首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
The sediment yields of Alpine catchments are commonly determined from streamload measurements made some distance downstream from glaciers. However, this approach indiscriminately integrates erosion processes occurring in both the glacial and proglacial areas. A specific method is required to ascertain the respective inputs from (i) subglacial and supraglacial sediments, (ii) proglacial hillslopes and (iii) proglacial alluvial areas or sandurs. This issue is addressed here by combining high‐resolution monitoring (2 min) of suspended sediment concentrations at different locations within a catchment with discharge gauging and precipitation data. This methodological framework is applied to two proglacial streams draining the Bossons glacier (Mont Blanc massif, France): the Bossons and Crosette streams. For the Bossons stream, discharge and suspended load data were acquired from June to October 2013 at 1.15 and 1.5 km from the glacial terminus, respectively upstream and downstream from a small valley sandur. These hydro‐sedimentary data are compared with the Crosette stream dataset acquired at the outlet of the Bossons glacier subglacial drainage system. A fourfold analysis focusing on seasonal changes in streamload and discharge, multilinear regression modelling, evaluation of the sandur flux balance and probabilistic uncertainty assessment is used to determine the catchment sediment budget and to explain the proglacial sediment dynamics. The seasonal fluctuation of the sediment signal observed is related to the gradual closing of the subglacial drainage network and to the role of the proglacial area in the sediment cascade: the proglacial hillslopes appear to be disconnected from the main channel and the valley sandur acts as a hydrodynamic sediment buffer both daily and seasonally. Our findings show that an understanding of proglacial sediment dynamics can help in evaluating paraglacial adjustment and subglacial erosion processes. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

2.
The primary objective of this study was to compute a detailed budget for a small semiarid tropical drainage basin in Kenya. Results indicated that transfer of sediments (‘inputs’) from primary source areas was minor in comparison to changes in storage. The major sediment source area within the Katiorin drainage basin was the colluvial hillslope zone. The net change in storage within this zone was approximately 2100 Mg yr?1. Surface wash and rilling were the dominant transport processes responsible for the remobilization of colluvial sediments. Sediment storage within the in-channel reservoir increased by 60 Mg yr?1, which was minor when compared to the total store of sediment in this reservoir. During 1986, the channel network stored only a small fraction ( < 3 per cent) of the sediment delivered from the hillslope subsystem. Therefore, the in-channel reservoir had limited influence on sediment conveyance to the basin outlet. These data indicate that a static equilibrium condition cannot be assumed within the Katiorin drainage basin. Such an assumption would result in erosion estimates of approximately 5.5 mm yr?1 for the entire basin (based on a sediment output of 7430 Mg km?2 yr?1 and a measured bulk density of 1.35 Mg m?3). However, this masked the actual rates of 1.2 to 7.1 mm yr?1 in subbasin primary source areas, and rates of 0.6 to 17 mm yr?1 for colluvial material in the various subbasins. The extreme accelerated erosion rates resulted from minimal ground vegetation, steep slopes, soil crust formation, an erodible substrate, and a well-integrated drainage network for rapid conveyance of sediments from the hillslope subsystem to the basin outlet.  相似文献   

3.
以我国南方丘陵区红壤小流域为研究对象,对不同土地利用方式坡面下的4个水塘底泥中养分含量作了分层比较研究(0-5 cm,5-10 cm,10-15 cm,15-20 cm,20-25 cm,25-30 cm).结果表明:4个水塘底泥养分含量差异明显,在0-15 cm泥层有机碳、全氮、速效氮和全磷含量以邻近村庄的水塘(简称C塘)底泥最高,其次为板栗园坡下的水塘(简称B塘),水稻田坡面下水塘(简称S塘)和花生地坡面下水塘(简称H塘)最低;在15-30 cm泥层,有机碳和速效氮含量以B塘最高,而全氮和全磷含量则以C塘最高;有效磷含量除C塘0-15 cm底泥外,其余均为痕量.表明土地利用方式对其坡面下水塘底泥养分含量影响明显.各水塘底泥养分随泥层加深均呈递减趋势,其中全氮和速效氮减幅以C塘最大,分别为36.0%和38.7%,有机碳和全磷减幅则以B塘最大,为29.4%和31.9%;各塘底泥养分含量的最大降幅主要在浅层底泥,水塘养分积累加速表明近年来农村面源污染加剧.传统农业耕作方式的改变是农村水体底泥养分含量增加的主要原因之一.  相似文献   

