首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The morphology of tourmaline nodules occurring in the Capo Bianco aplite (Elba Island, Italy) is studied. Outcrop features indicate that tourmaline nodules are the product of magmatic crystallization, as they are aligned along flow fields developed within the magmatic hosting mass. Mesoscopic observations indicate that nodule morphologies are very variable, from rounded to dendritic. Morphometric analyses show that tourmaline nodules are fractals and that fractal dimension quantifies their degree of irregularity. Numerical simulations of nodule growth are performed by using a Diffusion-Limited Aggregation process. The presence in natural samples of nodules with different morphologies is explained by considering a chaotic magmatic system characterized by a complex interplay between growth rate in different dynamical regions, latent heat of crystallization, and local convection dynamics. It is suggested that higher growth rates correspond to growth of tourmaline nodules in dynamical regions where the transfer of nutrients is very efficient. In such conditions, the latent heat released by the growing nodule is high, inducing strong local convection dynamics, destabilizing the nodule interface, and promoting the formation of dendritic morphologies. On the contrary, the growth of nodules in dynamical regions characterized by weak transfer of nutrients is inhibited leading to weak local convection dynamics and, consequently, to the formation of rounded morphologies.  相似文献   

3.
The La Crocetta mine near Porto Azzurro (Elba Island, Tuscany, Italy) is an important producer of raw material for the ceramic industry. Exploitation focuses on a pervasively sericitized porphyritic aplite of the Tuscan Magmatic Province, locally known as "eurite", which underwent significant potassium enrichment during sericitic alteration. Eurites are located along the hanging wall of the Elba Centrale Fault, a low-angle extensional lineament of regional significance. A later carbonatization stage, apparently associated with high-angle extensional tectonics, locally overprinted the sericitized facies. It is expressed by carbonate ± pyrite ± quartz veins, with adverse effects on ore quality. Sericitization was accompanied by addition of potassium, and loss of Na (± Ca, Fe). Rubidium was not enriched along with potassium during sericitization, contrary to what would be expected for interaction with late-magmatic fluids. New 40Ar–39Ar data from eurites provide an isochron age of about 6.7 Ma for the sericitization, whereas the age of the unaltered protolith is ca. 8.8 Ma. Field evidence indicates the Elba Centrale Fault to be the main channel for the hydrothermal fluids. On the other hand, the involvement of heat and/or fluids contributed by the Porto Azzurro pluton, which crops out in the La Crocetta area, is ruled out by field, geochemical and geochronological data (40Ar–39Ar age of Porto Azzurro =5.9 Ma, i.e. significantly younger than the sericitization event). Fluid inclusion studies suggest that sericitization was associated with a low-temperature (<250 °C) hydrothermal system. Fluids were locally boiling, of variable salinity (4–17 wt% NaCl equiv.), and contained some CO2 (XCO2≤0.027). Their ultimate source is not unequivocally constrained; meteoric and/or magmatic contributions may be possible. Low-salinity (≤2.6 wt% NaCl equiv.), low-temperature (<250 °C) fluids are associated with the late carbonate veining. They are considered to be of dominantly meteoric nature because of their low salinity. In summary, sericitization at La Crocetta is regarded as the product of a detachment fault-related, low temperature hydrothermal system, resulting from the structurally controlled focusing of meteoric and possibly magmatic fluids. Hence, potential targets for exploration for similar resources are represented by aplitic bodies located in the hanging wall of Elba Centrale Fault. Electronic supplementary material to this paper can be obtained by using the Springer LINK server located at http://dx.doi.org/10.1007/s00126-002-0279-2.  相似文献   

4.
奚晓霞 《沉积学报》1998,16(2):155-160
Cl-是封闭湖盆中反映气候变化的敏感指标。临夏盆地晚新生代地层Cl-含量变化表明,气候的长期演化呈现明显的阶段性与周期性,在约6.3Ma气候突然产生显著的由湿变干,并于5.3~4.5Ma达到极端干旱,其干旱程度是第四纪早期的33倍,低频上,气候呈现出约400万年的干湿波动,在晚中新世与早上新世,与同周期的全球热冷(凉)波动相对,而在第四纪早期,则与冷暖相对,可能反映亚洲季风系统于晚上新世才开始逐步形成,并于第四纪初建立,3.4Ma开始强烈隆升的青藏高原可能与此密切相关。  相似文献   

