首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, we evaluate uncertainties propagated through different climate data sets in seasonal and annual hydrological simulations over 10 subarctic watersheds of northern Manitoba, Canada, using the variable infiltration capacity (VIC) model. Further, we perform a comprehensive sensitivity and uncertainty analysis of the VIC model using a robust and state-of-the-art approach. The VIC model simulations utilize the recently developed variogram analysis of response surfaces (VARS) technique that requires in this application more than 6,000 model simulations for a 30-year (1981–2010) study period. The method seeks parameter sensitivity, identifies influential parameters, and showcases streamflow sensitivity to parameter uncertainty at seasonal and annual timescales. Results suggest that the Ensemble VIC simulations match observed streamflow closest, whereas global reanalysis products yield high flows (0.5–3.0 mm day−1) against observations and an overestimation (10–60%) in seasonal and annual water balance terms. VIC parameters exhibit seasonal importance in VARS, and the choice of input data and performance metrics substantially affect sensitivity analysis. Uncertainty propagation due to input forcing selection in each water balance term (i.e., total runoff, soil moisture, and evapotranspiration) is examined separately to show both time and space dimensionality in available forcing data at seasonal and annual timescales. Reliable input forcing, the most influential model parameters, and the uncertainty envelope in streamflow prediction are presented for the VIC model. These results, along with some specific recommendations, are expected to assist the broader VIC modelling community and other users of VARS and land surface schemes, to enhance their modelling applications.  相似文献   

2.
Hydrological models demand large numbers of input parameters, which are to be optimally identified for better simulation of various hydrological processes. Identifying the most relevant parameters and their values using efficient sensitivity analysis methods helps to better understand model performance. In this study, the physically-based distributed model SHETRAN is used for hydrological simulation on the Netravathi River Basin in south India and the most important parameters are identified using the Morris screening method. Further, the influence of a particular model parameter on streamflow is quantified using local sensitivity analysis and optimal parameters are obtained for calibration of the SHETRAN model. The results demonstrate the capability of two-stage sensitivity analysis, combining qualitative and quantitative methods in the initial screening-out of insignificant model parameters, identifying parameter interactions and quantifying the contribution of each model parameter to the streamflow. The results of the sensitivity analysis simplified the calibration procedure of SHETRAN for the study area.  相似文献   

3.
Computerized sediment transport models are frequently employed to quantitatively simulate the movement of sediment materials in rivers. In spite of the deterministic nature of the models, the outputs are subject to uncertainty due to the inherent variability of many input parameters in time and in space, along with the lack of complete understanding of the involved processes. The commonly used first-order method for sensitivity and uncertainty analyses is to approximate a model by linear expansion at a selected point. Conclusions from the first-order method could be of limited use if the model responses drastically vary at different points in parameter space. To obtain the global sensitivity and uncertainty features of a sediment transport model over a larger input parameter space, the Latin hypercubic sampling technique along with regression procedures were employed. For the purpose of illustrating the methodologies, the computer model HEC2-SR was selected in this study. Through an example application, the results about the parameters sensitivity and uncertainty of water surface, bed elevation and sediment discharge were discussed.  相似文献   

