共查询到18条相似文献,搜索用时 15 毫秒
1.
Sustainable long‐term storage of municipal waste and waste rock from mining activities in waste dumps (either above or below the land surface) requires minimization of percolation of rainwater into and then through stored waste material. There has been increasing attention given to the use of store‐release covers (transpirational covers) to achieve this. However, the design of such covers remains problematic because of the unique combinations of weather, vegetation composition, soils and their interactions that determine the efficacy of each design that could be available for the construction of the covers. The aim of the work described here was to use ecophysiological knowledge of soil‐plant‐atmosphere (SPA) interactions through the application of a detailed mechanistic model of the SPA continuum. We examined the relative influence of soil depth, soil texture, leaf area index and rainfall as determinants of rates of evapotranspiration and water budget for several different theoretical cover designs. We show that minimizing deep drainage requires a cover that has the following attributes: (i) a water storage capacity that is large enough to store the volume of water that is received as rainfall in above‐average wet months/seasons; (ii) a root distribution that explores the entire depth of the cover; (iii) a leaf area index that is present all year sufficient to evapotranspire monthly rainfall; and (iv) takes into account the intra‐annual and inter‐annual variability in rainfall and other climatic variables that drive ET. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
2.
Spatial and seasonal variations in CO2 and CH4 concentrations in streamwater and adjacent soils were studied at three sites on Brocky Burn, a headwater stream draining a peatland catchment in upland Britain. Concentrations of both gases in the soil atmosphere were significantly higher in peat and riparian soils than in mineral soils. Peat and riparian soil CO2 concentrations varied seasonally, showing a positive correlation with air and soil temperature. Streamwater CO2 concentrations at the upper sampling site, which mostly drained deep peats, varied from 2·8 to 9·8 mg l?1 (2·5 to 11·9 times atmospheric saturation) and decreased markedly downstream. Temperature‐related seasonal variations in peat and riparian soil CO2 were reflected in the stream at the upper site, where 77% of biweekly variation was explained by an autoregressive model based on: (i) a negative log‐linear relationship with stream flow; (ii) a positive linear relationship with soil CO2 concentrations in the shallow riparian wells; and (iii) a negative linear relationship with soil CO2 concentrations in the shallow peat wells, with a significant 2‐week lag term. These relationships changed markedly downstream, with an apparent decrease in the soil–stream linkage and a switch to a positive relationship between stream flow and stream CO2. Streamwater CH4 concentrations also declined sharply downstream, but were much lower (<0·01 to 0·12 mg l?1) than those of CO2 and showed no seasonal variation, nor any relationship with soil atmospheric CH4 concentrations. However, stream CH4 was significantly correlated with stream flow at the upper site, which explained 57% of biweekly variations in dissolved concentrations. We conclude that stream CO2 can be a useful integrative measure of whole catchment respiration, but only at sites where the soil–stream linkage is strong. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
3.
Wildfire effects on soil‐physical and ‐hydraulic properties as a function of burn severity are poorly characterized, especially several years after wildfire. A stratified random sampling approach was used in 2015 to sample seven sites representing a spectrum of remotely sensed burn severity in the area impacted by the 2011 Las Conchas Fire in New Mexico, USA. Replicate samples from each site were analysed in the laboratory. Linear and linear indicator regression were used to assess thresholds in soil‐physical and ‐hydraulic properties and functional relations with remotely sensed burn severity. Significant thresholds were present for initial soil‐water content (θi) at 0–6 cm depth between the change in the Normalized Burn Ratio (dNBR) equal to 618–802, for bulk density (ρb) at 3–6 cm between dNBR equal to 416–533, for gravel fraction at 0–1 cm between dNBR equal to 416–533, for fines (the silt + clay fraction) at 0–1 cm for dNBR equal to 416–533, and for fines at 3–6 cm for dNBR equal to 293–416. Significant linear relations with dNBR were present between ρb at 0–1 cm, loss on ignition (LOI) at 0–1 cm, gravel fraction at 0–1 cm, and the large organic fraction at 1–3 cm. No thresholds or effects on soil‐hydraulic properties of field‐saturated hydraulic conductivity or sorptivity were observed. These results suggest that ρb and LOI at 0–1 cm have residual direct impacts from the wildfire heat impulse. The θi threshold is most likely from delayed groundcover/vegetation recovery that increases evaporation at the highest burn severity sites. Gravel and silt + clay thresholds at 0–1 cm at the transition to high burn severity suggest surface gravel lag development from hydraulic erosion. Thresholds in ρb from 3 to 6 cm and in silt + clay fraction from 3 to 6 cm appear to be the result of soil variability between sites rather than wildfire impacts. This work suggests that gravel‐rich soils may have increased resilience to sustained surface runoff generation and erosion following wildfire, with implications for assessments of postwildfire hydrologic and erosion recovery potential. 相似文献
4.
