首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Peridotitic sulphide inclusions in diamonds from the central Slave craton constrain the age and origin of their subcontinental lithospheric mantle (SCLM) sources. These sulphides align with either a ca. 3.5 Ga (shallow SCLM) or a ca. 3.3 Ga isochron (deep SCLM) on a Re–Os ischron diagram, with variably enriched initial 187Os/188Os. Since some Archaean to recent plume-derived melts carry a subducted crust (eclogite) signature and some cratonic SCLM may have been generated in plumes by extraction of komatiitic liquids, we explain these data by subduction of evolved lithospheric material (shallow SCLM) and melting in a hybrid mantle plume that contains domains of recycled eclogite (deep SCLM), respectively. In upwelling hybrid mantle, eclogite-derived melts react with olivine in surrounding peridotites to form aluminous orthopyroxene, convert peridotite to pyroxenite and confer their crustal isotope signatures. We suggest that it is subsequent to orthopyroxene enrichment of peridotite in an upwelling plume that partial melting of this Al- and Si- enriched source generated komatiites and complementary ultradepleted cratonic mantle residues. Although subduction is needed to explain some cratonic features, melting of a hybrid plume source satisfies several key observations: (1) suprachondritic initial 187Os/188Os in subsets of lithospheric mantle samples and in some coeval Archaean komatiites; (2) variable enrichment of cratonic mantle by high-temperature aluminous orthopyroxene; (3) high Mg# combined with high orthopyroxene content in cratonic mantle due to higher melt productivity of an Al- and Si-richer source; (4) variable orthopyroxene enrichment possibly linked to varying mantle potential temperatures (Tp), plume buoyancy and resultant eclogite load and/or variable availability of subducted material in the source; and (5) absence of younger analogues due to a secular decrease in Tp. Most importantly, this model also alleviates a mass balance problem, because it predicts a hybrid mantle source with variably higher SiO2 and Al2O3 than primitive mantle, and, contrary to a primitive mantle source, is able to reconcile compositions of komatiites and complementary cratonic mantle residues.  相似文献   

2.
This paper discusses the genesis of large Siberian alkaline massifs hosting major ore deposits. These reference massifs are grouped based on the predominance of alkalies (K or Na) and their agpaitic index (miaskitic and agpaitic). We proposed new emplacement schemes for the Tomtor, Murun, Burpala, Synnyr, and Bilibino massifs supported by petrochemical and geochemical data, as well as new age estimates. Types of their ore potential and genesis of rare-metal mineralization are discussed. The formational types of carbonatites as the main ore-bearing rocks are given. The depth of magma generation and types of mantle sources are determined using isotopic data from previous studies. A model of plume-related generation of ultramafic alkaline magmas is proposed.  相似文献   

3.
The assumption that mafic alkaline magmas are derived from mantle sources with a lherzolite mineralogy has become entrenched in the petrologic literature. Although it is commonly assumed that highly alkaline magmas require metasomatised mantle sources, there is little understanding of the spatial relation of such sources with respect to those of associated more Si-rich transitional magmas. Glasses developed in mantle xenoliths represent natural experiments which may provide some insight on this problem. Highly silica undersaturated glasses developed in the amphibole-garnet clinopyroxenite portion of a composite xenolith from Nunivak Island, Alaska, become quartz normative where they penetrate adjacent spinel lherzolite. A comparison of glass compositions in mantle pyroxenite and lherzolite xenoliths reveals that glasses developed in amphibole pyroxenite xenoliths are in general more silica undersaturated than those in lherzolite xenoliths. This suggests that some highly silica undersaturated magmas such as nephelinites may in fact be derived by the preferential melting of amphibole or amphibole-garnet pyroxenite veins and that the spectrum from nephelinite to transitional alkaline basalt that characterizes many individual alkaline volcanic suites is produced by mixing with melt derived from the host lherzolite as the degree of partial melting increases.  相似文献   

