首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 2 毫秒
1.
The capability of a current state-of-the-art regional climate model for simulating the diurnal and annual cycles of rainfall over a complex subtropical region is documented here. Hourly rainfall is simulated over Southern Africa for 1998–2006 by the non-hydrostatic model weather research and forecasting (WRF), and compared to a network of 103 stations covering South Africa. We used five simulations, four of which consist of different parameterizations for atmospheric convection at a 0.5 × 0.5° resolution, performed to test the physic-dependency of the results. The fifth experiment uses explicit convection over tropical South Africa at a 1/30° resolution. WRF simulates realistic mean rainfall fields, albeit wet biases over tropical Africa. The model mean biases are strongly modulated by the convective scheme used for the simulations. The annual cycle of rainfall is well simulated over South Africa, mostly influenced by tropical summer rainfall except in the Western Cape region experiencing winter rainfall. The diurnal cycle shows a timing bias, with atmospheric convection occurring too early in the afternoon, and causing too abundant rainfall. This result, particularly true in summer over the northeastern part of the country, is weakly physic-dependent. Cloud-resolving simulations do not clearly reduce the diurnal cycle biases. In the end, the rainfall overestimations appear to be mostly imputable to the afternoon hours of the austral summer rainy season, i.e., the periods during which convective activity is intense over the region.  相似文献   

2.
This is a study of the annual and interannual variability of regional rainfall produced by the Center for Weather Forecasts and Climate Studies/Center for Ocean, Land and Atmospheric Studies (CPTEC/COLA) atmospheric global climate model. An evaluation is made of a 9-member ensemble run of the model forced by observed global sea surface temperature (SST) anomalies for the 10-year period 1982–1991. The Brier skill score and, Relative Operating Characteristics (ROC) are used to assess the predictability of rainfall and to validate rainfall simulations, in several regions world wide. In general, the annual cycle of precipitation is well simulated by the model for several continental and oceanic regions in the tropics and mid latitudes. Interannual variability of rainfall during the peak rainy season is realistically simulated in Northeast Brazil, Amazonia, central Chile, and southern Argentina–Uruguay, Eastern Africa, and tropical Pacific regions, where the model shows good skill. Some regions, such as northwest Peru–Ecuador, and southern Brazil exhibit a realistic simulation of rainfall anomalies associated with extreme El Niño warming conditions, while in years with neutral or La Niña conditions, the agreement between observed and simulated rainfall anomalies is not always present. In the monsoon regions of the world and in southern Africa, even though the model reproduces the annual cycle of rainfall, the skill of the model is low for the simulation of the interannual variability. This is indicative of mechanisms other than the external SST forcing, such as the effect of land–surface moisture and snow feedbacks or the representation of sub-grid scale processes, indicating the important role of factors other than external boundary forcing. The model captures the well-known signatures of rainfall anomalies of El Niño in 1982–83 and 1986–87, indicating its sensitivity to strong external forcing. In normal years, internal climate variability can affect the predictability of climate in some regions, especially in monsoon areas of the world.  相似文献   

3.
 The ECHAM4 atmospheric general circulation model (GCM) has been integrated at T30 resolution through the period 1960–1994 forced with the observed sea-surface temperatures (SSTs) as compiled at the Hadley Centre (GISST2.2). Three experiments were made starting from different initial conditions. The large-scale tropical precipitation patterns simulated by the model have been studied, focusing on the skill (i.e. the capability to simulate the observed anomaly over land areas) and reproducibility (i.e. the GCM’s interannual rainfall variance that is independent from the initial conditions). Analysis of variance is used to estimate the reproducibility amongst ensemble members at each grid-box, but most emphasis is placed on large-scale patterns, as revealed by various singular value decomposition analyses (SVDAs), between observed and model fields (OM analyses) and amongst the different model runs (MM analyses). Generally, it is found that the first model mode in the MM analysis is very similar to that in the OM analysis, suggesting the model mode with strongest reproducibility is also the mode which tallies best with observations. For the global tropics, the first MM mode is highly reproducible (external variance above 90%) and the first OM couplet is very skillful (correlation between observed and model SVDA time series is over 0.84). The extent to which skill and reproducibility is related to El Nino/Southern Oscillation (ENSO) has been investigated by comparing the OM and MM time series with the Southern Oscillation Index (SOI). For the global tropics, most of the OM and MM variance is common with the SOI, though in boreal summer, the first modes do also have some clear independence from the SOI. The analyses were repeated at the regional scale for Oceania, tropical America, tropical Africa and tropical Southeast Asia. A highly reproducible mode is found in all cases except October-December in Africa. Skill, while always positive, is more variable, strongest for Oceania and tropical America and weakest for Africa. Comparisons with the SOI suggest skill in tropical America and tropical Africa has substantial components that are independent of the SOI, especially in boreal spring and summer when the tropical Atlantic SSTs are strongly related to the leading OM and MM time series. Received: 1 January 1997 / Accepted: 28 July 1997  相似文献   