Effects of seismic isolation on the seismic response of a California high‐speed rail prototype bridge with soil‐structure and track‐structure interactions 下载免费PDF全文
With the launch of the high‐speed train project in California, the seismic risk is a crucial concern to the stakeholders. To investigate the seismic behavior of future California High‐Speed Rail (CHSR) bridge structures, a 3D nonlinear finite‐element model of a CHSR prototype bridge is developed. Soil‐structure and track‐structure interactions are accounted for in this comprehensive numerical model used to simulate the seismic response of the bridge and track system. This paper focuses on examining potential benefits and possible drawbacks of the a priori promising application of seismic isolation in CHSR bridges. Nonlinear time history analyses are performed for this prototype bridge subjected to two bidirectional horizontal historical earthquake ground motions each scaled to two different seismic hazard levels. The effect of seismic isolation on the seismic performance of the bridge is investigated through a detailed comparison of the seismic response of the bridge with and without seismic isolation. It is found that seismic isolation significantly reduces the deck acceleration and the force demand in the bridge substructure (i.e., piers and foundations), especially for high‐intensity earthquakes. However, seismic isolation increases the deck displacement (relative to the pile cap) and the stresses in the rails. These findings imply that seismic isolation can be promisingly applied to CHSR bridges with due consideration of balancing its beneficial and detrimental effects through using appropriate isolators design. The optimum seismic isolator properties can be sought by solving a performance‐based optimum seismic design problem using the nonlinear finite‐element model presented herein. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
5.
Soil water is an important limiting factor for restoring alpine meadows on the northern Tibetan Plateau. Field studies of soil‐water content (SWC), however, are rare due to the harsh environment, especially in a mesoscale alpine‐meadow ecosystem. The objective of this study was to assess the spatial variability of SWC and the temporal variation of the spatial variability in a typical alpine meadow using a geostatistical approach. SWC was measured using a neutron probe to a depth of 50 cm at 113 locations on 22 sampling occasions in a 33.5‐hm2 alpine meadow during the 2015 and 2016 growing seasons. Mean SWC in the study plot for the two growing seasons was 18.7, 14.0, 13.9, 14.3, and 14.8% for depths of 10, 20, 30, 40, and 50 cm, respectively, and SWC was significantly larger at 10 cm than at other depths. SWC was negatively correlated with its spatial variability, and the spatial variability was higher when SWC was lower. Thirty‐three sampling locations in this study plot met the requirement of accuracy of the central limit theorem. A Gaussian model was the best fit for SWC semivariance at depths of 10, 20, and 30 cm, and the spatial structural ratio was between 0.997 and 1, indicating a strong spatial dependence of SWC. The sill and range fluctuated temporally, and the nugget and spatial structural ratio did not generally vary with time. The sill was significantly positively correlated with SWC and was initially stable and then tend to increase with SWC. The nugget, range, and spatial structure ratio, however, were not correlated with SWC. These results contribute to our understanding of SWC spatial distribution and variation in alpine meadows and provide basic empirical SWC data for mesoscale model simulations, optimizing sampling strategies and managing meadows on the Tibetan Plateau. 相似文献
6.