5.
A morphostructural analysis of a Pliocene flood basalt formation in the southern Neuquén basin (40°S) shows evidence of contractional deformation less than 3.5 Ma ago. This formation exhibits a general dip towards the south‐east, with relict outcrops located 100 m higher than the main source volcano, which suggests a local tilting of the lava flow. This tilt has been brought about by Plio‐Quaternary reactivation of the eastern border of the Sañico Massif along two thrusts that offset the lava flow. Another long‐wavelength bulge in the southern part of the lava flow unit indicates a possible Pliocene uplift of the North Patagonian Massif. These results provide new evidence of continuing shortening in the Neuquén basin during the Plio‐Quaternary, challenging the hypothesis that an extensional regime has existed since the end of the Miocene in this basin.  相似文献   

6.
The composite Meghri–Ordubad and Bargushat plutons of the Zangezur–Ordubad region in the southernmost Lesser Caucasus consist of successive Eocene to Pliocene magmatic pulses, and host two stages of porphyry Cu–Mo deposits. New high-precision TIMS U–Pb zircon ages confirm the magmatic sequence recognized by previous Rb–Sr isochron and whole-rock K–Ar dating. A 44.03 ± 0.02 Ma-old granite and a 48.99 ± 0.07 Ma-old granodiorite belong to an initial Eocene magmatic pulse, which is coeval with the first stage of porphyry Cu–Mo formation at Agarak, Hanqasar, Aygedzor and Dastakert. A subsequent Oligocene magmatic pulse was constrained by U–Pb zircon ages at 31.82 ± 0.02 Ma and 33.49 ± 0.02 Ma for a monzonite and a gabbro, and a late Miocene porphyritic granodioritic and granitic pulse yielded ages between 22.46 ± 0.02 Ma and 22.22 ± 0.01 Ma, respectively. The Oligo-Miocene magmatic evolution broadly coincides with the second porphyry-Cu–Mo ore deposit stage, including the major Kadjaran deposit at 26–27 Ma.Primitive mantle-normalized spider diagrams with negative Nb, Ta and Ti anomalies support a subduction-like nature for all Cenozoic magmatic rocks. Eocene magmatic rocks have a normal arc, calc-alkaline to high-K calc-alkaline composition, early Oligocene magmatic rocks a high-K calc-alkaline to shoshonitic composition, and late Oligocene to Mio-Pliocene rocks are adakitic and have a calc-alkaline to high-K calc-alkaline composition. Radiogenic isotopes reveal a mantle-dominated magmatic source, with the mantle component becoming more predominant during the Neogene. Trace element ratio and concentration patterns (Dy/Yb, Sr/Y, La/Yb, Eu/Eu*, Y contents) correlate with the age of the magmatic rocks. They reveal combined amphibole and plagioclase fractionation during the Eocene and the early Oligocene, and amphibole fractionation in the absence of plagioclase during the late Oligocene and the Mio-Pliocene, consistent with Eocene to Pliocene progressive thickening of the crust or increasing pressure of magma differentiation. Characteristic trace element and isotope systematics (Ba vs. Nb/Y, Th/Yb vs. Ba/La, 206Pb/204Pb vs. Th/Nb, Th/Nb vs. δ18O, REE) indicate that Eocene magmatism was dominated by fluid-mobile components, whereas Oligocene and Mio-Pliocene magmatism was dominated by a depleted mantle, compositionally modified by subducted sediments.A two-stage magmatic and metallogenic evolution is proposed for the Zangezur–Ordubad region. Eocene normal arc, calc-alkaline to high-K calc-alkaline magmatism was coeval with extensive Eocene magmatism in Iran attributed to Neotethys subduction. Eocene subduction resulted in the emplacement of small tonnage porphyry Cu–Mo deposits. Subsequent Oligocene and Miocene high-K calc-alkaline and shoshonitic to adakitic magmatism, and the second porphyry Cu–Mo deposit stage coincided with Arabia–Eurasia collision to post-collision tectonics. Magmatism and ore formation are linked to asthenospheric upwelling along translithospheric, transpressional regional faults between the Gondwana-derived South Armenian block and the Eurasian margin, resulting in decompression melting of lithospheric mantle, metasomatised by sediment components added to the mantle during the previous Eocene subduction event.  相似文献   