4.
The TRMM Precipitation Radar is used to construct a high resolution (0.05°?×?0.05°) climatology of rainfall over the latitude band extending to about 36° North and South. This study describes climatological patterns of rainfall frequency and intensity at high spatial resolution, with special focus on the seasonal and diurnal cycles in the frequency of rainfall events. We use this Tropics-wide dataset to highlight small-scale precipitation features that are too fine to be captured by the most widely used satellite-based rainfall datasets. The results shed light on the roles of changes in the wind direction, the land-sea thermal contrast, small-scale variations in sea surface temperature, and orography in shaping the seasonal and diurnal cycles of rainfall. In some regions of the tropics, diurnally locked local circulations are largely responsible for sharp gradients in the spatial distribution of seasonal mean precipitation. In other regions, we show that climatological rainfall frequency changes very sharply at coastlines, even though rainfall in these regions is expected to be controlled by relatively large scale weather systems.  相似文献   

5.
6.
7.
Summary This study reports the findings of TRMM (Tropical Rainfall Measuring Mission) satellite data analyses undertaken to investigate differences in intensity and depth of precipitating systems in the transition region from continental to maritime environments in West Africa during the rainy season of June to September in 1998–2004. The results of this study are interpreted in the context of regional thermodynamic variables such as equivalent potential temperature and equivalent convective available potential energy to discern the processes governing storm development. Over continental West Africa, convective-type precipitating storms exhibit a substantially larger vertical extent compared to the ones over the eastern Atlantic Ocean. In contrast, the stratiform precipitating systems show similar vertical reflectivity patterns, depth and intensity over both land and adjacent ocean in West Africa. The differences in the attributes of storms, as they move from the continent to the ocean, can be partly explained in terms of the surface-atmosphere interactions that provide the necessary transports of energy and water vapor from the surface to the cloud layer. Authors’ addresses: Jose D. Fuentes, Teferi Dejene, Paolo D’Odorico, Department of Environmental Sciences, University of Virginia, 291 McCormick Road, Clark Hall, Charlottesville, VA 22904, USA; Bart Geerts, Department of Atmospheric Science, University of Wyoming, Laramie, WY 82071, USA; Everette Joseph, Department of Physics, Howard University, Washington, DC 20059, USA.  相似文献   

8.
This study evaluates the performance of RegCM3 (Regional Climate Model Version 3) in simulating the East Asian rainfall, with emphasis on the diurnal variations of rainfall over Southeast China during the 1998–2002 summer (June–August) seasons. The evaluation focuses on the sensitivity of the choice of cumulus parameterizations and model domain. With the right setup, the spatial and temporal evolution of diurnal rainfall over Southeast China, which has not been well simulated by past studies, can be accurately simulated by RegCM3. Results show that the Emanuel cumulus scheme has a more realistic simulation of summer mean rainfall in East Asia, while the GFC (Grell scheme with the Frisch-Chappell convective closure assumption) scheme is better in simulating the diurnal variations of rainfall over Southeast China. The better performance of these two schemes [relative to the other two schemes in RegCM3: the Kuo scheme and the GAS (Grell scheme with the Arakawa–Schubert closure assumption) scheme] can be attributed to the reasonable reproduction of the major formation mechanism of rainfall—the moisture flux convergence—over Southeast China. Furthermore, when the simulation domain covers the entire Tibetan Plateau, the diurnal variations of rainfall over Southeast China are found to exhibit a noticeable improvement without changes in the physics schemes.  相似文献   