Zihuan Fu Yunqiang Wang Zhisheng An Wei Hu Khan M.G. Mostofa Xuezhang Li Bingxia Liu 《水文研究》2018,32(16):2557-2569
Dynamic relationships among rainfall patterns, soil water distribution, and plant growth are crucial for sustainable conservation of soil and water resources in water‐limited ecosystems. Spatial and temporal variation in deep soil water content at a watershed scale have not yet been characterized adequately due to the lack of deep soil water data. Deep soil–water storage (SWS) up to a depth of 5 m (n = 73) was measured at 19 sampling occasions at the LaoYeManQu watershed on the Chinese Loess Plateau (CLP). At a depth of 0–1.5 m, the annual mean SWS was highly correlated with rain intensity, and the correlation decreased with depth, but within the layers at 1.5–5.0 m, the changes in SWS indicated a lag between precipitation and the replenishment of soil water. Geostatistical parameters of SWS were also highly dependent on depth, and the mean SWS presented similar spatial structures in two adjacent layers. Temporal stability of SWS as indicated by mean relative difference, standard deviation of the relative difference (SDRD), and mean absolute bias error (MABE) was significantly weaker at the shallow than at deeper layers. Soil separates and organic carbon content controlled the spatial pattern of SWS at the watershed scale. One representative location (Site 57) was identified to estimate the mean SWS in the 1‐ to 5‐m layer of the watershed. Semivariograms of the SDRD and MABE were best fitted by an isotropic spherical model, and their spatial distributions were depth‐dependent. Both temporal stability and spatial variability of SWS increased over depth. This study is helpful for deep SWS estimation and sustainable management of soil and water on the CLP, and for other similar regions around the world. 相似文献
7.
The Tabernas desert, an extensive badlands area in Almeria province (south‐east Spain), is characterized by a high variability in soil surface cover and soil properties along with important topographical contrasts giving rise to a wide range of hydrological behaviour. A double approach through field monitoring and modelling has been used to ascertain the influence of soil‐surface variability on the overall hydrological response. Small plots were monitored for 3 years to assess runoff from the different surface types. Data provided by the long‐term monitoring of three small catchments formed by different soil surfaces were used to find out the specific contribution of each soil surface to the catchment runoff. A simple spatially distributed model was built to predict runoff generation based on the infiltration rate of each soil‐surface type (defined as terrain units with the same cover, the same soil type and on the same landform). Plot results prove that the soil surface units within the study area behave differently in terms of hydrological response to natural rainfall. These responses are explained by the types of cover, topographical characteristics and soil properties. When runoff events are simple (with one or two runoff peaks), the modelled hydrographs reproduce the hydrographs observed reasonably well, but in complex events (with several runoff peaks) the adjustment is not as good. The model also shows the influence of the spatial distribution of soil surfaces on the overall runoff, aiding exploration of the spatial hydrological relationships among different landscape units. Copyright © 2002 John Wiley & Sons, Ltd. 相似文献
8.