7.
广西苍梧县宝山矿床位于大瑶山隆起区的东南部,是一个与石英斑岩有关的铜多金属矿床。本文对该矿区内花岗闪长岩、细粒花岗岩和石英斑岩进行了单颗粒锆石LA-ICP-MS U-Pb测年,获得了3件花岗闪长岩的~(206)Pb/~(238)U加权平均年龄分别为433.7±1.2 Ma、435.0±1.2 Ma和449.7±2.3 Ma;1件细粒花岗岩的~(206)Pb/~(238)U加权平均年龄为100.4±0.5 Ma,2件石英斑岩样品的~(206)Pb/~(238)U加权平均年龄分别为95.4±0.7 Ma和92.5±0.5 Ma。本文认为,宝山矿区存在晚奥陶世、早志留世、早白垩世晚期和晚白垩世早期等多期岩浆活动,与成矿有关的石英斑岩锆石U-Pb年龄揭示宝山铜铅锌多金属矿床形成于晚白垩世早期。这些高精度花岗岩锆石U-Pb测年数据为进一步深入研究大瑶山地区的岩浆活动及其成矿作用提供了重要的年代学依据。  相似文献   

8.
The Atlas Mountains have been uplifted by two mechanisms: Cenozoic thickening of the crust and thinning of the mantle lithosphere due to a buoyant thermal anomaly, previously inferred by indirect criteria to have started some 15 Ma. Because crustal shortening‐related uplift and mantle‐related uplift affect the topography at different spatial scales, we use scattered direct surface evidence to clarify the palaeoelevation dynamics. Uplifted Messinian shallow marine sediments in the southern margin of the Saïss Basin and in the northern Middle Atlas, tilted Pliocene lacustrine deposits in the Saïss Basin and in the piedmont of the southern High Atlas and drainage‐network reorganization in the Saïss Basin underscore the long‐wavelength rock uplift of the Atlas domain of mantle origin. The low erosion of the aforementioned deposits indicates that such uplift is a true surface uplift that occurred in post‐Miocene times at a minimum rate ranging from 0.17 to 0.22 mm yr?1.  相似文献   

9.
The Palomares Fault Zone (PFZ) is one of the main strike-slip brittle shear zones found in the Betics. It is segmented in several faults that have been active between the Upper Tortonian and present day. Data from drill cores in the Palomares area have permitted us to define the geometry and location of sedimentary depocentres related with the PFZ. These data show an eastward displacement between the Upper Tortonian to Messinian and the Pliocene–Quaternary sedimentary depocentres, towards the presently active Arteal fault, which bounds the western mountain front of Sierra Almagrera, showing that deformation along this fault zone has migrated towards the east, from the Palomares segment, with its main activity during the Upper Tortonian and Messinian, towards the Arteal fault, active during the Pliocene and Quaternary. To cite this article: G. Booth-Rea et al., C. R. Geoscience 335 (2003).  相似文献   

10.
The Neoproterozoic Atud diamictite in Wadi Kareim and Wadi Mobarak in the Eastern Desert of Egypt and the Nuwaybah formation in NW Saudi Arabia consist of poorly sorted, polymictic breccia, with clasts up to 1 m of granitoid, quartz porphyry, quartzite, basalt, greywacke, marble, arkose, and microconglomerate in fine-grained matrix. Stratigraphic relations indicate that the diamictite was deposited in a marine environment. Integrated field investigation, petrographic study and U–Pb SHRIMP zircon ages demonstrate that the Atud and Nuwaybah are correlative. The distribution of zircon ages indicate that ~750 Ma ages are dominant with a significant component of older materials, characterized by minor Mesoproterozoic and more abundant Paleoproterozoic and Neoarchean ages. Some matrix and metasedimentary clast zircons yield ages that are a few 10s of Ma younger than the age of the youngest clast (754 ± 15 Ma), suggesting Atud/Nuwaybah diamictite deposition ~750 Ma or slightly later, broadly consistent with being deposited during the Sturtian glaciation (740–660 Ma). The Paleoproterozoic and Neoarchean clasts have no source within the ensimatic Arabian–Nubian Shield. The distribution of the pre-Neoproterozoic ages are similar to the distribution of the pre-Neoproterozoic ages in Yemen and Saharan Metacraton, suggesting that these clasts have been transported hundreds of kilometers, maybe by ice-rafting. The Atud diamictite may represent important evidence for Cryogenian “Snowball Earth” in the Arabian–Nubian Shield.  相似文献   