9.
Summary An important pattern of interannual variability in the southern African region is one where sea surface temperature (SST) in neighbouring waters, particularly in the Agulhas Current, its retroflection region and outflow across the southern midlatitudes of the Indian Ocean, is anomalously warm or cool. Evidence exists of significant rainfall anomalies over large parts of southern Africa during these warm or cool SST events. Here, a general circulation model is used to study the response of the atmosphere in the region to an idealised representation of these SST anomalies. The induced atmospheric circulation and precipitation anomalies over the adjacent southern African landmass on intraseasonal through to interannual time scales are investigated.A nonlinear response to the SST anomalies is found in that the changes to the model atmosphere when warm SST forcing is used are not the reverse (in either pattern or magnitude) to that when cold SST forcing is imposed. For the warm SST anomaly, it is found that the atmospheric response is favourable for enhancement of the original SST anomaly on scales up to, and including, annual. However, as the scale becomes interannual (i.e., 15–21 months after imposition of the anomaly), the model response suggests that damping of the original SST anomaly becomes likely. However, no such coherent timescale dependent response is found when the cold SST anomaly is impose. It is suggested that the relationship of the SST anomaly to the background seasonal climatology may help explain this fundamental difference in the response.Examination of the circulation and rainfall patterns under warm SST forcing indicates that there are significant anomalies over large parts of southern Africa on all scales from intraseasonal through to interannual. On the south coast, rainfall anomalies result from enhanced evaporation of moisture off the SST anomaly. Over the interior, changer in the convergence of moist air streams together with suggestions of a shift in the Walker circulations between southern Africa and the bordering tropical South Atlantic and Indian Oceans appear to be associated with the rainfall anomalies. Similar mechanisms of rainfall perturbation are found when the cold SST anomaly is imposed; however, there is a significant response only on intra-annual to interannual scales. In all cases, the magnitude of the rainfall anomalies accumulated over a 90 day season were of the order of 90–180 mm, and therefore represent a significant fraction of the annual total of many areas. These model results re-inforce previous observational work suggesting that SST anomalies south of Africa, particularly in the retroflection region of the Agulhas Current, are linked with significant rainfall anomalies over the adjacent subcontinent.With 12 Figures  相似文献   

10.
Summary In this paper, the interannual variability of satellite derived outgoing longwave radiation (OLR) is examined in relation to the Indian summer monsoon rainfall (June to September total rainfall; ISMR). Monthly grid point OLR field over the domain i.e. the tropical Pacific and Atlantic region (30°N to 30°S, 110°E to 10°W) and the ISMR for the period 1974–2001 are used for the study. A strong and significant north–south dipole structure in the correlation pattern is found between the ISMR and the OLR field over the domain during January. This dipole is located over the west Pacific region with highly significant negative (positive) correlations over the South China Sea and surrounding region (around north-east Australia). The dipole weakens and moves northwestward during February and disappears in March. During the month of May, the OLR over the central Atlantic Ocean shows a significant positive relationship with the ISMR. These relationships are found to be consistent and robust during the period of analysis and can be used in the prediction of the ISMR.A multiple regression equation is developed, using the above results, for prediction of the ISMR and the empirical relationships are verified using an independent data set. The results are encouraging for the prediction of the ISMR. The composite annual cycle of the OLR, over the west Pacific regions during extreme ISMR is found to be useful in the prediction of extreme summer monsoon rainfall conditions over the Indian subcontinent.  相似文献   

11.
Summary The results of the first step of a project to develop a method to estimate precipitation over the Soudano-Sahelian belt of West Africa are reported.The study has been performed over the period from 10 June to 9 July 1986 using hourly METEOSAT infrared images. 122 individual cloud clusters associated with squall lines or tropical storms have been tracked. For each event, the time variations of a convection index giving the volume of cloud cooler than –40°C has been determined every hour. The convection index exhibits a strong diurnal cycle. From daily rainfall amounts obtained at about 300 stations, and assuming a time apportion of rainfall within a cloud cluster, the time variations of the hourly total rainfall produced by the cluster can be determined and represents the precipitation index. Because of insufficient rainfall, the precipitation index has been determined for only 17 events. For 2/3 of the 17 cases, there is a significant correlation between the two indices. For each of the 17 events, precipitation has been regressed on the associated convective index and relative time variations. In that case, the results indicate that a convective index representing the life history of the cloud cluster can be calibrated with corresponding raingage measurements provided raingage data are available. Then, estimation of rainfall due to that event over data void regions can be obtained. However, this study shows that no universal relationship exists between precipitation: no rainfall can be estimated if there is not enough raingage measurements to construct a precipitation index for a tracked cloud cluster. This represents a limitation to the method.With 9 Figures  相似文献   