Using caesium‐134 and cobalt‐60 as tracers to assess the remobilization of recently‐deposited overbank‐derived sediment on river floodplains during subsequent inundation events 下载免费PDF全文
River floodplains act as sinks for fine‐sediment and sediment‐associated contaminants. Increasing recognition of their environmental importance has necessitated a need for an improved understanding of the fate and residence times of overbank sediment deposits over a broad range of timescales. Most existing investigations have focused on medium‐term accretion rates, which represents net deposition from multiple flood events over several decades. In contrast, the fate of recently‐deposited sediment during subsequent overbank events has received only limited attention. This paper presents a novel tracing‐technique for documenting the remobilization of recent overbank sediment on river floodplains during subsequent inundation events, using the artificial radionuclides, caesium‐134 (134Cs) and cobalt‐60 (60Co). The investigation was conducted within floodplains of the Rivers Taw and Culm in Devon, UK. Small quantities of fine‐sediment (< 63 µm dia.), pre‐labelled with known activities of either 134Cs or 60Co, were deposited at 15 locations across each floodplain. Surface inventories, measured before and after three consecutive flood events, were used to estimate sediment loss (in g m–2). Significant reductions provided evidence of the remobilization of the labelled sediment by inundating floodwaters. Spatial variations in remobilization were related to localized topography. Sediment remobilized during the first two events for the River Taw floodplain were equivalent to 63 · 8% and 11 · 9%, respectively, of the original mass. Equivalent values for the River Culm floodplain were 49 · 6% and 12 · 5%, respectively, of the original mass. Sediment loss during the third event proved too small to be attributed to remobilization by overbank floodwaters. After the third event, a mean of 22 · 5% and 35 · 2% of the original mass remained on the Taw and Culm floodplains, respectively. These results provide evidence of the storage of the remaining sediment. The findings highlight the importance of remobilization of recently‐deposited sediment on river floodplains during subsequent overbank events and demonstrate the potential of the tracing‐technique. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
9.
Jai Vaze Paul Barnett Geoffrey Beale Warrick Dawes Ray Evans Narendra Kumar Tuteja Brian Murphy Guy Geeves Michelle Miller 《水文研究》2004,18(9):1613-1637
A comprehensive framework for the assessment of water and salt balance for large catchments affected by dryland salinity is applied to the Boorowa River catchment (1550 km2), located in south‐eastern Australia. The framework comprised two models, each focusing on a different aspect and operating on a different scale. A quasi‐physical semi‐distributed model CATSALT was used to estimate runoff and salt fluxes from different source areas within the catchment. The effects of land use, climate, topography, soils and geology are included. A groundwater model FLOWTUBE was used to estimate the long‐term effects of land‐use change on groundwater discharge. Unlike conventional salinity studies that focus on groundwater alone, this study makes use of a new approach to explore surface and groundwater interactions with salt stores and the stream. Land‐use change scenarios based on increased perennial pasture and tree‐cover content of the vegetation, aimed at high leakage and saline discharge areas, are investigated. Likely downstream impacts of the reduction in flow and salt export are estimated. The water balance model was able to simulate both the daily observed stream flow and salt load at the catchment outlet for high and low flow conditions satisfactorily. Mean leakage rate of about 23·2 mm year?1 under current land use for the Boorowa catchment was estimated. The corresponding mean runoff and salt export from the catchment were 89 382 ML year?1 and 38 938 t year?1, respectively. Investigation of various land‐use change scenarios indicates that changing annual pastures and cropping areas to perennial pastures is not likely to result in substantial improvement of water quality in the Boorowa River. A land‐use change of about 20% tree‐cover, specifically targeting high recharge and the saline discharge areas, would be needed to decrease stream salinity by 150 µS cm?1 from its current level. Stream salinity reductions of about 20 µS cm?1 in the main Lachlan River downstream of the confluence of the Boorowa River is predicted. The FLOWTUBE modelling within the Boorowa River catchment indicated that discharge areas under increased recharge conditions could re‐equilibrate in around 20 years for the catchment, and around 15 years for individual hillslopes. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
10.