11.
The Cretaceous oil-bearing source and reservoir sedimentary succession in the Putumayo Basin, SW Colombia, was intruded by gabbroic dykes and sills. The petrological and geochemical character of the magmatic rocks shows calc-alkaline tendency, pointing to a subduction-related magmatic event. K/Ar dating of amphibole indicates a Late Miocene to Pliocene age (6.1 ± 0.7 Ma) for the igneous episode in the basin. Therefore, we assume the intrusions to be part of the Andean magmatism of the Northern Volcanic Zone (NVZ). The age of the intrusions has significant tectonic and economic implications because it coincides with two regional events: (1) the late Miocene/Pliocene Andean orogenic uplift of most of the sub-Andean regions in Peru, Ecuador and Colombia and (2) a pulse of hydrocarbon generation and expulsion that has reached the gas window. High La/Yb, K/Nb and La/Nb ratios, and the obtained Sr–Nd–Pb isotopic compositions suggest the involvement of subducted sediments and/or the assimilation of oceanic crust of the subducting slab. We discuss the possibility that magma chamber(s) west of the basin, below the Cordillera, did increase the heat flow in the basin causing generation and expulsion of hydrocarbons and CO2.  相似文献   

12.
《Earth》2006,74(1-4):245-270
New tephrochronologic, soil-stratigraphic and radiometric-dating studies over the last 10 years have generated a robust numerical stratigraphy for Upper Neogene sedimentary deposits throughout Death Valley. Critical to this improved stratigraphy are correlated or radiometrically-dated tephra beds and tuffs that range in age from > 3.58 Ma to < 1.1 ka. These tephra beds and tuffs establish relations among the Upper Pliocene to Middle Pleistocene sedimentary deposits at Furnace Creek basin, Nova basin, Ubehebe–Lake Rogers basin, Copper Canyon, Artists Drive, Kit Fox Hills, and Confidence Hills. New geologic formations have been described in the Confidence Hills and at Mormon Point. This new geochronology also establishes maximum and minimum ages for Quaternary alluvial fans and Lake Manly deposits. Facies associated with the tephra beds show that ∼3.3 Ma the Furnace Creek basin was a northwest–southeast-trending lake flanked by alluvial fans. This paleolake extended from the Furnace Creek to Ubehebe. Based on the new stratigraphy, the Death Valley fault system can be divided into four main fault zones: the dextral, Quaternary-age Northern Death Valley fault zone; the dextral, pre-Quaternary Furnace Creek fault zone; the oblique–normal Black Mountains fault zone; and the dextral Southern Death Valley fault zone. Post − 3.3 Ma geometric, structural, and kinematic changes in the Black Mountains and Towne Pass fault zones led to the break up of Furnace Creek basin and uplift of the Copper Canyon and Nova basins. Internal kinematics of northern Death Valley are interpreted as either rotation of blocks or normal slip along the northeast–southwest-trending Towne Pass and Tin Mountain fault zones within the Eastern California shear zone.  相似文献   