4.
In situ trace element analyses of constituent minerals in mantle xenoliths occurring in an alnöite diatreme and in nephelinite plugs emplaced within the central zone of the Damara Belt have been determined by laser ablation ICP-MS. Primitive mantle-normalized trace element patterns of clinopyroxene and amphibole indicate the presence of both depleted MORB-like mantle and variably enriched mantle beneath this region. Clinopyroxenes showing geochemical depletion have low La/Smn ratios (0.02–0.2), whereas those showing variable enrichment have La/Smn ranging up to 3.8 and La/Ybn to 9.1. The most enriched clinopyroxenes coexist with amphibole showing similar REE patterns (La/Smn = 1.3–4.1; La/Ybn = 4.5–9). Primitive mantle-normalized trace element patterns allow further groups to be distinguished amongst the variably enriched clinopyroxenes: one having strong relative depletion in Rb–Ba, Ta–Nb and relative enrichment in Th–U; another with similar characteristics but with additional strong relative depletion in Zr–Hf; and one showing no significant anomalies. Amphiboles show similar normalized trace element patterns to co-existing clinopyroxene. Clinopyroxene and amphiboles showing LREEN enrichment have high Sr and low Nd isotope ratios compared to clinopyroxene with LREE-depleted patterns. Numerical simulation of melt percolation through the mantle via reactive porous flow is used to show that the chromatographic affect associated with such a melt migration process is able to account for the fractionation seen in La–Ce–Nd in cryptically metasomatized clinopyroxenes in Type 1 xenoliths, where melt–matrix interactions occur near the percolation front, whereas REE patterns in clinopyroxenes proximal to the source of metasomatic melt/fluid match those found in modally metasomatized Type 2 xenoliths. The strong fractionation between Rb–Ba, Th–U and Ta–Nb shown by some cryptically metasomatized xenoliths can be also accounted for by reactive porous flow, provided amphibole crystallizes from the percolating melt/fluid close to its source. The presence of amphibole in vein-like structures in some xenoliths is consistent with this interpretation. The strong depletion in Zr–Hf in clinopyroxene and amphibole in some xenoliths cannot be accounted for by melt migration processes and requires metasomatism by a separate carbonate-rich melt/fluid. When taken together with published isotope data on these same xenoliths, the source of metasomatic enrichment of the previously depleted (MORB-like) sub-Damaran lithospheric mantle is attributed to the upwelling Tristan plume head at the time of continental breakup.  相似文献   

5.
Recent geodynamic analyses have emphasized the relationship between modern flat-slab subduction zones and the overriding of buoyant oceanic crust. Although most models for the evolution of the Late Mesozoic–Cenozoic Laramide orogeny in the southwestern United States involve flat-slab subduction, the mechanisms proposed are controversial. An examination of the geological evolution of the 60–50-Ma Crescent terrane of the Coast Ranges indicates that it was formed in a shallowing-upward Loihi-type oceanic setting culminating in the eruption of subaerial lavas. Plate reconstructions indicate that the Crescent terrane was emplaced into ca. 20-Ma crust, and the presence of subaerial lavas implies an uplift due to the plume of ca. 4.2 km, which we use to calculate a minimum buoyancy flux of 1.1 Mg s−1, similar to that of the modern Yellowstone plume.Published paleomagnetic data indicate that the Crescent terrane was formed at a paleolatitude similar to that of the Yellowstone plume. The Crescent seamount was accreted within 5 My of the cessation of plume magmatism. Plate reconstructions indicate that it would have originated about 750 km to the west of the North American plate margin if it developed above a fixed Yellowstone plume, and are therefore consistent with the recorded very short interval between its formation and tectonic emplacement.We interpret the Crescent terrane as due to the ancestral Yellowstone plume. Such a plume would have generated an elongate swell and related plateau that would have been overridden by the North American margin. Taken together, the relationship between flat-slab and overriding of oceanic plateau in Laramide times would have been analogous to the relationship between modern Andean flat-slab subduction zones and the Juan Fernandez and Nazca oceanic plateaus.  相似文献   

