated through the delineation of glacier outlines and the LIA moraine positions on the Landsat TM and ASTER imagery for 1990 and 2003 respectively. By 2003, the glacier surface area had decreased by 19% of the LIA value, which constitutes a 76 km2 reduction in glacier surface area. Mapping of 109 glaciers using the 1965 1:25,000 maps revealed that glacier surface area decreased by 12.6% of the 1965 value between 1965 and 2003. Detailed mapping of 10 glaciers using historical maps and aerial photographs from the 1943–1977 period, has enabled glacier extent variations over the 20th century to be identified with a higher temporal resolution. Glacial retreat was slow in the early 20th century but increased considerably between 1943 and 1956 and then again after 1977. The post-1990 period has been marked by the most rapid glacier retreat since the end of the LIA. The observed changes in the extent of glaciers are in line with the observed climatic warming. The regional weather stations have revealed a strong climatic warming during the ablation season since the 1950s at a rate of 0.02–0.03 °C a− 1. At the higher elevations in the study area represented by the Tien Shan meteorological station, the summer warming was accompanied by negative anomalies in annual precipitation in the 1990s enhancing glacier retreat. However, trends in precipitation in the post-1997 period cannot be evaluated due to the change in observational practices at this station. Neither station in the study area exhibits significant long-term trends in precipitation.  相似文献   

13.
Rainfed tropical agriculture provides important avenue to ascertain the consequences of climate change. This is because reliability of rainfall accounts for much of the variation in agriculture in the region. In addition, the region is already hot and vulnerable from further warming. This study shows from a climate change experiment using Ricardian method in Cameroon that a 7% decrease in precipitation would cause net revenues from crops to fall US$2.86 billion and a 14% decrease in precipitation would cause net revenue from crops to fall US$3.48 billion. Increases in precipitation would have the opposite effect on net revenues. For a 2.5 °C warming, net revenues would fall by US$0.79 billion, and a 5 °C warming would cause net revenues to fall US$1.94 billion. This highlights that agriculture is not only limited by seasonality and magnitude of moisture availability, but also it is significantly impacted by climate change.  相似文献   

14.
Climatic changes over the Mediterranean basin in 2031–2060, when a 2 °C global warming is most likely to occur, are investigated with the HadCM3 global circulation model and their impacts on human activities and natural ecosystem are assessed. Precipitation and surface temperature changes are examined through mean and extreme values analysis, under the A2 and B2 emission scenarios. Confidence in results is obtained via bootstrapping. Over the land areas, the warming is larger than the global average. The rate of warming is found to be around 2 °C in spring and winter, while it reaches 4 °C in summer. An additional month of summer days is expected, along with 2–4 weeks of tropical nights. Increase in heatwave days and decrease in frost nights are expected to be a month inland. In the northern part of the basin the widespread drop in summer rainfall is partially compensated by a winter precipitation increase. One to 3 weeks of additional dry days lead to a dry season lengthened by a week and shifted toward spring in the south of France and inland Algeria, and autumn elsewhere. In central Mediterranean droughts are extended by a month, starting a week earlier and ending 3 weeks later. The impacts of these climatic changes on human activities such as agriculture, energy, tourism and natural ecosystems (forest fires) are also assessed. Regarding agriculture, crops whose growing cycle occurs mostly in autumn and winter show no changes or even an increase in yield. In contrast, summer crops show a remarkable decrease of yield. This different pattern is attributed to a lengthier drought period during summer and to an increased rainfall in winter and autumn. Regarding forest fire risk, an additional month of risk is expected over a great part of the basin. Energy demand levels are expected to fall significantly during a warmer winter period inland, whereas they seem to substantially increase nearly everywhere during summer. Extremely high summer temperatures in the Mediterranean, coupled with improved climate conditions in northern Europe, may lead to a gradual decrease in summer tourism in the Mediterranean, but an increase in spring and autumn.  相似文献   