13.
The tectonic evolution of the Mt Amiata volcano-geothermal area is under discussion. Some authors state that this region, as well as the hinterland of the Northern Apennines, were affected by compression from the Cretaceous to the Quaternary. In contrast, most authors believe that extension drove the tectonic evolution of the Northern Apennines from the Early Miocene to the Quaternary. Field data, seismic analyses and borehole logs have been integrated in order to better define the structural features of the continental crust in the Mt Amiata geothermal area. In this paper I propose the hypothesis that the structure of the crust in the Mt Amiata volcano-geothermal area derives from two main geological processes: (1) contractional tectonics related to the stacking of the Northern Apennines (Cretaceous–Early Miocene), (2) subsequent extensional collapse of the hinterland of the mountain chain, and related opening of the Northern Tyrrhenian Sea (Early Miocene–Quaternary). Compressional and extensional structures characterise the Mt Amiata region, although extensional structures dominate its geological framework. In particular the extension produced: (a) Middle-Late Miocene boudinage of the previously stacked tectonic units; (b) Pliocene–Quaternary normal faulting which favoured the emplacement of a magmatic body in the middle-upper crust; and (c) the eruption of the Mt Amiata volcano, which gave rise to an acid and intermediate volcanic complex (0.3–0.19 Ma). The extension produced the space necessary to accommodate the Middle-Late Miocene marine and continental sediments. Pliocene and Quaternary normal and transtensional faults dissected the previous structures and influenced the Early Middle Pliocene marine sedimentation within the structural depressions neighbouring the Mt Amiata volcano. The magmatic body was emplaced at depth (about 6–7 km) during the Pliocene extension, and produced the eruption of the Mt Amiata volcano during the Late Pleistocene. This gave rise to local uplift, presently reaching about 3,000 m, as well as a negative Bouguer anomaly (−16 mgal), both centred on the Mt Amiata area. The crustal dome shows a good correspondence with the convex shape of the regional seismic marker known as the K-horizon, which corresponds to the 450°C isotherm, and the areas with greatest heat flow. This is probably a consequence of the above-cited magmatic body presently in the process of solidification. A Late Pleistocene eruption occurred along a crustal fissure striking N50° (Mt Amiata Fault), which crosscuts the crustal dome. Hydrothermal circulation, proven by the occurrence of thermal springs and gas vents (mainly CO2 and H2S), mainly occurs along the Mt Amiata Fault both in the northeastern ans southwestern sides of the volcano.  相似文献   

14.
A molybdenum province of Middle Proterozoic age is described from the Southern Norrbotten region (Northern Sweden). This province occurs at the margin of an inferred Karelian continent and is limited to the south by an important ESE-WNW trending palaeogeographic divide between a marine, possibly oceanic domain, and a continental domain. The molybdenum mineralizations occur as: (a) porphyry copper-molybdenum deposits found in calc-alkaline plutonic rocks which belong to an early orogenic event and, speculatively, are related to subduction movements; (b) Mo-mineralizations associated with aplitic granites, granite cupolas, pegmatites and brecciated, strongly altered acid volcanics. These deposits are generally associated with acid magmatic rocks of a more alkaline nature. They probably belong to a late tectono-magmatic event and seem to be related to the development of rift systems.  相似文献   

15.
The newly discovered Chalukou giant porphyry Mo deposit, located in the northern Great Xing’an Range, is the biggest Mo deposit in northeast China. The Chalukou Mo deposit occurs in an intermediate-acid complex and Jurassic volcano-sedimentary rocks, of which granite porphyry, quartz porphyry, and fine-grained granite are closely associated with Mo mineralization. However, the ages of the igneous rocks and Mo mineralization are poorly constrained. In this paper, we report precise in situ LA-ICP-MS zircon U–Pb dates for the monzogranite, granite porphyry, quartz porphyry, fine grained granite, rhyolite porphyry, diorite porphyry, and andesite porphyry in the Chalukou deposit, corresponding with ages of 162 ± 2 Ma, 149 ± 5 Ma, 148 ± 2 Ma, 148 ± 1 Ma, 137 ± 3 Ma, 133 ± 2 Ma, and 132 ± 2 Ma, respectively. Analyses of six molybdenite samples yielded a Re–Os isochron age of 148 ± 1 Ma. These data indicate that the sequence of the magmatic activity in the Chalukou deposit ranges from Jurassic volcano-sedimentary rocks and monzogranite, through late Jurassic granite porphyry, quartz porphyry, and fine-grained granite, to early Cretaceous rhyolite porphyry, diorite porphyry, and andesite porphyry. The Chalukou porphyry Mo deposit was formed in the late Jurassic, and occurred in a transitional tectonic setting from compression to extension caused by subduction of the Paleo-Pacific oceanic plate.  相似文献   