4.
The sediment budget of the small research catchment of Cal Parisa (Vallcebre, Eastern Pyrenees) was studied by hydrological monitoring and assessment of the erosion rates in the major sediment sources. This area is characterized by clayey mudrock prone to landsliding and badland erosion, but the catchment was selected in an area free of major badland features, as a representative of middle mountain regions where a system of terraces and drainage ditches had been built for agricultural use but is now abandoned. Streamwater chemistry is dominated by Ca2+ and HCO3 at concentrations close to calcite saturation. Total dissolved solids show dilution during runoff peaks and positive hysteresis loops that support a slow contribution of subsurface water. Relative dissolved ion concentrations are different for each event analysed. Particulate sediment yield is very low and represents only about 1 per cent of gross erosion in the catchment. Mineralogical analysis of suspended sediments shows an enrichment in calcite because of precipitation. Chemical analysis of suspended sediments, using common one-litre water samples, shows higher contents of Ca, P and Mn in transported sediment than in sediment source areas, attributed to the precipitation of calcite, and enrichment in organic particulate matter during events respectively for the two first elements, whereas enrichment in Mn remains uncertain. Solid matter yield is therefore clearly dominated by dissolved transport as a result of both high calcium bicarbonate concentrations in runoff waters and strong suspended sediment conveyance discontinuities. Land conservation structures are very effective because they are in good condition whereas the soil is covered by dense permanent vegetation. Nevertheless, this state is unstable because the network of drainage ditches needs maintenance; its spontaneous breakdown after abandonment may result in the rearrangement of the elementary stream network and gullying of old fields in hollows. © 1997 John Wiley & Sons, Ltd.  相似文献   

5.
In deep stratified coastal lagoons, hypoxic waters that result from phytoplankton decomposition in the stratified bottom waters are often associated with eutrophication. Decomposing biomass reaches the bottom sediments and enriches them with nutrients and organic matter. Nutrients trapped in sediments are released with time and promote excessive phytoplankton growth in the surface water. Because eutrophication in lentic ecosystems progresses in a self-fuelling cycle, outflow is the only available process for exporting excess nutrients to recover from eutrophication. Thus, rehabilitation of eutrophic coastal lagoons that have limited seawater interactions is a long term process. The importance of nutrient release from sediments on eutrophication and the delay effect of internal nutrient loading on the rehabilitation of a eutrophic coastal lagoon with limited seawater exchange were analysed in this study.An ecological model that couples the water column and the sediment diagenesis processes, was developed for water quality management purposes. Our findings indicate that the recovery of the Lagoon from eutrophication will be taken decades even in the absence of external nutrient loading. Therefore, we suggest applying rehabilitation strategies that control the nutrient fluxes from sediments for a faster recovery from heavily eutrophic conditions. Land-based nutrient sources must also be controlled because they feed water column and the bottom sediments with nutrients.  相似文献   

6.
This study examined stream water quality across a range of catchments which are representative of the key environments and land uses of rural south-west England. These catchments included: (a) an acidic upland headwater catchment, rising on the moorlands of Dartmoor, with low-intensity sheep rearing; (b) a headwater catchment rising on the weathered granite lower slopes of Dartmoor, with cattle farming; (c) a lowland headwater clay catchment with sub-surface drainage and high intensity livestock farming, fodder crop cultivation, and hard-standing/slurry storage; and (d) the main River Taw, a lowland river system receiving drainage from a range of tributaries, exemplified by the above catchment types. Variations in water chemistry and quality were observed along an upland–lowland transition, from headwater streams to the main river channel. Within the livestock-dominated headwater streams, total phosphorus (TP) was dominated by particulate phosphorus (PP). These PP concentrations appeared to be mainly linked to two sets of processes: (1) in-stream sediment precipitation with sorption/co-precipitation of phosphate and/or localised in-channel mobilisation of sediment (by cattle or channel-clearing operations) under low flow conditions, and (2) sediment erosion and transportation associated with near-surface runoff during storm events. Under baseflow conditions, in-stream and/or riparian processes played a significant role in controlling general nutrient chemistry, particularly in the headwater streams which were heavily impacted by livestock.  相似文献   