15.
One significant difference between the atmospheres of stars and exoplanets is the presence of condensed particles (clouds or hazes) in the atmosphere of the latter. In current 1D models clouds and hazes are treated in an approximate way by raising the surface albedo, or adopting measured Earth cloud properties. The former method introduces errors to the modeled spectra of the exoplanet, as clouds shield the lower atmosphere and thus modify the spectral features. The latter method works only for an exact Earth-analog, but it is challenging to extend to other planets.The main goal of this paper is to develop a self-consistent microphysical cloud model for 1D atmospheric codes, which can reproduce some observed properties of Earth, such as the average albedo, surface temperature, and global energy budget. The cloud model is designed to be computationally efficient, simple to implement, and applicable for a wide range of atmospheric parameters for planets in the habitable zone.We use a 1D, cloud-free, radiative–convective, and photochemical equilibrium code originally developed by Kasting, Pavlov, Segura, and collaborators as basis for our cloudy atmosphere model. The cloud model is based on models used by the meteorology community for Earth’s clouds. The free parameters of the model are the relative humidity and number density of condensation nuclei, and the precipitation efficiency. In a 1D model, the cloud coverage cannot be self-consistently determined, thus we treat it as a free parameter.We apply this model to Earth (aerosol number density 100 cm?3, relative humidity 77%, liquid cloud fraction 40%, and ice cloud fraction 25%) and find that a precipitation efficiency of 0.8 is needed to reproduce the albedo, average surface temperature and global energy budget of Earth. We perform simulations to determine how the albedo and the climate of a planet is influenced by the free parameters of the cloud model. We find that the planetary climate is most sensitive to changes in the liquid water cloud fraction and precipitation efficiency.The advantage of our cloud model is that the cloud height and the droplet sizes are self-consistently calculated, both of which influence the climate and albedo of exoplanets.  相似文献   

16.
Interannual variability of regional climate was investigated on a seasonal basis. Observations and two global climate model (GCM) simulations were intercompared to identify model biases and climate change signals due to the enhanced greenhouse effect. Observed record length varies from 40 to 100 years, while the model output comes from two 100-year equilibrium climate simulations corresponding to atmospheric greenhouse gas concentrations at observed 1990 and projected 2050 levels. The GCM includes an atmosphere based on the NCAR CCM1 with the addition of the radiative effects of CH4, N2O and CFCs, a bulk layer land surface and a mixed-layer ocean with thermodynamic sea-ice and fixed meridional oceanic heat transport.Because comparisons of interannual variability are sensitive to the time period chosen, a climate ensemble technique has been developed. This technique provides comparisons between variance ratios of two time series for all possible contiguous sub-periods of a fixed length. The time autocorrelation is thus preserved within each sub-period. The optimal sub-period length was found to be 30 years, based on which robust statistics of the ensemble were obtained to identify substantial differences in interannual variability that are both physically important and statistically significant.Several aspects of observed interannual variability were reproduced by the GCM. These include: global surface air temperature; Arctic sea-ice extent; and regional variability of surface air temperature, sea level pressure and 500 mb height over about one quarter of the observed data domains. Substantial biases, however, exist over broad regions, where strong seasonality and systematic links between variables were identified. For instance, during summer substantially greater model variability was found for both surface air temperature and sea-level pressure over land areas between 20–50°N, while this tendency was confined to 20–30°N in other seasons. When greenhouse gas concentrations increase, atmospheric moisture variability is substantially larger over areas that experience the greatest surface warming. This corresponds to an intensified hydrologic cycle and, hence, regional increases in precipitation variability. Surface air temperature variability increases where hydrologic processes vary greatly or where mean soil moisture is much reduced. In contrast, temperature variability decreases substantially where sea-ice melts completely. These results indicate that regional changes in interannual variability due to the enhanced greenhouse effect are associated with mechanisms that depend on the variable and season.  相似文献   

