首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
The results of an analysis of the orbital structure of the meteor complex accessible for radar observations at northern midlatitudes are reported. Experimentally, the study is based on the long-term monitoring of the influx of meteor matter into the Earth’s atmosphere performed with the meteor radar of Kazan State University starting from 1986. The study uses a discrete quasi-tomographic method to measure the radiants and velocities of meteor showers based on goniometric data of the meteor radar and diffraction measurements of meteor velocities. The discretization of the detection environment—in particular, in terms of velocity—is shown to result in no substantial loss of measurement accuracy. The error of the measured velocity of the shower does not exceed 1.5 km/s for a standard deviation of a single velocity measurement equal to 3 km/s. Microshower representation is used with microshowers either representing the correlated part of the sporadic complex or being partial streams of major and minor showers, or fragments of the dust environment of minor bodies passing by Earth or falling onto it. The data of measurements made over the entire annual cycle are used to construct combined maps of the distribution of the observed 2263 microshowers (a total of 22 604 orbits) by their inclination, aphelion distance, and longitudes of the ascending nodes of their orbits. The observing conditions are shown to have a significant effect on the parameters of the distribution of aphelion distances for different months, and the corresponding distributions for prograde and retrograde orbits are shown to differ fundamentally. A specific feature of such distribution maps is that they allow uniform representation of both meteor showers and irregularities of the sporadic complex.  相似文献   

2.
Efforts to link minor meteor showers to their parent bodies have been hampered both by the lack of high-accuracy orbits for weak showers and the incompleteness of our sample of potential parent bodies. The Canadian Meteor Orbital Radar (CMOR) has accumulated over one million meteor orbits. From this large data set, the existence of weak showers and the accuracy of the mean orbits of these showers can be improved. The ever-growing catalogue of near-Earth asteroids (NEAs) provides the complimentary data set for the linking procedure. By combining a detailed examination of the background of sporadic meteors near the orbit in question (which the radar data makes possible) and by computing the statistical significance of any shower association (which the improved NEA sample allows) any proposed shower–parent link can be tested much more thoroughly than in the past. Additional evidence for the links is provided by a single-station meteor radar at the CMOR site which can be used to dispel confusion between very weak showers and statistical fluctuations in the sporadic background. The use of these techniques and data sets in concert will allow us to confidently link some weak streams to their parent bodies on a statistical basis, while at the same time showing that previously identified minor showers have little or no activity and that some previously suggested linkages may simply be chance alignments.  相似文献   

3.
Recent theoretical and observational work has shown that the asteroids belonging to the Taurid meteoroid complex have a cometary nature. If so, then they might possess related meteoroid streams producing meteor showers in the Earth atmosphere. We studied the orbital evolution of ten numbered Taurid complex asteroids by the Halphen-Goryachev method. It turned out that all of these asteroids are quadruple crossers relative to the Earth's orbit. Therefore their proposed meteoroid streams may in theory each produce four meteor showers. The theoretical orbital elements and geocentric radiants of these showers are determined and compared with the available observational data. The existence of the predicted forty meteor showers of the ten Taurid complex asteroids is confirmed by a search of the published catalogues of observed meteor shower radiants and orbits, and of the archives of the IAU Meteor Data Center (Lund). The existence of meteor showers associated with the Taurid Complex Asteroids confirms that, most likely, these asteroids are extinct comets. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
The history of associating meteor showers with asteroidal-looking objects is long, dating to before the 1983 discovery that 3200 Phaethon moves among the Geminids. Only since the more recent recognition that 2003 EH1 moves among the Quadrantids are we certain that dormant comets are associated with meteoroid streams. Since that time, many orphan streams have found parent bodies among the newly discovered Near Earth Objects. The seven established associations pertain mostly to showers in eccentric or highly inclined orbits. At least 35 other objects are tentatively linked to streams in less inclined orbits that are more difficult to distinguish from those of asteroids. There is mounting evidence that the streams originated from discrete breakup events, rather than long episodes of gradual water vapor outgassing. If all these associations can be confirmed, they represent a significant fraction of all dormant comets that are in near-Earth orbits, suggesting that dormant comets break at least as frequently as the lifetime of the streams. I find that most pertain to NEOs that have not yet fully decoupled from Jupiter. The picture that is emerging is one of rapid disintegration of comets after being captured by Jupiter, and consequently, that objects such as 3200 Phaethon most likely originated from among the most primitive asteroids in the main belt, instead. They too decay mostly by disintegration into comet fragments and meteoroid streams. The disintegration of dormant comets is likely the main source of our meteor showers and the main supply of dust to the zodiacal cloud. Editorial handling: Frans Rietmeijer.  相似文献   