7.
Erosion, sediment transportation and accumulation in rivers   总被引:8,自引:5,他引:3  
The present paper analyses the interrelation between erosion, sediment transportation and accumulation proposed by N. I. Makkaveyev (1908-1983) and its further development in modem studies of river channel processes in Russia. Spatio-temporal linkages between erosion and accumulation are defined considering channel processes at different scales - river longitudinal profile, channel morphological patterns, alluvial bedforms (bars, dunes) and individual sediment particles. Relations between river geomorphic activity, flow transportation capacity and sediment budgets are established (sediment input and output; channel bed erosion and sediment entrainment into flow - termination of sediment transport and its deposition). Channel planforms, floodplain segments separated by the latter and alluvial channel bedforms are shown to be geomorphic expressions of sediment transport process at different spatial and temporal scales. This paper is dedicated to the 100th anniversary of N. I. Makkaveyev, Professor of the Moscow State University, author of the book "River channel and erosion in its basin" (1955). That book is regarded in Russia as the pioneering work which initiated the complex hydrological and geographical studies of channel processes and laid a basis for the theory of unified fluvial erosion-accumulation process.  相似文献   

8.
The potential for flooding and sediment transport is greatly affected by river channel form and changes in land use. Therefore the modelling of channel morphology prior to canalization and of land‐use change is important with respect to the prediction of floods and sediment yield and their consequences. A combination of land‐use transformation maps and soil properties shows certain decision rules for the conversion of forest into arable or vice versa. The model proposed, from this study, was used to simulate possible past and/or future channel and land‐use patterns. Subsequently, the outcome of this simulation was used to assess the risk of flooding, sediment transport and soil‐erosion under different conditions. In this study, channel morphology prior to canalization and land‐use change in the Ishikari basin, Hokkaido, Japan, were analysed by comparing three scenarios using a physical based channel and slope model. The results indicate that pre‐canalization channel morphology has a significant impact on flood peak, but no significant effect on sediment yield. In contrast, land‐use change has a significant effect on soil eroded from hillslopes, but no significant effect on flooding for Ishikari basin. This study also illustrates the challenges that a simple model, such as a physical based channel and slope model, can simulate large‐scale river basin processes using fewer hydrological data resources. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

