首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 0 毫秒
1.
The relationship between stream water mean transit time (MTT), catchment geology, and landscape structure is still poorly characterized. Here, we present a new simple index that builds on the Jackson, Bitew, and Du (2014) index that focuses specifically on permeability contrasts at the soil–bedrock interface and digital elevation model-based physical flow path measurements to identify broad landscape trends of moisture redistribution in the subsurface of steep wet headwater catchments. We use this index to explore the relationship between geology, landscape structure, and water transit time through the lens of landscape anisotropy. We hypothesize that catchments with a greater tendency to shed water laterally will correlate with younger stream water MTT and catchments with a greater tendency to infiltrate water vertically will correlate with older stream water MTT. We tested the new index at eight geologically diverse Pacific Rim catchments in Oregon, Japan, and New Zealand. The new index explained 77% of the variability in measured stream water MTT across these varied sites. These findings suggest that critical zone anisotropy and catchment form are first-order controls on the time scales over which catchments store and release their water and that a simple index may usefully capture this relationship.  相似文献   

2.
Although catchment storage is an intrinsic control on the rainfall–runoff response of streams, direct measurement remains a major challenge. Coupled models that integrate long‐term hydrometric and isotope tracer data are useful tools that can provide insights into the dynamics of catchment storage and the volumes of water involved. In this study, we use a tracer‐aided hydrological model to characterize catchment storage as a dynamic control on system function related to streamflow generation, which also allows direct estimation of the nonstationarity of water ages. We show that in a wet Scottish upland catchment dominated by runoff generation from riparian peats (histosols) with high water storage, nonstationarity in water age distributions is only clearly detectable during more extreme wet and dry periods. This is explained by the frequency and longevity of hydrological connectivity and the associated relative importance of flow paths contributing younger or older waters to the stream. Generally, these saturated riparian soils represent large mixing zones that buffer the time variance of water age and integrate catchment‐scale partial mixing processes. Although storage simulations depend on model performance, which is influenced by input variability and the degree of isotopic damping in the stream, a longer‐term storage analysis of this model indicates a system that is only sensitive to more extreme hydroclimatic variability. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
In this paper, we examined the role of bedrock groundwater discharge and recharge on the water balance and runoff characteristics in forested headwater catchments. Using rigorous observations of catchment precipitation, discharge and streamwater chemistry, we quantified net bedrock flow rates and contributions to streamwater runoff and the water balance in three forested catchments (second‐order to third‐order catchments) underlain by uniform bedrock in Japan. We found that annual rainfall in 2010 was 3130 mm. In the same period, annual discharge in the three catchments varied from 1800 to 3900 mm/year. Annual net bedrock flow rates estimated by the chloride mass balance method at each catchment ranged from ?1600 to 700 mm/year. The net bedrock flow rates were substantially different in the second‐order and third‐order catchments. During baseflow, discharge from the three catchments was significantly different; conversely, peak flows during large storm events and direct runoff ratios were not significantly different. These results suggest that differences in baseflow discharge rates, which are affected by bedrock flow and intercatchment groundwater transfer, result in the differences in water balance among the catchments. This study also suggests that in these second‐order to third‐order catchments, the drainage area during baseflow varies because of differences between the bedrock drainage area and surface drainage area, but that the effective drainage area during storm flow approaches the surface drainage area. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
The time it takes water to travel through a catchment, from when it enters as rain and snow to when it leaves as streamflow, may influence stream water quality and catchment sensitivity to environmental change. Most studies that estimate travel times do so for only a few, often rain-dominated, catchments in a region and use relatively short data records (<10 years). A better understanding of how catchment travel times vary across a landscape may help diagnose inter-catchment differences in water quality and response to environmental change. We used comprehensive and long-term observations from the Turkey Lakes Watershed Study in central Ontario to estimate water travel times for 12 snowmelt-dominated headwater catchments, three of which were impacted by forest harvesting. Chloride, a commonly used water tracer, was measured in streams, rain, snowfall and as dry atmospheric deposition over a 31 year period. These data were used with a lumped convolution integral approach to estimate mean water travel times. We explored relationships between travel times and catchment characteristics such as catchment area, slope angle, flowpath length, runoff ratio and wetland coverage, as well as the impact of harvesting. Travel time estimates were then used to compare differences in stream water quality between catchments. Our results show that mean travel times can be variable for small geographic areas and are related to catchment characteristics, in particular flowpath length and wetland cover. In addition, forest harvesting appeared to decrease mean travel times. Estimated mean travel times had complex relationships with water quality patterns. Results suggest that biogeochemical processes, particularly those present in wetlands, may have a greater influence on water quality than catchment travel times.  相似文献   