5.
The discrete quasitomographic method of the analysis of the interferometric data of meteor radar gives us the possibility of measuring coordinates and velocities of very weak meteor showers with a 2 × 2 square degree resolution on the celestial sphere. The minimal rate of the meteors in each microstream is five meteors per day. At such sensitivity, basic distinctions between irregularities of the sporadic background and meteor streams vanish. More than 1000 of the detected microshowers per month are associated with a combination of (a) the large known meteor showers, (b) the weaker known meteor showers and (c) till now unknown associations of microshowers. All microshowers regardless of association have the identical velocities, limited areas of radiation and near simultaneity of their acting dates. The results are compiled as maps of radiant distribution and average velocities of microstreams for different months. From these it is possible to see how the microshower activity for various discrete sites on the celestial sphere correlate with the behavior of the well-known meteor streams and thus to infer the orbital properties of the different microstream configurations.  相似文献   

6.
We investigate the possibility of detectable meteor shower activity in the atmosphere of Venus. We compare the Venus-approaching population of known periodic comets, suspected cometary asteroids and meteor streams with that of the Earth. We find that a similar number of Halley-type comets but a substantially lesser population of Jupiter family comets approach Venus. Parent bodies of prominent meteor showers that might occur at Venus have been determined based on minimum orbital distance. These are: Comets 1P/Halley, parent of the η Aquarid and Orionid streams at the Earth; 45P/Honda-Mrkos-Pajdusakova which currently approaches the venusian orbit to 0.0016 AU; three Halley-type comets (12P/Pons-Brooks, 27P/Crommelin and 122P/de Vico), all intercepting the planet's orbit within a 5-day arc in solar longitude; and Asteroid (3200) Phaethon, parent of the December Geminids at the Earth. In addition, several minor streams and a number of cometary asteroid orbits are found to approach the orbit of Venus sufficiently close to raise the possibility of some activity at that planet. Using an analytical approach described in Adolfsson et al. (Icarus 119 (1996) 144) we show that venusian meteors would be as bright or up to 2 magnitudes brighter than their Earth counterparts and reach maximum luminosity at an altitude range of 100-120, 20-30 km higher than at the Earth, in a predominantly clear region of the atmosphere. We discuss the feasibility of observing venusian showers based on current capabilities and conclude that a downward-looking Venus-orbiting meteor detector would be more suitable for these purposes than Earth-based monitoring. The former would detect a shower of an equivalent Zenithal Hourly Rate of at least several tens of meteors.  相似文献   

7.
The Canadian Meteor Orbit Radar (CMOR) has collected information on a number of weak meteor showers that have not been well characterized in the literature. A subsample of these showers (1) do not show a strong orbital resemblance to any known comets or asteroids, (2) have highly inclined orbits, (3) are at low perihelion distances ( AU) and (4) are at small semimajor axes (<2 AU). Though one might conclude that the absence of a parent object could be the result of its disruption, it is unclear how this relatively inaccessible (dynamically speaking) region of phase space might have been populated by parents in the first place. It will be shown that the Kozai secular resonance and/or Poynting–Robertson drag can modify meteor stream orbits rapidly (on time scales comparable to a precession cycle) and may be responsible for placing some of these streams into their current locations. These same effects are also argued to act on these streams so as to contribute to the high-ecliptic latitude north and south toroidal sporadic meteor sources. There remain some differences between the simple model results presented here and observations, but there may be no need to invoke a substantial population of high-inclination parents for the observed high-inclination meteoroid streams with small perihelion distances.  相似文献   

8.
We have simulated the formation and evolution of comet 1P/Halley’s meteoroid stream by ejecting particles from the nucleus 5000 years ago and propagating them forward to the present. Our aim is to determine the existence and characteristics of associated meteor showers at Mars and Venus and compare them with 1P/Halley’s two known showers at the Earth. We find that one shower should be present at Venus and two at Mars. The number of meteors in those atmospheres would, in general, be less than that at the Earth. The descending node branch of the Halley stream at Mars exhibits a clumpy structure. We identified at least one of these clumps as particles trapped in the 7:1 mean motion resonance with Jupiter, potentially capable of producing meteor ourbursts of ZHR∼1000 roughly once per century.  相似文献   