16.
吕鹏瑞  姚文光  张海迪  杨博  洪俊  曹凯 《地质学报》2015,89(9):1629-1642
贾盖火山岩浆岩带是巴基斯坦境内西部第二大岩浆弧,属于特提斯成矿域的重要组成部分之一。晚渐新世—中新世,随着新特提斯洋的闭合,阿拉伯板块、印度板块与欧亚板块不断碰撞。在持续的挤压条件下,巴基斯坦西部发育了一系列逆冲褶皱系统,并且先后经历了中—晚始新世(43~37 Ma)、早中新世(24~22 Ma和18~16 Ma)、中中新世(13~10 Ma)和晚中新世—早上新世(6~4 Ma)4次大规模的岩浆作用,形成了贾盖火山岩浆岩带,赋存有48个斑岩型铜金矿床(点)、远景区。根据区域地质及矿化情况,可将贾盖火山岩浆岩带内的斑岩型铜-金矿床分为东、西两部分。前者主要分布在贾盖侵入体的边缘或与围岩接触带中,矿体产于晚白垩世辛贾拉尼群碎屑岩和始新世贾盖侵入体中;后者则分布在索尔科侵入体的岩株中,矿体产于古新世和更年轻的碎屑岩和火山岩中。矿体主要与磁铁矿系列的石英闪长斑岩和花岗闪长斑岩相关,具有钙碱性系列的特征,围岩热液蚀变分带明显,自岩体中心向外依次为钾硅酸化(钾化)、泥化、石英绢云母化、青磐岩化。境内外斑岩铜矿产出特征显示,索尔科侵入岩可能符合"小岩体成大矿"的现实情况,贾盖侵入岩的大型复合岩基中也可能存在斑岩铜矿床,具有很好的找矿潜力。最新勘查资料显示,贾盖火山岩浆岩带已发现的48个矿床(点)、远景区可能都具有很好的找矿前景和巨大的资源潜力,如萨因达克、雷克迪克、塔拉鲁格、科·伊·达利尔等矿床(点)、远景区,以及Western War Chah斑岩体,尤其是贾盖火山岩浆岩带西部和Koh Dalil(Rackodiq)矿点。  相似文献   

17.
Precise U–Pb geochronology, Hf isotope compositions and trace element distributions in zircons are combined in the present study to define the timing and sources of the magmatism forming the Medet porphyry copper deposit, Bulgaria. ID-TIMS U–Pb-zircon dating demonstrates that ore-bearing magmatism extended for less than 1.12 Ma. As inferred from the field relationships, it started with the intrusion of a quartz-monzodiorite at 90.59?±?0.29 Ma followed by granodiorite porphyries at 90.47?±?0.30 and 90.27?±?0.60 Ma and by crosscutting aplite dykes at 90.12?±?0.36 Ma. These units were overprinted by potassic alteration and host economic copper-(Mo–Au) mineralization. The main magmatic–hydrothermal activity ceased after that, and a later quartz-granodiorite porphyry dyke, dated at 89.26?±?0.32 Ma, only contains an uneconomic quartz–pyrite mineralization. Assimilation of Lower Paleozoic rocks with a mantle to mantle–crust signature is characteristic of the fertile magma in the Medet deposit, as defined by positive ?-Hf values of the inherited zircons. The positive Ce-anomalies and the higher Eu/Eu* ratios of the zircons in the mineralized Cretaceous rocks of Medet deposit argue for crystallization from a generally more oxidized magma compared to the later quartz-granodiorite porphyry dyke. A change in paleostress conditions occurred during the intrusion of the Medet pluton and its dykes. The initial stage reveals E–W extension associated with N–S compression, whereas the younger granodiorite dyke was emplaced during subsequent N–S extension. The large-scale switch of the extensional stress regime during the mineralization was favourable for ore deposition by channelling the fluids and increasing the effective permeability.  相似文献   