9.
Many urban rivers receive significant inputs of metal‐contaminated sediments from their catchments. Restoration of urban rivers often creates increased slack water areas and in‐channel vegetation growth where these metal‐contaminated sediments may accumulate. Quantifying the accumulation and retention of these sediments by in‐channel vegetation in urban rivers is of importance in terms of the planning and management of urban river restoration schemes and compliance with the Water Framework Directive. This paper investigates sediment properties at four sites across three rivers within Greater London to assess the degree to which contaminated sediments are being retained. Within paired restored and unrestored reaches at each site, four different bed sediment patch types (exposed unvegetated gravel, sand, and silt/clay (termed ‘fine’) sediments, and in‐channel vegetated sediments) were sampled and analysed for a range of metals and sediment characteristics. Many samples were found to exceed Environment Agency guidelines for copper (Cu), lead (Pb) and zinc (Zn) and Dutch Intervention Values for Cu and Zn. At all sites, sediments accumulating around in‐channel vegetation were similar in calibre and composition to exposed unvegetated fine sediments. Both bed sediment types contained high concentrations of pseudo‐total and acetic acid extractable metal concentrations, potentially due to elevated organic matter and silt/clay content, as these are important sorbtion phases for metals. This implies that the changed sediment supply and hydraulic conditions associated with river restoration may lead to enhanced retention of contaminated fine sediments, particularly around emergent plants, frequently leading to the development of submerged and emergent landforms and potential river channel adjustments. High pseudo‐total metal concentrations were also found in gravel bed sediments, probably associated with iron (Fe) and manganese (Mn) oxyhydroxides and discrete anthropogenic metal‐rich particles. These results highlight the importance of understanding the potential effects of urban river restoration upon sediment availability and channel hydraulics and consequent impacts upon sediment contaminant dynamics and storage. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
This article investigates landscape characteristics and sediment composition in the western Greater Caucasus by using multiple methods at different timescales. Our ultimate goal is to compare short‐term versus long‐term trends in erosional processes and to reconstruct spatio‐temporal changes in sediment fluxes as controlled by partitioning of crustal shortening and rock uplift in the orogenic belt. Areas of active recent uplift are assessed by quantitative geomorphological techniques [digital elevation model (DEM) analysis of stream profiles and their deviation from equilibrium] and compared with regions of rapid exhumation over longer time intervals as previously determined by fission‐track and cosmogenic‐nuclide analyses. Complementary information from petrographic and heavy‐mineral analyses of modern sands and ancient sandstones is used to evaluate erosion integrated throughout the history of the orogen. River catchments displaying the highest relief, as shown by channel‐steepness indices, correspond with the areas of most rapid exhumation as outlined by thermochronological data. The region of high stream gradients is spatially associated with the highest topography around Mount Elbrus, where sedimentary cover strata have long been completely eroded and river sediments display the highest metamorphic indices and generally high heavy‐mineral concentrations. This study reinforces the suggestion that the bedrock–channel network can reveal much of the evolution of tectonically active landscapes, and implies that the controls on channel gradient ultimately dictate the topography and the relief along the Greater Caucasus. Our integrated datasets, obtained during a decade of continuing research, display a general agreement and regularity of erosion patterns through time, and consistently indicate westward decreasing rates of erosional unroofing from the central part of the range to the Black Sea. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
The purpose of this study was to examine the historical change in sedimentation rates in lakes that have been impacted by river regulation and agricultural activities in the Ishikari River floodplain. We dated sediment cores using caesium‐137 (137Cs) dating and tephrochronology, and we estimated sediment sources from 137Cs concentrations in the topsoil of representative land covers. We found that, between 1739 and 1963, the distance between the lake and the main river channel and whether or not the lake was connected to the river affected the sedimentation rates. After 1963, agricultural drainage systems were established in the Ishikari River floodplain. The average sedimentation rate before and after the construction of drainage ditches varied between 1–66 and 87–301 mg cm–2 a–1, respectively. The increase in the sedimentation rate after 1963 was caused by the construction of a number of drainage networks, as well as extensive cultivation activity and/or fragmentation of the swamp buffers surrounding the lakes. The 137Cs activities at the surfaces of the lake as well as the catchment‐derived 137Cs contributions and 137Cs inventory in the lake profiles were used to examine the sediment influx from the various drainage areas after the establishment of the drainage system. Our results indicate that the majority of the lake sediments were derived from cultivated areas, and therefore the catchment‐derived 137Cs contribution in the lakes was strongly correlated with the sedimentation rate. The 137Cs inventory across all of the lake profiles was also significantly greater than the atmospheric fallout. We identified a negative correlation between the 137Cs lake profile inventory and the sedimentation rate. This is because the sediment originating from the drainage areas contained low 137Cs concentrations, which diluted the overall concentration of 137Cs in the lake sediment. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
The effect of changes in catchment processes and conditions can be studied by using connectivity as a framework for understanding the feedbacks and interactions occurring within the system. The sediment record preserved in reservoirs can be a useful archive of catchment changes, but needs to be considered in conjunction with the different elements that compose and act on the system to take into account its complexity. Changing patterns of connectivity have been studied in the Ingbirchworth Catchment (Yorkshire, UK), using a multiple methodology approach combining the analysis of reservoir‐sediment records with knowledge of recent land‐use history, high resolution rainfall records, catchment characteristics and management aspects. Sedimentation rates inferred from reservoir‐sediment cores from two reservoirs in the Ingbirchworth catchment show sedimentation peaks which coincide with periods of significant changes in the catchment, such as the introduction of arable crops, the establishment of land drainage and the widespread intensification and mechanization of agriculture. Rainfall patterns, including combinations of events such as droughts and increased precipitation, contribute to increased sediment transfer under catchment conditions in which more sediment and/or new pathways are made available due to catchment changes. Sediment fingerprinting supports the notion that changes in sedimentation rates are not just related to increased/reduced erosion and transport in the same areas, but also to the establishment of different pathways increasing sediment connectivity. The results demonstrate that typical calculations of catchment‐area yields are not sufficient as sediment‐contributing areas vary as a consequence of changing conditions. The study provides insights into the complex interactions influencing connectivity, such as the relation between catchment changes and climatic inputs, and the subsequent effect on catchment conditions and transfer networks. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
In arid and semi‐arid rangeland environments, an accurate understanding of runoff generation and sediment transport processes is key to developing effective management actions and addressing ecosystem response to changes. Yet, many primary processes (namely sheet and splash and concentrated flow erosion, as well as deposition) are still poorly understood due to a historic lack of measurement techniques capable of parsing total soil loss into these primary processes. Current knowledge gaps can be addressed by combining traditional erosion and runoff measurement techniques with image‐based three‐dimensional (3D) soil surface reconstructions. In this study, data (hydrology, erosion and high‐resolution surface microtopography changes) from rainfall simulation experiments on 24 plots in saline rangelands communities of the Upper Colorado River Basin were used to improve understanding on various sediment transport processes. A series of surface change metrics were developed to quantify and characterize various erosion and transport processes (e.g. plot‐wide versus concentrated flow detachment and deposition) and were related to hydrology and biotic and abiotic land surface characteristics. In general, erosivity controlled detachment and transport processes while factors modulating surface roughness such as vegetation controlled deposition. The extent of the channel network was a positive function of slope, discharge and vegetation. Vegetation may deflect runoff in many flow paths but promoted deposition. From a management perspective, this study suggests that effective runoff soil and salt load reduction strategies should aim to promote deposition of transported sediments rather than reducing detachment which might not be feasible in these resource‐limited environments. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
Streambank erosion is a primary source of suspended sediments in many waterways of the US Atlantic Piedmont. This problem is exacerbated where banks are comprised of fine sediment produced by the intensive land use practices of early European settlers. A stream in this region, Richland Creek incises into banks comprised of three stratigraphic layers associated with historic land use: pre‐European settlement, early European agriculture and development, and water‐powered milldam operation. This study aims to identify the bank processes along a reach of Richland Creek that is eroding towards its pre‐disturbance elevation. The volume of material that has eroded along this stream since the milldam breached was calculated by differencing a reconstructed surface of the pond bed and an aerial lidar digital terrain model (DTM). Immediately downstream from the study reach, the channel is floored by bedrock and immediately upstream the rate of channel erosion approximately doubled along the longitudinal profile of Richland Creek, which indicate that the study reach spans the transition from a channel dominated by vertical incision in the upstream direction to horizontal widening in the downstream direction. The combined hydrometeorological conditions and dominant processes causing reach‐scale cut bank erosion were investigated with analyses of stream stage, precipitation, and streambank volumetric and surfaces change that was measured during nine terrestrial lidar surveys in 2010–2012. The spatial variability of erosion during a simulated precipitation event was examined in a field‐based experiment. Erosion was greatest where mill pond sediment columns detached along vertical desiccation and horizontal seepage cracks. This sediment accumulated on the bank toe throughout the study and was a source of readily‐entrained fine sediment contrary to the upper reaches where depositional accommodation space is more limited. Findings suggest that hotspots of sediment excavation progress upstream, indicating that restoration efforts should focus upon stabilizing banks at these locations. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
van Maanen  Barend  Coco  Giovanni  Bryan  Karin R.  Friedrichs  Carl T. 《Ocean Dynamics》2013,63(11):1249-1262