9.
Z. Sekanina 《Icarus》1973,18(2):253-284
Using a computerized technique of stream search, based on the statistical model of meteor streams, we have detected 72 additional streams in a sample of 19303 radio meteor orbits. The streams are found to have a tendency to cluster, partly along the ecliptic and partly in high-inclination orbits. Also noticed are specific relations among the detected streams, such as stream pairs, stream branches, and twin showers. A very probable association of a prominent stream, the a Capricornids, with the minor planet Adonis has been established, and possible associations of several streams with comets and minor planets of the Apollo and Albert types are also discussed. Identification of the detected radio streams with previously known streams is presented, and plans for future work are briefly outlined.  相似文献   

10.
The hyperbolic meteor orbits among the 4,581 photographic and 62,906 radar meteors of the IAU MDC have been analysed using statistical methods. It was shown that the vast majority of hyperbolic orbits has been caused by the dispersion of determined velocities. The large proportion of hyperbolic orbits among the known meteor showers strongly suggests the hyperbolicity of the meteors is not real. The number of apparent hyperbolic orbits increases inversely proportional to the difference between the mean heliocentric velocity of meteor shower and the parabolic velocity limit. The number of hyperbolic meteors in the investigated catalogues does not, in any case, represent the number of interstellar meteors in observational data. The apparent hyperbolicity of these orbits is caused by a high spread in velocity determination, shifting a part of the data through the parabolic limit.  相似文献   

11.
We examine the hypothesis about the formation of meteor streams near the Sun. Families of short-perihelion orbit comets, many of which pass just a few radii from the solar surface at perihelion and have high dust production efficiencies, are assumed to be candidates for the parent bodies of these meteor streams. Our statistical analysis of orbital and kinematic parameters for short-perihelion meteoric particles recorded at the Earth and comets from the Kreutz family and the Marsden, Kracht, and Meyer groups led us to certain conclusions regarding the proposed hypothesis. We found a correlation between the ecliptic longitude of perihelion for comet and meteor orbits and the perihelion distance. This correlation may be suggestive of either a genetic connection between the objects of these two classes or the result of an as yet unknown mechanism that equally acts on short-perihelion comet and meteor orbits. A reliable conclusion about this genetic connection can be reached for the meteors that belong to the Arietids stream and the Marsden comet group.  相似文献   

12.
Meteors are streaks of light seen in the upper atmosphere when particles from the inter-planetary dust complex collide with the Earth. Meteor showers originate from the impact of a coherent stream of such dust particles, generally assumed to have been recently ejected from a parent comet. The parent comets of these dust particles, or meteoroids, fortunately, for us tend not to collide with the Earth. Hence there has been orbital changes from one to the other so as to cause a relative movement of the nodes of the meteor orbits and that of the comet, implying changes in the energy and/or angular momentum. In this review, we will discuss these changes and their causes and through this place limits on the ejection process. Other forces also come into play in the longer term, for example perturbations from the planets, and the effects of radiation pressure and Poynting–Robertson drag. The effect of these will also be discussed with a view to understanding both the observed evolution in some meteor streams. Finally we will consider the final fate of meteor streams as contributors to the interplanetary dust complex.  相似文献   

13.
We present a new method to detect meteor showers using the density‐based spatial clustering of applications with noise algorithm (DBSCAN; Ester et al. 1996 ). The DBSCAN algorithm is a modern cluster detection algorithm that is well suited to the problem of extracting meteor showers from all‐sky camera data because of its ability to efficiently extract clusters of different shapes and sizes from large data sets. We apply this shower detection algorithm on a data set that contains 25,885 meteor trajectories and orbits obtained from the NASA All‐Sky Fireball Network and the Southern Ontario Meteor Network (SOMN). Using a distance metric based on solar longitude, geocentric velocity, and Sun‐centered ecliptic radiant, we find 25 strong cluster detections and six weak detections in the data, all of which are good matches to known showers. We include measurement errors in our analysis to quantify the reliability of cluster occurrence and the probability that each meteor belongs to a given cluster. We validate our method through false‐positive/negative analysis and with a comparison to an established shower detection algorithm.  相似文献   

14.
We have carried out double-station TV meteor observations between 1990 and 1994. The orbits of 326 meteors have been determined from doubly observed meteors, and radiant distributions are studied. The mean magnitude of the observed meteors was as faint as +4.7, since I.I. (Image Intensifier) and Video cameras were used. Radiants were widely distributed over the celestial sphere. The velocity distribution showed some similarity with the distribution predicted by the theoretical radiant distribution from comets rather than that from asteroids. In all 13 showers including both major and minor meteor showers were detected from radiant distributions of the observed meteors; from the orbital elements and meteor velocities as well as from the radiant directions.  相似文献   