12.
A near-global grid-point nudging of the Arpege-Climat atmospheric General Circulation Model towards ECMWF reanalyses is used to diagnose the regional versus remote origin of the summer model biases and variability over West Africa. First part of this study revealed a limited impact on the monsoon climatology compared to a control experiment without nudging, but a significant improvement of interannual variability, although the amplitude of the seasonal anomalies remained underestimated. Focus is given here on intraseasonal variability of monsoon rainfall and dynamics. The reproducible part of these signals is investigated through 30-member ensemble experiments computed for the 1994 rainy season, a year abnormally wet over the Sahel but representative of the model systematic biases. In the control experiment, Arpege-Climat simulates too few rainy days that are associated with too low rainfall amounts over the central and western Sahel, in line with the seasonal dry biases. Nudging the model outside Africa tends to slightly increase the number of rainy days over the Sahel, but has little effect on associated rainfall amounts. However, results do indicate that a significant part of the monsoon intraseasonal variability simulated by Arpege-Climat is controlled by lateral boundary conditions. Parts of the wet/dry spells over the Sahel occur in phase in the 30 members of the nudging experiment, and are therefore embedded in larger-scale variability patterns. Inter-member spread is however not constant across the selected summer season. It is partly controlled by African Easterly Waves, which show dissimilar amplitude from one member to another, but a coherent phasing in all members. A lowpass filtering of the nudging fields suggests that low frequency variations in the lateral boundary conditions can lead to eastward extensions of the African Easterly Jet, creating a favorable environment for easterly waves, while high frequency perturbations seem to control their phasing.  相似文献   

13.
The CNRM atmospheric general circulation model Arpege-Climat is relaxed towards atmospheric reanalyses outside the 10°S?C32°N 30°W?C50°E domain in order to disentangle the regional versus large-scale sources of climatological biases and interannual variability of the West African monsoon (WAM). On the one hand, the main climatological features of the monsoon, including the spatial distribution of summer precipitation, are only weakly improved by the nudging, thereby suggesting the regional origin of the Arpege-Climat biases. On the other hand, the nudging technique is relatively efficient to control the interannual variability of the WAM dynamics, though the impact on rainfall variability is less clear. Additional sensitivity experiments focusing on the strong 1994 summer monsoon suggest that the weak sensitivity of the model biases is not an artifact of the nudging design, but the evidence that regional physical processes are the main limiting factors for a realistic simulation of monsoon circulation and precipitation in the Arpege-Climat model. Sensitivity experiments to soil moisture boundary conditions are also conducted and highlight the relevance of land?Catmosphere coupling for the amplification of precipitation biases. Nevertheless, the land surface hydrology is not the main explanation for the model errors that are rather due to deficiencies in the atmospheric physics. The intraseasonal timescale and the model internal variability are discussed in a companion paper.  相似文献   

14.
Cut-off low (COL) weather systems that are associated with rainfall over the Eastern Cape are considered in this study. COLs are objectively identified and tracked over a 31-year period. Daily rainfall data of 22 evenly distributed stations over the Eastern Cape are utilized. Only COLs with a minimum spatial distribution, defined as more than a third of the rainfall stations that need to report rainfall on at least 1 day of a COL event, are considered for analysis of rainfall attributes. These attributes include the occurrence of COL rain days of different magnitudes, the distribution of the depth and temperature of the COL centres for the rain days of different magnitudes, the associated spatial distribution of rainfall as well as the associated atmospheric circulation. The frequency of COLs over the Eastern Cape has a winter maximum and a summer minimum. COL rain days of small, medium and large magnitudes occur most frequently during the winter, while small- and medium-magnitude COL rain days experience peaks in autumn and spring, respectively. The low-level flow, and in particular the position of the low/trough, seems to be the determinant factor in the occurrence, magnitude and spatial extent of COL-induced rainfall.  相似文献   