17.
The growth of two high-elevation inland lakes (at 4600 m) was analyzed using satellite imagery (2000–2005) and data were collected over the last decade (1997–2006) at a plateau meteorological station (at 4820 m) and stream gauging data from a station (at 4250 m) in central Tibet. We examined the lake water balance responses to meteorological and hydrological variables. The results show that the lake areas greatly expanded by a maximum of 27.1% (or 43.7 km2) between 1998 and 2005. This expansion appears to be associated with an increase in annual precipitation of 51.0 mm (12.6%), mean annual and winter mean temperature increases of 0.41 °C and 0.71 °C, and an annual runoff increase of 20% during the last decade. The changes point to an abrupt increase in the annual precipitation, mean temperature and runoff occurring in 1996, 1998 and 1997, respectively, and a decrease in the annual pan evaporation that happened in 1996. The timing of lake growth corresponds closely with abrupt increases in the annual precipitation and runoff and with the decrease in the annual evaporation since the mid-1990s. This study indicates a strong positive water balance in these permafrost highland lakes, and provides further evidence of lake growth as a proxy indicator of climate variability and change.  相似文献   

18.
New paleovegetation and paleoclimatic reconstructions from the Sierra Madre Occidental (SMO) in northwestern Mexico are presented. This work involves climate and biome reconstruction using Plant Functional Types (PFT) assigned to pollen taxa. We used fossil pollen data from four Holocene peat bogs located at different altitudes (1500‑2000 m) at the border region of Sonora and Chihuahua at around 28° N latitude (Ortega-Rosas, C.I. 2003. Palinología de la Ciénega de Camilo: datos para la historia de la vegetación y el clima del Holoceno medio y superior en el NW de la Sierra Madre Occidental, Sonora, Mexico. Master Thesis, Universidad Nacional Autónoma de México, México D.F.; Ortega-Rosas, C.I., Peñalba, M.C., Guiot, J. Holocene altitudinal shifts in vegetation belts and environmental changes in the Sierra Madre Occidental, Northwestern Mexico. Submitted for publication of Palaeobotany and Palynology). The closest modern pollen data come from pollen analysis across an altitudinal transect from the Sonoran Desert towards the highlands of the temperate SMO at the same latitude (Ortega-Rosas, C.I. 2003. Palinología de la Ciénega de Camilo: datos para la historia de la vegetación y el clima del Holoceno medio y superior en el NW de la Sierra Madre Occidental, Sonora, Mexico. Master Thesis, Universidad Nacional Autónoma de México, México D.F.). An additional modern pollen dataset of 400 sites across NW Mexico and the SW United States was compiled from different sources (Davis, O.K., 1995. Climate and vegetation pattern in surface samples from arid western U.S.A.: application to Holocene climatic reconstruction. Palynology 19, 95–119, North American Pollen Database, Latin-American Pollen Database, personal data, and different scientific papers). For the biomization method (Prentice, I.C., Guiot, J., Huntley, B., Jolly, D., Cheddadi, R., 1996. Reconstructing biomes from paleoecological data: a general method and its application to European pollen data at 0 and 6 ka. Climate Dynamics 12, 185–194), we modified the pollen-PFT and PFT-biomes assignation of Thompson and Anderson (Thompson, R.S., Anderson, K.H., 2000. Biomes of western North America at 18,000; 6000 and 0 14C yr BP reconstructed from pollen and packrat midden data. Journal of Biogeography 27, 555–584) for a better representation of the modern vegetation of NW Mexico. The biome reconstruction method was validated with the modern pollen sites and applied to the fossil sites. Our results show that, during the early Holocene, a cool conifer forest extended at least down to 1700 m, while today this biome is present above 2000 m in the Chihuahua state. The Younger Dryas event was recorded in one site with cold and dry conditions. The reconstructed annual temperature for this period was 3°–6 °C colder than today, and annual precipitation was 250 mm lower than at present (900 mm/yr). The middle Holocene after 9200 cal yr BP was marked by a warming trend, reaching temperatures 2 °C warmer than today at 7000 cal yr BP, and by the installation of a warm mixed forest, the present day biome, at 1700 m elevation, while at higher elevations (1900 m) the cool conifer forest was still present. Summer precipitation was 200 mm/yr above the early Holocene values, suggesting that monsoon-like conditions strengthened since 9200 cal yr BP at this region. During the last 4000 yr, the same warm mixed forest was reconstructed below 1700 m and a conifer forest above 1700 m. A great variability of vegetation and climate patterns was recorded for the last 3000 yr particularly at high elevation sites, where warming and cooling trends would be coeval of the Medieval warm period and Little Ice Age, likely related to ENSO variability.  相似文献   