6.
The Anyi intrusion is located in the central zone of Emeishan large igneous province (ELIP), SW China. It outcrops in an area of about 0.65 km2 and ~ 1 km thick and dips to the southwest. The Anyi intrusion consists of a lower clinopyroxenite zone, middle gabbro zone, and an upper monzonite–syenite zone. Up to 400 m thick stratiform disseminated Fe–Ti oxide layer with grades of 16–18 wt.% total Fe is hosted in the lower clinopyroxenite zone. Zircon SHRIMP U–Pb age (247 ± 3 Ma) indicates that the Anyi intrusion represents postdated mafic magmatism resulting from the ~ 260 Ma Emeishan mantle plume. Compared with the typical oxide-bearing intrusions (such as Panzhihua and Baima) formed at ~ 260 Ma in the ELIP, the Anyi intrusion is characterized by high alkaline contents and LREE/HREE ratios, extremely low εNd values (− 6.2 to − 7.6) and moderate high (87Sr/86Sr)i values (0.7072 to 0.7086). These characteristics of the Anyi intrusion cannot be explained by fractional crystallization or crustal contamination, but may reflect a unique enriched continental lithospheric mantle source (a mantle source mixed between garnet pyroxenite and spinel peridotite). We propose that the postdated mafic magmatism associated with the formation of the Anyi intrusion and its Fe–Ti oxide ore may be the product of melting of a mantle source mixed between garnet pyroxenite and spinel peridotite in the shallow lithosphere caused by conductive heating combined with lithosphere thinning due to plume–lithosphere interaction.  相似文献   

7.
Kimberlite magmas from the Kimberley area of South Africa have sampled two main types of phlogopite-rich mafic xenoliths which represent deep mantle segregations from highly alkaline melts. The first group corresponds to the MARID rocks characterised by the mineral association mica (phlogopite)-amphibole (K-richterite)-rutile-ilmenite-clinopyroxene and the second group consists of the PIC rocks characterised by the mineral association mica (phlogopite)-ilmenite-clinopyroxene-minor rutile. The two groups are clearly distinguished from one another by their mineral paragenesis, by the major element composition of their phlogopite and ilmenite, by the trace element content of their clinopyroxene and by their clinopyroxene and whole rock Sr and Nd isotope ratios. The combined major and trace element variations are interpreted to indicate a genetic relationship between the PIC rocks and group I kimberlite magma, and between the MARID rocks and group II kimberlite magma. The two types of parental melts percolated through, and metasomatised, the upper mantle beneath the Kimberley area as indicated by the trace element characteristics of the clinopyroxenes of the studied phlogopite-bearing peridotites.  相似文献   

8.
Quaternary lavas of the normal island-arc basalt—andesite—dacite association in the islands of Java and Bali range from those belonging to tholeiitic series over Benioff-zone depths of ~ 150 km to high-K calc-alkaline series over Benioff-zone depths of 250 km. More abundant and diverse calc-alkaline lavas are found over intermediate Benioff-zone depths. On average, basaltic lavas become slightly more alkaline (largely due to increased K contents) with increasing depth to the Benioff zone. Levels of incompatible minor and trace elements (K, Rb, Cs, Ba, Nb, U, Th, light REE) show a corresponding increase of almost an order of magnitude.Low average Mg-numbers (~ 0.52) and Ni and Cr abundances (15–25 and 35–60 ppm, respectively) of basaltic lavas suggest that few lavas representing primary mantle-derived magma compositions are present. Calculated primary basaltic magma compositions for most tholeiitic and calc-alkaline volcanic centres are olivine tholeiites with 15–30% ol. The single high-K calc-alkaline centre considered yielded transitional alkali olivine basalt—basanite primary magma compositions. These calculated magma compositions suggest that the percentage of mantle melting decreases with increasing depth to the Benioff zone (from >25 to <10%), while the corresponding depth of magma separation increases from ~ 30 to 60 km.Calculation of REE patterns for basaltic magmas on the basis of peridotitic mantle sources with spinel lherzolite, amphibole lherzolite or garnet lherzolite mineralogy, and model REE levels of twice chondritic abundances, indicates that change in the conditions of magma genesis alone cannot explain the observed change in light-REE abundances of basaltic lavas with increasing depth to the Benioff zone. Complementary calculations of the REE levels of mantle sources required to yield the average tholeiitic, calc-alkaline and high-K calc-alkaline basaltic magma indicate that light-REE abundances must increase from 2–3 to 7–8 times chondrites with increasing depth to the Benioff zone. The percentages of mantle melting favoured on REE evidence are lower than those indicated by major-element considerations.The observed variation in incompatible element geochemistry of mantle magma sources is thought to be related directly or indirectly to dehydration and partial-melting processes affecting subducted oceanic crust. The possible nature of this relationship is discussed.  相似文献   