15.
In this study, the control simulations of two general circulation model (GCM) experiments are assessed in terms of their ability to reproduce realistic real world weather. The models examined are the UK Meteorological Office high-resolution atmospheric model (UKHI) and a coupled ocean/atmosphere model of the Max Planck Institut für Meteorologic, Hamburg (MPI). An objective classification of daily airflow patterns over the British Isles is used as a basis for comparing the frequencies of model-generated weather types with the frequencies derived from 110 years of observed mean-sea-level pressure (MSLP) fields. The weather-type frequencies generated by the GCMs, and their relationships with simulated monthly mean temperatures and total precipitation over the UK, are compared, season by season, with similar results derived using the observational data. An index of gale frequencies over the British Isles, derived from a similar objective analysis of daily MSLP fields, is used to evaluate the ability of the GCMs to simulate the observed frequency of storm events. One advantage of using 110 years of observational data is that the observed decadal-scale variability of climate can be introduced into this type of validation exercise. Both the GCMs assessed here are too cyclonic in winter. The seasonality of both anticyclonic and cyclonic types is much too strong in MPI and summer precipitation in this model is greatly underestimated. MPI simulates the annual cycle of temperature well, while UKHI successfully reproduces the annual cycle of precipitation. The analysis also indicates that the summer temperature variability of the two models is not driven by circulation changes.This paper was presented at the Second International Conference on Modelling of Global Climate Variability, held in Hamburg 7–11 September 1992 under the auspices of the Max Planck Institute for Meteorology. Guest Editor for these papers is L. Dümenil  相似文献   

16.
Summary A general circulation model is used to study the response of the atmosphere to an idealised sea surface temperature (SST) anomaly pattern (warm throughout the southern midlatitudes, cool in the tropics) in the South Indian Ocean region. The anomaly imposed on monthly SST climatology captures the essence of patterns observed in the South Indian Ocean during both ENSO events and multidecadal epochs, and facilitates diagnosis of the model response. A previous study with this anomaly imposed in the model examined differences in the response between that on the seasonal scale (favours enhancement of the original SST anomaly) and that on the decadal scale (favours damping of the anomaly). The current study extends that work firstly by comparing the response on the intraseasonal, seasonal and interannual scales, and secondly, by assessing the changes in the circulation and rainfall over the adjoining African landmass.It is found that the atmospheric response is favourable for enhancement of the original SST anomaly on scales up to, and including, annual. However, as the scale becomes interannual (i.e., 15–21 months after imposition of the anomaly), the model response suggests that damping of the original SST anomaly becomes likely. Compared to the shorter scale response, the perturbation pressure and wind distribution on the interannual scale is shifted poleward, and is more reminiscent of the decadal response. Winds are now stronger over the warm anomaly in the southern midlatitudes suggesting enhanced surface fluxes, upper ocean mixing, and consequently, a damping of the anomaly.Examination of the circulation and rainfall patterns indicates that there are significant anomalies over large parts of southern Africa during the spring, summer and autumn seasons for both short (intraseasonal to interannual) and decadal scales. It appears that rainfall anomalies are associated with changes in the advection of moist tropical air from the Indian Ocean and its related convergence over southern Africa. Over eastern equatorial Africa, the austral autumn season (the main wet season) showed rainfall increases on all time scales, while parts of central to eastern subtropical southern Africa were dry. The signals during summer were more varied. Spring showed generally dry conditions over the eastern half of southern Africa on both short and decadal time scales, with wet areas confined to the west. In all cases, the magnitude of the rainfall anomalies accumulated over a 90 day season were of the order of 90–180 mm, and therefore represent a significant fraction of the annual total of many areas. It appears that relatively modest SST anomalies in the South Indian Ocean can lead to sizeable rainfall anomalies in the model. Although precipitation in general circulation models tends to be less accurately simulated than many other variables, the model results, together with previous observational work, emphasize the need for ongoing monitoring of SST in this region.With 14 Figures  相似文献   