Sea-level rise has a strong influence on tidal systems, and a major focus of climate change effect studies is to predict the future state of these environmental systems. Here, we used a model to simulate the morphological evolution of tidal embayments and to explore their response to a rising sea level. The model was first used to reproduce the formation of channels and intertidal flats under a stable mean water level in an idealised and initially unchannelled tidal basin. A gradual rise in sea level was imposed once a well-developed channel network had formed. Simulations were conducted with different sea-level rise rates and tidal ranges. Sea-level rise forced headward erosion of the tidal channels, driving a landward expansion of the channel network and channel development in the previously non-inundated part of the basin. Simultaneously, an increase in channel drainage width in the lower part of the basin occurred and a decrease in the overall fraction of the basin occupied by channels could be observed. Sea-level rise thus altered important characteristics of the tidal channel network. Some intertidal areas were maintained despite a rising sea level. However, the size, shape, and location of the intertidal areas changed. In addition, sea-level rise affected the exchange of sediment between the different morphological elements. A shift from exporting to importing sediment as well as a reinforcement of the existing sediment export was observed for the simulations performed here. Sediment erosion in the inlet and the offshore transport of sediment was enhanced, resulting in the expansion of the ebb-tidal delta. Our model results further emphasise that tidal embayments can exhibit contrasting responses to sea-level rise.