9.
通过横穿青藏高原近 80 0 0km长的 4条天然地震层析剖面 ,获得 4 0 0km深度以上的地壳和地幔速度图像及地震波各向异性 ,揭示了青藏高原 4 0 0km深度范围内的地壳和地幔结构特征。地幔速度图像显示 ,青藏高原腹地的深地幔中存在以大型低速异常体为特征的地幔羽 ,其可能通过热通道与大面积分布的可可西里新生代高钾碱性火山作用有成因联系 ;阿尔金、康西瓦、金沙江、嘉黎及雅鲁藏布江等走滑断裂可下延至 30 0~ 4 0 0km深度 ,显示了低速高热物质组成的垂向低速异常带特征及大型超岩石圈或地幔剪切带的产出 ;发现康西瓦、东昆仑—金沙江、班公湖—怒江和雅鲁藏布缝合带下部存在不连续的高速异常带 ,可以解释为青藏高原地体拼合及碰撞过程中可能保留的加里东、古特提斯和中特提斯大洋岩石圈“化石”残片 ,是“拆沉”的地球物理证据。印度大陆岩石圈的巨厚俯冲板片以 15~ 2 0°倾角向北插入唐古拉山下 30 0km深处 ,并被高热物质组成的地幔剪切带分开。结合新的横穿喜马拉雅及青藏高原的地幔层析资料 ,提出青藏高原碰撞动力学新模式 :青藏高原南部印度岩石圈板片的翻卷式陆内超深俯冲 ,北缘克拉通向南的陆内俯冲 ,腹地深部的地幔羽上涌 ,以及地幔范围内的高原“右旋隆升”及物质向东及北东方向运动及挤出。  相似文献   

10.
The Liuyuan mafic and ultramafic rocks are exposed in Southern Beishan, which is along the southern branch of the Central Asian Orogenic Belt (CAOB). Zircon SHRIMP U–Pb dating showed that Liuyuan gabbros intruded during the early Permian (~ 270–295 Ma) coeval with the basalts and the ultramafic rocks were emplaced at about 250 Ma. The basalts are within–plate tholeiites with slight enrichment in light rare earth elements (LREE) relative to heavy rare earths (HREE) and small negative anomalies of Nb and Ta. Gabbros including olivine gabbros, olivine gabbronorites and troctolites are grouped into two: the cumulate gabbros are depleted in LREE and show small negative Nb and Ta anomalies but distinct positive Sr and Eu anomalies; non–cumulate gabbros resemble tholeiitic basalts. Lamprophyres and cumulate ultramafic rocks are characterized by large enrichment of LREE relative to HREE with depletion in Nb and Ta. The enriched Sr–Nd isotopic trend from DM towards the EM II end member component implies that the lithospheric mantle was progressively enriched with depth by the involvement of subducted crustal material due to the delamination of thickened mantle lithosphere after collision. The digestion of subducted crustal material into the mantle resulting in the metasomatized and enriched mantle is inferred to be an important process during crust–mantle interaction.  相似文献   