18.
驱龙超大型斑岩铜矿床是冈底斯斑岩铜矿带上最为重要的矿床,矿区侵入岩较发育,但流纹斑岩及英安流纹斑岩的形成时代存在争议。在野外及岩相学观察基础上,结合LA-ICP-MS锆石U-Pb测年,获得流纹斑岩年龄值为169.9±0.61 Ma,英安流纹斑岩年龄值分别为166.0±1.8 Ma及173.8±0.56 Ma,黑云母花岗闪长岩年龄值为16.98±0.15 Ma。结合前人年代学研究,认为流纹斑岩及英安流纹斑岩可能在早侏罗世即开始活动,一直持续到晚侏罗世。而黑云母花岗闪长岩的形成时代与前人研究一致,皆为中新世。此外,驱龙矿区岩浆岩演化经历了早-晚侏罗世、中新世早期和中新世中期三个阶段,其中,中新世早期岩浆活动与成矿时代具有很好的一致性。最后认为,驱龙矿区岩浆岩活动时间与新特提斯洋俯冲阶段及印度-亚洲大陆碰撞后汇聚过程中发生的岩浆作用阶段相对应。岩浆活动与成矿受到这两大构造活动事件的影响。  相似文献   

19.
A 650-m-thick sequence of fluvio-lacustrine sediments from the Yuanmou Basin in southwest China was analyzed at 20-cm intervals for grain-size distribution to provide a high-resolution terrestrial record of Indian summer monsoon variations during the Pliocene. The concentrations of the clay and clay-plus-fine-silt fractions are inferred to reflect the water-level status of the lake basin related to the intensity of the Indian summer monsoon and high concentrations reflect high lake levels resulting from the intensified summer monsoon. The frequency of individual lacustrine mud beds is considered to reveal the frequency of the lakes developed in the basin associated with the variability of the Indian summer monsoon and an increased frequency of the lakes reveals an increased variability of the summer monsoon. The proxy data indicate that the Indian summer monsoon experienced two major shifts at 3.57 and 2.78 Ma and two secondary shifts at 3.09 and 2.39 Ma during the Pliocene. The summer monsoon displayed a general trend of gradual intensification during the period of 3.57–2.78 Ma, coeval with an accelerated uplift of the Tibetan Plateau, implying a close link between the monsoon intensification and the plateau uplift. At 2.78 Ma, the summer monsoon was markedly weakened, synchronous with the formation of extensive Northern Hemisphere ice sheets, denoting a quick response of the monsoon regime to the Northern Hemisphere glaciation. The variability of the summer monsoon decreased at 3.09 Ma and increased at 2.39 Ma, presumably suggesting that variations of the Indian monsoon would be modulated by the initiation and periodic fluctuations of ice-sheet covers in Northern Hemisphere high latitudes.  相似文献   

20.
The gondwanan magmatism in the San Rafael Massif, known as Choiyoi Magmatic Cycle, was emplaced during the inception of a magmatic arc setting during the early Permian. Two different sections can be differentiated in this volcanic sequence. The lower section (∼281 up to ∼265 Ma) consisting of andesites and dacitic to low-silica rhyolitic ignimbrites has geochemical characteristics that indicate a subduction zone setting. The upper section (∼265 up to ∼252 Ma) composed of rhyolitic ignimbrites and lava flows, dacitic to rhyolitic subvolcanics and alkalic basaltic andesites has geochemical characteristics transitional between subduction and continental intraplate settings. Several Cu–(Mo) porphyry deposits are genetically linked to the lower section (Infiernillo, San Pedro and La Chilca-Zanjón del Buitre). In this paper, we discussed the petrogenesis of the magmatism linked to the porphyry deposits from the San Rafael Massif. The petrogenetic analysis suggests that the lower section was produced in a thickened crust resulting in an adakite-like signature magmatism. The U/Pb LA-ICP-MS age of magmatic zircons from an intrusive associated to the San Pedro porphyry (263.1 ± 4.2 Ma) allowed confirming that the emplacement of Cu–Mo porphyry deposits in the San Rafael Massif occurred during the change in the geodynamical conditions from a transpressive to a transtensive tectonic regime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号