  相似文献   

16.
Modeling the morphodynamic response of tidal embayments to sea-level rise   总被引:1,自引:1,他引:0  
Sea-level rise has a strong influence on tidal systems, and a major focus of climate change effect studies is to predict the future state of these environmental systems. Here, we used a model to simulate the morphological evolution of tidal embayments and to explore their response to a rising sea level. The model was first used to reproduce the formation of channels and intertidal flats under a stable mean water level in an idealised and initially unchannelled tidal basin. A gradual rise in sea level was imposed once a well-developed channel network had formed. Simulations were conducted with different sea-level rise rates and tidal ranges. Sea-level rise forced headward erosion of the tidal channels, driving a landward expansion of the channel network and channel development in the previously non-inundated part of the basin. Simultaneously, an increase in channel drainage width in the lower part of the basin occurred and a decrease in the overall fraction of the basin occupied by channels could be observed. Sea-level rise thus altered important characteristics of the tidal channel network. Some intertidal areas were maintained despite a rising sea level. However, the size, shape, and location of the intertidal areas changed. In addition, sea-level rise affected the exchange of sediment between the different morphological elements. A shift from exporting to importing sediment as well as a reinforcement of the existing sediment export was observed for the simulations performed here. Sediment erosion in the inlet and the offshore transport of sediment was enhanced, resulting in the expansion of the ebb-tidal delta. Our model results further emphasise that tidal embayments can exhibit contrasting responses to sea-level rise.  相似文献   

17.
Rivers in watersheds dominated by agriculture throughout the US are impaired by excess sediment, a significant portion of which comes from non‐field, near‐channel sources. Both land‐use and climate have been implicated in altering river flows and thereby increasing stream‐channel erosion and sediment loading. In the wetland‐rich landscapes of the upper Mississippi basin, 20th century crop conversions have led to an intensification of artificial drainage, which is now a critical component of modern agriculture. At the same time, much of the region has experienced increased annual rainfall. Uncertainty in separating these drivers of streamflow fuels debate between agricultural and environmental interests on responsibility and solutions for excess riverine sediment. To disentangle the effects of climate and land‐use, we compared changes in precipitation, crop conversions, and extent of drained depressional area in 21 Minnesota watersheds over the past 70 years. Watersheds with large land‐use changes had increases in seasonal and annual water yields of >50% since 1940. On average, changes in precipitation and crop evapotranspiration explained less than one‐half of the increase, with the remainder highly correlated with artificial drainage and loss of depressional areas. Rivers with increased flow have experienced channel widening of 10–40% highlighting a source of sediment seldom addressed by agricultural best management practices. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
19.
Zinc is a fairly abundant metal, it has been estimated that zinc represents 0.004 percent of the earth's crust and is twenty-fifth in the order of abundance. Its concentrations in surface waters vary greatly with locality; the highest concentrations of zinc have been observed in areas with acid mine drainage, but zinc enters surface waters in many other ways. Chemical thermodynamic calculations summarized by solubility graphs are given. The zinc solubility may be significantly controlled by stream sediments; Zn concentrations of sediments from various areas are given. Many techniques for extraction from sediments have been developed, they differ in efficiency.  相似文献   

20.
This paper presents a field investigation on river channel storage of fine sediments in an unglaciated braided river, the Bès River, located in a mountainous region in the southern French Prealps. Braided rivers transport a very large quantity of bedload and suspended sediment load because they are generally located in the vicinity of highly erosive hillslopes. Consequently, these rivers play an important role because they supply and control the sediment load of the entire downstream fluvial network. Field measurements and aerial photograph analyses were considered together to evaluate the variability of fine sediment quantity stored in a 2·5‐km‐long river reach. This study found very large quantities of fine sediment stored in this reach: 1100 t per unit depth (1 dm). Given that this reach accounts for 17% of the braided channel surface area of the river basin, the quantities of fine sediment stored in the river network were found to be approximately 80% of the mean annual suspended sediment yields (SSYs) (66 200 t year?1), comparable to the SSYs at the flood event scale: from 1000 t to 12 000 t depending on the flood event magnitude. These results could explain the clockwise hysteretic relationships between suspended sediment concentrations and discharges for 80% of floods. This pattern is associated with the rapid availability of the fine sediments stored in the river channel. This study shows the need to focus on not only the mechanisms of fine sediment production from hillslope erosion but also the spatiotemporal dynamics of fine sediment transfer in braided rivers. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号