11.
The Emeishan continental flood basalt (ECFB) sequence in Dongchuan, SW China comprises a basal tephrite unit overlain by an upper tholeiitic basalt unit. The upper basalts have high TiO2 contents (3.2–5.2 wt.%), relatively high rare-earth element (REE) concentrations (40 to 60 ppm La, 12.5 to 16.5 ppm Sm, and 3 to 4 ppm Yb), moderate Zr/Nb and Nb/La ratios (9.3–10.2 and 0.6–0.9, respectively) and relatively high Nd (t) values, ranging from − 0.94 to 2.3, and are comparable to the high-Ti ECFB elsewhere. The tephrites have relatively high P2O5 (1.3–2.0 wt.%), low REE concentrations (e.g., 17 to 23 ppm La, 4 to 5.3 ppm Sm, and 2 to 3 ppm Yb), high Nb/La (2.0–3.9) ratios, low Zr/Nb ratios (2.3–4.2), and extremely low Nd (t) values (mostly ranging from − 10.6 to − 11.1). The distinct compositional differences between the tephrites and the overlying tholeiitic basalts cannot be explained by either fractional crystallization or crustal contamination of a common parental magma. The tholeiitic basalts formed by partial melting of the Emeishan plume head at a depth where garnet was stable, perhaps > 80 km. We propose that the tephrites were derived from magmas formed when the base of the previously metasomatized, volatile-mineral bearing subcontinental lithospheric mantle was heated by the upwelling mantle plume.  相似文献   

12.
The Damodar valley within the Chhotanagpur Gneissic terrain at the northern-most margin of the Singhbhum craton, eastern India, is perhaps the only geological domain in the entire Indian shield which hosts the early Cretaceous Rajmahal as well as the late Cretaceous Deccan igneous activities. A number of Cretaceous mafic dykes intrude the Gondwana sedimentary formations and are focus of the present study. One set of these dykes strike NNE to ENE, are very fresh and mainly exposed within the Jharia, Bokaro and Karanpura basins; whereas the other set of dykes (including the well-known Salma mega dyke) trend NW to NNW, intrude mainly the Raniganj basin and show meagre hydrothermal alteration. Majority of the samples from both these dyke groups display ophitic or sub-ophitic textures and are essentially composed of augite/titan augite and plagioclase. On the basis of petrographic and geochemical characteristics the NNE to ENE dykes are identified as high-Ti dolerite (HTD) dykes and the NW to NNW dykes are referred to as low-Ti dolerite (LTD) dykes. Apart from the first-order distinction on their titanium contents, both these groups also show conspicuous geochemical differences. The HTD dykes contain relatively high values of iron, and high-field strength elements than those from the LTD dykes with an overlapping MgO contents.Although available field, paleomagnetic and limited geochronological data for most of the studied dykes suggests their emplacement during early Cretaceous period (110–115 Ma), the Salma dyke, dated to be of Deccan-age at ∼65 Ma, is an exception. Geochemically all the studied samples show an undoubted plume-derived character but their unequivocal affinity to either the early Cretaceous Kerguelen (Rajmahal) or the late-Cretaceous Reunion (Deccan) plume is not straightforward since they share bulk-rock characteristics of rocks derived from both these plumes. Even though, the spatial and temporal association of the mafic dykes of present study with the Rajmahal Traps are suggestive of their linkage to the Kerguelen plume activity, robust geochronological and paleomagnetic constraints are clearly required to understand the relative contributions of the two Cretaceous mantle plumes in the genesis of the mafic igneous activity in this interesting domain.  相似文献   