5.
A quantitative, process relevant analysis of ten mesoscale (ca 10–90 km2) catchments in the Cairngorm mountains, Scotland was carried out using 10‐m digital terrain models (DTMs). This analysis produced a range of topographic indices that described differences in the landscape organisation of the catchments in a way that helped explain contrasts in their hydrology. Mean transit time (MTT)—derived from isotopic tracer data—was used as a metric that characterised differences in the hydrological function of the ten catchments. Some topographic indices exhibited significant correlations with MTT. Most notably, the ratio of the median flow path length to the median flow path gradient was negatively correlated with MTT, whilst the median upslope area was positively correlated. However, the relationships exhibited significant scatter which precluded their use as a predictive tool that could be applied to ungauged basins in this region. In contrast, maps of soil hydrological properties could be used to differentiate hydrologically responsive soils (which are dominated by overland flow and shallow sub‐surface storm flow) from free draining soils (that facilitate deeper sub‐surface flows). MTT was negatively correlated with the coverage of responsive soils in catchments. This relationship provided a much better basis for predicting MTT in ungauged catchments in this geomorphic province. In the Cairngorms, the extensive cover of various glacial drift deposits appears to be a first order control on soil distributions and strongly influences the porosity and permeability of the sub‐surface. These catchment characteristics result in soil cover being a much more discerning indicator of hydrological function than topography alone. The study highlights the potential of quantitative landscape analysis in catchment comparison and the need for caution in extrapolating relationships between landscape controls and metrics of hydrological function beyond specific geomorphic provinces. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
The clearest signs of hydrologic change can be observed from the trends in streamflow and groundwater levels in a catchment. During 1980–2007, significant declines in streamflow (−3.03 mm/year) and groundwater levels (−0.22 m/year) were observed in Himayat Sagar (HS) catchment, India. We examined the degree to which hydrologic changes observed in the HS catchment can be attributed to various internal and external drivers of change (climatic and anthropogenic changes). This study used an investigative approach to attribute hydrologic changes. First, it involves to develop a model and test its ability to predict hydrologic trends in a catchment that has undergone significant changes. Second, it examines the relative importance of different causes of change on the hydrologic response. The analysis was carried out using Modified Soil and Water Assessment Tool (SWAT), a semi-distributed rainfall-runoff model coupled with a lumped groundwater model for each sub- catchment. The model results indicated that the decline in potential evapotranspiration (PET) appears to be partially offset by a significant response to changes in rainfall. Measures that enhance recharge, such as watershed hydrological structures, have had limited success in terms of reducing impacts on the catchment-scale water balance. Groundwater storage has declined at a rate of 5 mm/y due to impact of land use changes and this was replaced by a net addition of 2 mm/y by hydrological structures. The impact of land use change on streamflow is an order of magnitude larger than the impact of hydrological structures and about is 2.5 times higher in terms of groundwater impact. Model results indicate that both exogenous and endogenous changes can have large impacts on catchment hydrology and should be considered together. The proposed comprehensive framework and approach demonstrated here is valuable in attributing trends in streamflow and groundwater levels to catchment climatic and anthropogenic changes.  相似文献   

7.
The sediment flux from a catchment is driven by tectonics and climate but is moderated by the geomorphic response of the landscape system to changes in these two boundary conditions. Consequently, catchment response time and the non‐linear behavior of landscapes in response to boundary condition change control the downstream propagation of climatic or tectonic perturbations from catchments to neighboring basins. In order to investigate the impact of catchment response time on sediment flux, we integrated a spatially‐lumped numerical model PaCMod, with new routines simulating the evolution of landscape morphology and erosion rates under tectonic and climatic forcing. We subsequently applied the model to reconstruct the sediment flux from a tectonically perturbed catchment in central Italy. Finally, we coupled our model to DeltaSim, a process‐response model simulating fluvio‐deltaic stratigraphy, and investigated the impact of catchment response time on stratigraphy, using both synthetic scenarios and a real world system (Fucino Basin, central Italy). Our results demonstrate that the differential response of geomorphic elements to tectonic and climatic changes induces a complex sediment flux signal, and produces characteristic stratigraphic architectures and shoreline trajectories. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
刘晓帆  任立良  徐静  袁飞 《湖泊科学》2011,23(2):174-182
以北方半干旱地区的辽河老哈河流域为研究对象,采用网格离散化方法进行水文模拟单元划分,利用具有物理基础的双源蒸散发能力估算模型,计算每个栅格单元的截留蒸发、植被蒸腾能力和土壤蒸发能力,并取代蒸发皿资料作为混合产流模型的蒸散发能力输入,从而构建摹于双源蒸散与混合产流的分布式水文模型,并对老哈河流域1970-1979年的日径...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号