The numerical simulation of long‐term large‐scale (field to regional) variably saturated subsurface flow and transport remains a computational challenge, even with today's computing power. Therefore, it is appropriate to develop and use simplified models that focus on the main processes operating at the pertinent time and space scales, as long as the error introduced by the simpler model is small relative to the uncertainties associated with the spatial and temporal variation of boundary conditions and parameter values. This study investigates the effects of various model simplifications on the prediction of long‐term soil salinity and salt transport in irrigated soils. Average root‐zone salinity and cumulative annual drainage salt load were predicted for a 10‐year period using a one‐dimensional numerical flow and transport model (i.e. UNSATCHEM) that accounts for solute advection, dispersion and diffusion, and complex salt chemistry. The model uses daily values for rainfall, irrigation, and potential evapotranspiration rates. Model simulations consist of benchmark scenarios for different hypothetical cases that include shallow and deep water tables, different leaching fractions and soil gypsum content, and shallow groundwater salinity, with and without soil chemical reactions. These hypothetical benchmark simulations are compared with the results of various model simplifications that considered (i) annual average boundary conditions, (ii) coarser spatial discretization, and (iii) reducing the complexity of the salt‐soil reaction system. Based on the 10‐year simulation results, we conclude that salt transport modelling does not require daily boundary conditions, a fine spatial resolution, or complex salt chemistry. Instead, if the focus is on long‐term salinity, then a simplified modelling approach can be used, using annually averaged boundary conditions, a coarse spatial discretization, and inclusion of soil chemistry that only accounts for cation exchange and gypsum dissolution–precipitation. We also demonstrate that prediction errors due to these model simplifications may be small, when compared with effects of parameter uncertainty on model predictions. The proposed model simplifications lead to larger time steps and reduced computer simulation times by a factor of 1000. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献
11.
12.
Erosion of a high‐altitude,low‐relief area on the Korean Peninsula: implications for its development processes and evolution 下载免费PDF全文
The processes involved in the development of high‐altitude, low‐relief areas (HLAs) are still poorly understood. Although cosmogenic nuclides have provided insights into the evolution of HLAs interpreted as paleo‐surfaces, most studies focus on estimating how slowly they erode and thereby their relative stability. To understand actual development processes of HLAs, we applied several techniques of cosmogenic nuclides in the Daegwanryeong Plateau, a well‐known HLA in the Korean Peninsula. Our denudation data from strath terraces, riverine sediments, soils, and tors provide the following conclusions: (1) bedrock incision rate in the plateau (~127 m Myr?1) is controlled by the incision rate of the western part of the Korean Peninsula, and is similar to the catchment‐wide denudation rate of the plateau (~93 m Myr?1); (2) the soil production function we observed shows weak depth dependency that may result from highly weathered bedrock coupled with frequent frost action driven by alpine climate; (3) a discrepancy between the soil production and catchment‐wide denudation rates implies morphological disequilibrium in the plateau; (4) the tors once regarded as fossil landforms of the Tertiary do not reflect Tertiary processes; and (5) when compared with those of global paleo‐surfaces (<20 m Myr?1), our rapid denudation rates suggest that the plateau cannot have maintained its probable initial paleo landscape, and thus is not a paleo‐surface. Our data contribute to understanding the surface processes of actively eroding upland landscapes as well as call into question conventional interpretations of supposed paleo‐surfaces around the world. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
13.
A pore‐scale model based on measured particle size distributions has been used to quantify the changes in pore space geometry of packed soil columns resulting from a dilution in electrolyte concentration from 500 to 1 mmol l?1 NaCl during leaching. This was applied to examine the effects of particle release and re‐deposition on pore structure and hydraulic properties. Two different soils, an agricultural soil and a mining residue, were investigated with respect to the change in hydraulic properties. The mining residue was much more affected by this process with the water saturated hydraulic conductivity decreasing to 0·4% of the initial value and the air‐entry value changing from 20 to 50 cm. For agricultural soil, there was little detectable shift in the water retention curve but the saturated hydraulic conductivity decreased to 8·5% of the initial value. This was attributed to localized pore clogging (similar to a surface seal) affecting hydraulic conductivity, but not the microscopically measured pore‐size distribution or water retention. We modelled the soil structure at the pore scale to explain the different responses of the two soils to the experimental conditions. The size of the pores was determined as a function of deposited clay particles. The modal pore size of the agricultural soil as indicated by the constant water retention curve was 45 µm and was not affected by the leaching process. In the case of the mining residue, the mode changed from 75 to 45 µm. This reduction of pore size corresponds to an increase of capillary forces that is related to the measured shift of the water retention curve. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
14.