13.
吉林省南部辉南-靖宇地区第四纪碱性玄武岩中的地幔包体主要为尖晶石相二辉橄榄岩和方辉橄榄岩。二辉橄榄岩和方辉橄榄岩的平衡温度分别为770~1000℃和850~1025℃,对应的氧逸度 (fO2)值分别为FMQ -0.70至+0.34 (均值为FMQ -0.06) 和FMQ -0.46至+0.05 (均值为FMQ -0.15),它们与深海橄榄岩(abyssal peridotites)以及软流圈地幔的fO2相似。橄榄岩的fO2值,连同其全岩化学成分(如Mg#、Al2O3、CaO、Ni、Co和Cr)和矿物化学成分(如橄榄石的Fo、尖晶石的Cr#和Mg#,以及辉石的Mg#)特征,表明辉南-靖宇地区龙岗火山群下面的岩石圈地幔很可能是在晚中生代以来,伴随着华北克拉通和扬子板块的碰撞以及来自东侧太平洋板块和北侧蒙古-额霍次克(Mongolo-Okhotsk)板块分别向西和向南的俯冲叠加,原来的古老岩石圈失衡、塌陷(拆沉?),取而代之的深部软流圈底辟、上涌,又经历了低度部分熔融的产物。  相似文献   

14.
Geochemical and isotopic data for Cretaceous mafic rocks (basalt, gabbro, and diorite) from the Lower Yangtze region, northern Yangtze block, constrain the evolution of the lithospheric mantle. The mafic rocks, separated into the northeast and southwest groups, are alkaline and evolved, with low Mg# values (44–58) and variable SiO2 contents (47.6–57.4 wt%). Enriched LREEs, LILEs, and Pb, together with depleted Nb, Zr, and Ti, suggest that the mantle sources were metasomatized by slab-derived fluid/melt. All samples show high radiogenic 207Pb/204Pb(t) (15.41–15.65) and 208Pb/204Pb(t) (37.66–38.51) ratios at given 206Pb/204Pb(t) (17.65–19.00) ratios, consistent with the mantle sources having been metasomatized by ancient slab-derived material. Mafic rocks of the southwest group show enriched Sr–Nd isotopic characteristics, with 87Sr/86Sr(t) ranging from 0.7056 to 0.7071 and εNd(t) ranging from −5.3 to −8.3, indicating an origin from enriched lithospheric mantle. Mafic rocks of the northeast group, which record 87Sr/86Sr(t) ratios of between 0.7044 and 0.7050 and εNd(t) of −2.8 to −0.7, possibly formed by the mixing of melts from isotopically enriched lithospheric mantle and isotopically depleted asthenospheric mantle. Taking into consideration the geochemical and isotopic characteristics of Cretaceous mafic rocks, Cenozoic basalts, and basalt-hosted peridotite xenoliths from the Lower Yangtze region, we propose that an isotopically enriched, subduction-modified lithospheric mantle was replaced by or transformed into an isotopically depleted “oceanic-type” mantle. Such a process appears to have occurred in the eastern North China Craton as well as the eastern Yangtze block, probably in response to subduction of the paleo-Pacific plate beneath East Asia.  相似文献   

15.
薛家石梁杂岩体位于北京北山地区,在平面上呈北西向的椭圆状,主要由辉长岩、二长辉长岩、二长岩、正长岩和花岗岩组成。根据锆石SHRI MP定年结果为132·8~123·3Ma,形成于早白垩世早期。野外地质特征、矿物学特征、岩石学特征及地球化学特征表明,薛家石梁杂岩体中二长岩是二长辉长岩岩浆与正长岩岩浆混合作用的产物,从辉长岩岩浆到二长辉长岩岩浆经历了结晶分异作用。薛家石梁杂岩体中正长岩具高Sr,低Y及Eu正异常特征,推测其可能来源于加厚陆壳的底部。薛家石梁杂岩体中辉长岩中Mg#值为65,w(Nb)/w(U)值为37·8,这些特征暗示其可能为原生岩浆。辉长岩中ε(Nd)值为-6·5,表明其源区岩石不具亏损地幔特征;而辉长岩具富集Pb、Ti、Nb正异常,Hf的负异常,与EMI型富集地幔特征(具Nb、Hf正异常及Pb的负异常)不一致;辉长岩中Rb、Th、Nb、U、La、Ce元素含量比EMI型富集地幔低一个数量级;杂岩体中N(87Sr)/N(86Sr)与N(206Pb)/N(204Pb)值具正相关关系也表明不具交代富集型地幔特征。因此,我们认为辉长岩岩浆源区应为软流圈地幔,而不是富集型地幔(EMI)。辉长岩中ε(Nd)的负值是辉长岩岩浆与太古宙下地壳相互作用的结果。因此,我们认为中国东部岩石圈减薄的主要机制是岩石圈的拆沉作用。  相似文献   