17.
Moisture exchange between the South Atlantic and southern Africa is examined in this study through zonal moisture transport. Along the west coast of southern Africa, a multivariate analysis of the zonal flow of moisture computed from NCEP-DOE AMIP II Re-analyses reveals a primary mode of variability typical of variations in intensity and of the latitudinal migration of the circulation associated with the midlatitude westerlies and the South Atlantic anticyclone. In austral summer (January–February), this mode, referred to as the South Atlantic midlatitude mode, is found to be well correlated with rainfall over southern Africa (i.e. to the south of the upper lands surrounding the Congo basin). Its positive/negative phases are found to correspond with surface pressures changes over the South Atlantic region in austral summer when the South Atlantic anticyclone is shifted northward/southward respectively. Such changes are accompanied by dipole-like SST anomalies in the midlatitude South Atlantic Ocean, while simultaneous SST anomalies with a similar structure are also found over South Indian Ocean regions. In January–February, positive/negative events linked to the South Atlantic midlatitude mode are marked by meridional shifts (northward/southward) and weakening/strengthening of the ITCZ over the southern tropics, together with modulations in intensity (weakened/sustained) of the Angola low, which could act as a tropical source of moisture for Tropical Temperate Troughs (TTTs). In association with a strengthened/weakened zonal component of the southern extension of the African Easterly Jet (AEJ), this could modulate the meridional transfer of moisture south of 15°S to the advantage/detriment of Angolan coastal regions, where above/below rainfall are expected. Variations in the latitudinal position (northward/southward) of the South Atlantic anticyclone, and thus of the midlatitude westerlies, are also found to reduce/favour moisture advection towards southern Africa subtropics allowing the southern Indian trades to penetrate less/more over the subcontinent south of 25°S. This would create a situation where convection processes are inhibited/supported within the SICZ/TTTs region resulting in drier/wetter conditions locally for positive/negative events respectively.  相似文献   

18.
We perform a systematic study of the predictability of surface air temperature and precipitation in Southeastern South America (SESA) using ensembles of AGCM simulations, focusing on the role of the South Atlantic and its interaction with the El Niño-Southern Oscillation (ENSO). It is found that the interannual predictability of climate over SESA is strongly tied to ENSO showing high predictability during the seasons and periods when there is ENSO influence. The most robust ENSO signal during the whole period of study (1949–2006) is during spring when warm events tend to increase the precipitation over Southeastern South America. Moreover, the predictability shows large inter-decadal changes: for the period 1949–1977, the surface temperature shows high predictability during late fall and early winter. On the other hand, for the period 1978–2006, the temperature shows (low) predictability only during winter, while the precipitation shows not only high predictability in spring but also in fall. Furthermore, it is found that the Atlantic does not directly affect the climate over SESA. However, the experiments where air–sea coupling is allowed in the south Atlantic suggest that this ocean can act as a moderator of the ENSO influence. During warm ENSO events the ocean off Brazil and Uruguay tends to warm up through changes in the atmospheric heat fluxes, altering the atmospheric anomalies and the predictability of climate over SESA. The main effect of the air–sea coupling is to strengthen the surface temperature anomalies over SESA; changes in precipitation are more subtle. We further found that the thermodynamic coupling can increase or decrease the predictability. For example, the air–sea coupling significantly increases the skill of the model in simulating the surface air temperature anomalies for most seasons during period 1949–1977, but tends to decrease the skill in late fall during period 1978–2006. This decrease in skill during late fall in 1978–2006 is found to be due to a wrong simulation of the remote ENSO signal that is further intensified by the local air–sea coupling in the south Atlantic. Thus, our results suggest that climate models used for seasonal prediction should simulate correctly not only the remote ENSO signal, but also the local air–sea thermodynamic coupling.  相似文献   

19.
20.
Summary Austral summer 2000/01 in the southern African region was unusual in several respects. Tropical cyclone activity in the southwest Indian Ocean was substantially less than average despite large areas of this region showing anomalously warm sea surface temperatures (SST) for much of the season. Many areas of southern Africa experienced above average rainfall with local flooding in parts of Mozambique. In the tropical southeast Atlantic, a large warm SST anomaly evolved off the coast of Angola and northern Namibia in late summer suggesting a Benguela Ni?o event. During the late summer (February–April 2001), three particularly widespread and intense wet spells occurred over tropical southern Africa, one of which coincided with tropical cyclone Dera. This study considers the generation and evolution of the middle wet spell of late summer 2001 and its relationship with tropical cyclone Dera. This storm was generated in the northwestern part of the Mozambique Channel and then tracked more or less due south through the Channel and into the subtropical southwest Indian Ocean. Rainfall associated with Dera contributed to the ongoing floods over central Mozambique that arose from rains earlier in the season. Dera occurred in early March following a relatively long period of no tropical cyclone activity in the southwest Indian Ocean. A build up of favorable conditions during the preceding weeks contributed towards the storm whereas an anticyclonic anomaly east of Madagascar led to the northerly steering current and the southward track of tropical cyclone Dera out of the Mozambique Channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号