19.
In the western United States, more than 79 000 km2 has been converted to irrigated agriculture and urban areas. These changes have the potential to alter surface temperature by modifying the energy budget at the land–atmosphere interface. This study reports the seasonally varying temperature responses of four regional climate models (RCMs) – RSM, RegCM3, MM5-CLM3, and DRCM – to conversion of potential natural vegetation to modern land-cover and land-use over a 1-year period. Three of the RCMs supplemented soil moisture, producing large decreases in the August mean (− 1.4 to − 3.1 °C) and maximum (− 2.9 to − 6.1 °C) 2-m air temperatures where natural vegetation was converted to irrigated agriculture. Conversion to irrigated agriculture also resulted in large increases in relative humidity (9% to 36% absolute change). Modeled changes in the August minimum 2-m air temperature were not as pronounced or consistent across the models. Converting natural vegetation to urban land-cover produced less pronounced temperature effects in all models, with the magnitude of the effect dependent upon the preexisting vegetation type and urban parameterizations. Overall, the RCM results indicate that the temperature impacts of land-use change are most pronounced during the summer months, when surface heating is strongest and differences in surface soil moisture between irrigated land and natural vegetation are largest.  相似文献   

20.
South China Sea (SCS) is a major moisture source region, providing summer monsoon rainfall throughout Mainland China, which accounts for more than 80% total precipitation in the region. We report seasonal to monthly resolution Sr/Ca and δ18O data for five Holocene and one modern Porites corals, each covering a growth history of 9–13 years. The results reveal a general decreasing trend in sea surface temperature (SST) in the SCS from 6800 to 1500 years ago, despite shorter climatic cycles. Compared with the mean Sr/Ca–SST in the 1990s (24.8 °C), 10-year mean Sr/Ca–SSTs were 0.9–0.5 °C higher between 6.8 and 5.0 thousand years before present (ky BP), dropped to the present level by 2.5 ky BP, and reached a low of 22.6 °C (2.2 °C lower) by 1.5 ky BP. The summer Sr/Ca–SST maxima, which are more reliable due to faster summer-time growth rates and higher sampling resolution, follow the same trend, i.e. being 1–2 °C higher between 6.8 and 5.0 ky BP, dropping to the present level by 2.5 ky BP, and reaching a low of 28.7 °C (0.7 °C lower) by 1.5 ky BP. Such a decline in SST is accompanied by a similar decrease in the amount of monsoon moisture transported out of South China Sea, resulting in a general decrease in the seawater δ18O values, reflected by offsets of mean δ18O relative to that in the 1990s. This observation is consistent with general weakening of the East Asian summer monsoon since early Holocene, in response to a continuous decline in solar radiation, which was also found in pollen, lake-level and loess/paleosol records throughout Mainland China. The climatic conditions 2.5 and 1.5 ky ago were also recorded in Chinese history. In contrast with the general cooling trend of the monsoon climate in East Asia, SST increased dramatically in recent time, with that in the 1990s being 2.2 °C warmer than that 1.5 ky ago. This clearly indicates that the increase in the concentration of anthropogenic greenhouse gases played a dominant role in recent global warming, which reversed the natural climatic trend in East Asian monsoon regime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号