Quantifying the rate and depth dependence of bioturbation based on optically‐stimulated luminescence (OSL) dates and meteoric 10Be 下载免费PDF全文
Michelle O. Johnson Simon M. Mudd Brad Pillans Nigel A. Spooner L. Keith Fifield Mike J. Kirkby Manuel Gloor 《地球表面变化过程与地形》2014,39(9):1188-1196
Both the rate and the vertical distribution of soil disturbance modify soil properties such as porosity, particle size, chemical composition and age structure; all of which play an important role in a soil's biogeochemical functioning. Whereas rates of mixing have been previously quantified, the nature of bioturbation's depth dependence remains poorly constrained. Here we constrain, for the first time, the relationship between mixing rate and depth in a bioturbated soil in northeast Queensland, Australia using a novel method combining OSL (optically‐stimulated luminescence) ages and meteoric beryllium‐10 (10Be) inventories. We find that the best fit mixing rate decreases non‐linearly with increasing soil depth in this soil and the characteristic length scale of 0.28 m over which the mixing coefficient decays is comparable to reported rooting depth coefficients. In addition we show that estimates of surface mixing rates from OSL data are highly dependent on erosion rate and that erosion rate must be constrained if accurate mixing rates are to be quantified. We calculate surface diffusion‐like mixing coefficients of 1.8 × 10?4 and 2.1 × 10?4 m2 yr?1 for the studied soil for two different estimates of soil erosion. © 2014 The Authors. Earth Surface Processes and Landforms Published by John Wiley & Sons Ltd. 相似文献
15.
Towards an improved understanding of erosion rates and tidal notch development on limestone coasts in the Tropics: 10 years of micro‐erosion meter measurements,Phang Nga Bay,Thailand 下载免费PDF全文
Knowledge and understanding of shore platform erosion and tidal notch development in the tropics and subtropics relies mainly on short‐term studies conducted on recently deposited carbonate rocks, predominantly Holocene and Quaternary reef limestones and aeolianites. This paper presents erosion rates, measured over a 10 year period on notches and platforms developed on the Permian, Ratburi limestone at Phang Nga Bay, Thailand. In so doing it contributes to informing a particular knowledge gap in our understanding of the erosion dynamics of shore platform and tidal notch development in the tropics and subtropics – notch erosion rates on relatively hard, ancient limestones measured directly on the rock surface using a micro‐erosion meter (MEM) over time periods of a decade or more. The average intertidal erosion rate of 0.231 mm/yr is lower than erosion rates measured over 2–3 years on recent, weaker carbonate rocks. Average erosion rates at Phang Nga vary according to location and site and are, in rank order from highest to lowest: Mid‐platform (0.324 mm/yr) > Notch floor (0.289 mm/yr) > Rear notch wall (0.228 mm/yr) > Lower platform (0.140 mm/yr) > Notch roof (0.107 mm/yr) and Supratidal (0.095 mm/yr). The micro‐relief of the eroding rock surfaces in each of these positions exhibits marked differences that are seemingly associated with differences in dominant physical and bio‐erosion processes. The results begin to help inform knowledge of longer term shore platform erosion dynamics, models of marine notch development and have implications for the use of marine notches as indicators of changes in sea level and the duration of past sea levels. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
16.