15.
A 7 year survey using the Canadian Meteor Orbit Radar (CMOR), a specular backscattering orbital radar, has produced three million individually measured meteoroid orbits for particles with mean mass near 10−7 kg. We apply a 3D wavelet transform to our measured velocity vectors, partitioning them into 1° solar longitude bins while stacking all 7 years of data into a single “virtual” year to search for showers which show annual activity and last for at least 3 days. Our automated stream search algorithm has identified 117 meteor showers. We have recovered 42 of the 45 previously described streams from our first reconnaissance survey (Brown, P., Weryk, R.J., Wong, D.K., Jones, J. [2008]. Icarus 195, 317-339). Removing possible duplicate showers from the automated results leaves 109 total streams. These include 42 identified in survey I and at least 62 newly identified streams. Our large data sample and the enhanced sensitivity of the 3D wavelet search compared to our earlier survey have allowed us to extend the period of activity for several major showers. This includes detection of the Geminid shower from early November to late December and the Quadrantids from early November to mid-January. Among our newly identified streams are the Theta Serpentids which appears to be derived from 2008 KP and the Canum Venaticids which have a similar orbit to C/1975 X1 (Sato). We also find evidence that nearly 60% of all our streams are part of seven major stream complexes, linked via secular invariants.  相似文献   

16.
Probably most meteor showers have a cometary origin. Investigation of Near-Earth asteroids' orbital evolution to determine whether they have related meteor showers is necessary to determine which asteroids evolved from comets. The results of calculations show that asteroid Orthos' orbit is an octuple Earth-crosser. Therefore, if Orthos has an old meteoroid stream it may produce eight meteor showers observable on the Earth. The existence of four Orthos' Northern meteor showers is confirmed by our search in the published catalogues of meteor radiants and orbits or in the archives of the IAU Meteor Data Center (Lund, Sweden).  相似文献   

17.
Probably the majority of meteor showers has a cometary origin. Investigation of Near-Earth asteroids' orbital evolution to determine whether they have related meteor showers are necessary to determine which asteroids evolved from comets. The results of calculations show that asteroid Orthos' orbit is an octuple Earth-crosser. Therefore, if Orthos has an old meteoroid stream it may produce eight meteor showers observable on the Earth. The existence of four Orthos' Northern meteor showers is confirmed by our search in the published catalogues of meteor radiants and orbits or in the archives of the IAU Meteor Data Center (Lund, Sweden).  相似文献   

18.
Probably most meteor showers have a cometary origin. Investigation of Near-Earth asteroids' orbital evolution to determine whether they have related meteor showers is necessary to determine which asteroids evolved from comets. The results of calculations show that asteroid Orthos' orbit is an octuple Earth-crosser. Therefore, if Orthos has an old meteoroid stream it may produce eight meteor showers observable on the Earth. The existence of four Orthos' Northern meteor showers is confirmed by our search in the published catalogues of meteor radiants and orbits or in the archives of the IAU Meteor Data Center (Lund, Sweden).  相似文献   

19.
The spatial structure of meteor streams, and the activity profiles of their corresponding meteor showers, depend firstly on the distribution of meteoroid orbits soon after ejection from the parent comet nucleus, and secondly on the subsequent dynamical evolution. The latter increases in importance as more time elapses. For younger structures within streams, notably the dust trails that cause sharp meteor outbursts, it is the cometary ejection model (meteoroid production rate as a function of time through the several months of the comet’s perihelion return, and velocity distribution of the meteoroids released) that primarily determines the shape and width of the trail structure. This paper describes how a trail cross section can be calculated once an ejection model has been assumed. Such calculations, if made for a range of ejection model parameters and compared with observed parameters of storms and outbursts, can be used to constrain quantitatively the process of meteoroid ejection from the nucleus, including the mass distribution of ejected meteoroids.  相似文献   

20.
We discuss a new method for measuring the coordinates of meteor shower radiants from meteor radar data. The method uses a high accuracy of radar goniometer measurements of one of the angular coordinates for meteor radiants and collective properties of incident meteor showers. It is based on a computer technology of searching for the coordinates of radiants using the intersections of meteor position lines on the celestial sphere and filtering nonrandom combinations of these intersections. The method allows the following: to detect meteor showers with a rate of more than 5 per day of observations and to separate meteor groups from different meteor showers with different radiants and velocities. The method makes it possible to increase the angular resolution from 10° × 10° achieved with a quasi-tomographic technique to 2° × 2°, with a prospect of a further increase in the accuracy through the individual reduction of separated meteor groups. We use the reduction of one-day-long observations during maximum activity of the Geminids meteor shower in 1993 to illustrate the potentialities of the method. We show an example of detecting a weak meteor shower that was active during December 1993.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号