16.
Basanites and alkali basalts from Mahabad in the West Azerbaijan province of Iran are part of a widespread series of Late Miocene–Quaternary mantle-derived magmas erupted within the Turkish–Iranian orogenic plateau, itself part of the active Arabia–Eurasia collision zone. New elemental and Sr–Nd isotopic results are combined with geophysical and geological constraints to suggest that these lavas formed predominantly by small degrees of partial melting of the thick (≫100 km) Eurasian lithospheric mantle within the garnet facies. Samples are highly enriched in large ion lithophile elements (LILE) and the light rare earth elements (LREE), up to 600 times chondritic values. They mostly possess negative primitive mantle-normalised Rb, K, Nb–Ta, Zr–Hf and Ti anomalies, with an overall signature that indicates a mantle source metasomatised by fluids or melts derived from crust during continental collision or the Tethyan oceanic subduction that preceded it. Sr–Nd isotopic values are similar to other Quaternary centres in NW Iran; 87Sr/86Sr is slightly depleted with respect to Bulk Silicate Earth, at ∼0.7045, and 143Nd/144Nd is slightly enriched, at ∼0.5127. Crustal contamination does not appear to be an important process in the chemistry of these samples. Possible triggers for melting may include: breakdown of hydrous phases during lithospheric thickening; hydration of the mantle lithosphere by underthrusting of the Arabian passive margin; small-scale sub-lithospheric convection due to a significant thickness gradient in the Zagros lithosphere. Such processes may account for small-volume syn-collisional mantle-derived magmatism elsewhere in regions of thick lithosphere where recent slab break-off or lithospheric delamination cannot be proven.  相似文献   

17.
In many continental large igneous provinces, giant radiating dyke swarms are typically interpreted to result from the arrival of a mantle plume at the base of the lithosphere. Mafic dyke swarms in the Emeishan large igneous province (ELIP) have not received much attention prior to this study. We show that the geochemical characteristics and geochronological data of the mafic dykes are broadly similar to those of the spatially associated lavas, suggesting they were derived from a common parental magma. Based on the regional geological data and our field observations, we mapped the spatial distribution patterns of mafic dyke swarms in the ELIP, and recognized six dyke sub‐swarms, forming an overall radiating dyke swarm and converging in the Yongren area, Yunnan province. This location coincides with the maximum pre‐eruptive domal uplift, and is close to the locations of high‐temperature picrites. Our study suggests that the Yongren area may represent the mantle plume centre during the peak of Emeishan magmatism.  相似文献   

18.
19.
与峨眉地幔柱有关年代学研究的新进展及其意义   总被引:7,自引:1,他引:7  
研究表明,云南白马寨铜镍硫化物矿床中矿石的Re-Os等时线年龄〔(249±32)Ma〕、四川杨柳坪外围麦约尔苦橄质基性-超基性岩中金云母的40Ar/39Ar坪年龄〔(250.2±1.9)Ma〕及攀枝花铁矿层中黑云母的40Ar/39Ar坪年龄〔(256.85±2.69)Ma〕都与峨眉山玄武岩的年龄一致,表明它们的形成时代基本相同。在空间上,这些矿床与峨眉山玄武岩及同时期形成的基性-超基性岩密切相关,因此可以认为,它们都是峨眉地幔柱在古生代与中生代之交达到活动高峰期的产物。  相似文献   

20.
Mineralogy and Petrology - We present here a new set of mineralogical and geochemical data from a cluster of east southeast-trending mafic dykes that intrude a lava flow of Sylhet traps. These...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号