Processes of soil erosion and sediment transport are strongly influenced by land use changes so the modelling of land use changes is important with respect to the simulation of soil degradation and its on‐site and off‐site consequences. The reliability of simulation results from erosion models is circumscribed by considerable spatial variation in many parameters. However, most of the currently widely used erosion models at the mesoscale are semidistributed, which leads to difficulties in incorporating a high degree of spatial information, especially land use information, so that the effects of land use changes on soil erosion have hitherto not been investigated in detail using these models. In this article, a grid‐based distributed erosion and sediment transport model is introduced, which simulates the spatial pattern of erosion and deposition rates and sediment transport processes in river channels. In this model, land use affects soil erosion through altering soil loss and influencing sediment delivery. Simulated soil erosion for events recorded in 1989 and 1996 in the Lushi basin in China was analyzed by comparing it with historical land use maps. The results indicated that even relatively minor land use changes had a significant effect on regional soil erosion rates and sediment transport to rivers. The average erosion rate increased from 1989 to 1996, after the transformation of forest to farmland. The results of the study suggest that the proposed soil erosion model can be applied in similar river basins. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
17.
Effects of differing coverage of moss‐dominated soil crusts on hydrological processes and implications for disturbance in the Mu Us Sandland,China 下载免费PDF全文
To study the effects of biological soil crusts (BSCs) on hydrological processes and their implications for disturbance in the Mu Us Sandland, the water infiltration, evaporation and soil moisture of high coverage (100% BSCs), middle coverage (40% BSCs) and low coverage (0% BSCs, bare sand) of moss‐dominated crusts were conducted in this study, respectively. The conclusions are as follows: (1) the main effects of moss‐dominated crusts in the Mu Us Sandland on the infiltration of rainwater were to reduce the infiltration depths and to retain the limited rainwater in shallow soil; (2) moss‐dominated crusts have no significant effects on daily evaporation when the volumetric water content at 4 cm depth in 100% BSCs (VWC4) was over 24.7%, on enhanced daily evaporation when the VWC4 ranged from 6.5% to 24.7% and on reduced daily evaporation when the VWC4 was less than 6.5%; and (3) decreasing the coverage of moss‐dominated crusts (from 100% to 40%) did not significantly change its effects on infiltration, evaporation and soil moisture. Our results demonstrated that for the growth and regeneration of shrubs, which were dominated by Artemisia ordosica in the Mu Us Sandland, high coverage of moss‐dominated crusts has negative effects on hydrological processes, and these negative effects could not be significantly reduced by decreasing the coverage of moss‐dominated crusts from 100% to 40%. Therefore, for the sustained and healthy development of shrub communities in the Mu Us Sandland, it is necessary to take appropriate measures for the well‐developed BSCs in the sites with high vegetation coverage in the rainy season. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
18.
During past decades, a diverse system of subsistence agriculture in south‐east Spain (annual rainfall of less than 300 mm) has been overturned in favour of large‐scale plantations of almond trees without consideration for topography and related spatial patterns in soil hydrological properties. The objective of this paper is to investigate the spatial pattern in soil physical properties induced by this cultivation system, and to highlight its impact on the water balance. Soil properties were recorded along hillslopes with shallow soils developed on slates and greywackes in the upper part of the Guadelentin drainage basin (Murcia region). Frequent tillage of these almond plantations covering entire hillslopes has resulted in denudation by tillage erosion on the topographic convexities, as well as transport of rock fragments and fine earth along the slopes. These processes have created a systematic spatial pattern of soil thickness and rock fragment content: shallow and stony soils on the topographic convexities and deep soils with a rock fragment mulch in the concavities at the foot of the slopes. At the same time, a negative relationship between rock fragment content and fine earth bulk density was observed. The impact of this spatial pattern in soil properties on the water balance was evaluated using the PATTERN one‐dimensional hydrological and plant growth model. The model simulates the water balance of soil profiles covering the observed variation in soil thickness, stoniness and bulk density. The model results indicate that the highest rates of infiltration, evaporation and drainage, as well as the lowest rates of overland flow are restricted to shallow soils on the hilltops. In contrast, the deeper soils in the valley bottoms produce a more stable moisture regime than shallower soils, which tend to saturate and dry out quickly. These model results are in agreement with the spatial patterns of almond productivity: an asymptotic increase with soil thickness. Copyright © 2000 John Wiley & Sons, Ltd. 相似文献