4.
C. Dobler  F. Pappenberger 《水文研究》2013,27(26):3922-3940
The increasing complexity of hydrological models results in a large number of parameters to be estimated. In order to better understand how these complex models work, efficient screening methods are required in order to identify the most important parameters. This is of particular importance for models that are used within an operational real‐time forecasting chain such as HQsim. The objectives of this investigation are to (i) identify the most sensitive parameters of the complex HQsim model applied in the Alpine Lech catchment and (ii) compare model parameter sensitivity rankings attained from three global sensitivity analysis techniques. The techniques presented are the (i) regional sensitivity analysis, (ii) Morris analysis and (iii) state‐dependent parameter modelling. The results indicate that parameters affecting snow melt as well as processes in the unsaturated soil zone reveal high significance in the analysed catchment. The snow melt parameters show clear temporal patterns in the sensitivity whereas most of the parameters affecting processes in the unsaturated soil zone do not vary in importance across the year. Overall, the maximum degree day factor (meltfunc_max) has been identified to play a key role within the HQsim model. Although the parameter sensitivity rankings are equivalent between methods for a number of parameters, for several key parameters differing results were obtained. An uncertainty analysis demonstrates that a parameter ranking attained from only one method is subjected to large uncertainty. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
Green roofs are a form of green infrastructure aimed at retaining or slowing the movement of precipitation as stormwater runoff to sewer systems. To determine total runoff versus retention from green roofs, researchers and practitioners alike employ hydrologic models that are calibrated to one or more observed events. However, questions still remain regarding how event size may impact parameter sensitivity, how best to constrain initial soil moisture (ISM), and whether limited observations (i.e., a single event) can be used within a calibration-validation framework. We explored these questions by applying the storm water management model to simulate a large green roof located in Syracuse, NY. We found that model performance was very high (e.g., Nash Sutcliffe efficiency index > 0.8 and Kling-Gupta efficiency index > 0.8) for many events. We initially compared model performance across two parameterizations of ISM. For some events, we found similar performance when ISM was varied versus set to zero; for others, varying ISM yielded higher performance as well as greater water balance closure. Within a calibration-validation framework, we found that calibrating to larger events tended to produce moderate to high performance for other non-calibration events. However, very small storms were notoriously difficult to simulate, regardless of calibration event size, as these events are likely fully retained on the roof. Using regional sensitivity analysis, we confirmed that only a subset of model parameters was sensitive across 16 events. Interestingly, many parameters were sensitive regardless of event size, though some parameters were more sensitive when simulating smaller events. This emphasizes that storm size likely influences parameter sensitivity. Overall, we show that while calibrating to a single event can achieve high performance, exploring simulations across multiple events can yield important insight regarding the hydrologic performance of green roofs that can be used to guide the gathering of in situ properties and observations for refining model frameworks.  相似文献   

6.
Abstract

A major goal in hydrological modelling is to identify and quantify different sources of uncertainty in the modelling process. This paper analyses the structural uncertainty in a streamflow modelling system by investigating a set of models with increasing model structure complexity. The models are applied to two basins: Kielstau in Germany and XitaoXi in China. The results show that the model structure is an important factor affecting model performance. For the Kielstau basin, influences from drainage and wetland are critical for the local runoff generation, while for the XitaoXi basin accurate distributions of precipitation and evapotranspiration are two of the determining factors for the success of the river flow simulations. The derived model uncertainty bounds exhibit appropriate coverage of observations. Both case studies indicate that simulation uncertainty for the low-flow period contributes more to the overall uncertainty than that for the peak-flow period, although the main hydrological features in these two basins differ greatly.

Citation Zhang, X. Y., Hörmann, G., Gao, J. F. & Fohrer, N. (2011) Structural uncertainty assessment in a discharge simulation model. Hydrol. Sci. J. 56(5), 854–869.  相似文献   

7.
D. A. Hughes 《水文研究》2016,30(14):2419-2431
During the four decades of Keith Beven's career there have been many developments in the science of hydrological modelling. Some have focused on the links between hydrological process understanding and the structure and complexity of hydrological models, others on the related issues of modelling uncertainty. The southern Africa region continues to be generally less well endowed with the resources required to contribute to these research developments, but they are critical for successful water resources management decision‐making in data scarce areas, and go beyond academic interest. Consequently, the focus in the region has been on adding a local context to northern hemisphere research as well as trying to put it into practice. The challenge in southern Africa has always been to extrapolate from published research ideas and decide how they can be effectively used in larger scale practical applications in data‐poor areas. The paper examines the issues of model complexity, links with process understanding and the broad topic of model uncertainty estimation in the context of data scarce areas and how the science questions relate to improvements in water resources decision making. The conclusions suggest that the southern African region has benefited a great deal from several decades of northern hemisphere research (including those by Beven) and that some values have been added through the focus on practical implementation. The region should also embrace the opportunities presented by the need to link realistic uncertainty estimates with risk‐based water resources decision‐making, thereby contributing to the international debate on this important topic. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
Abstract

The SWAT model was tested to simulate the streamflow of two small Mediterranean catchments (the Vène and the Pallas) in southern France. Model calibration and prediction uncertainty were assessed simultaneously by using three different techniques (SUFI-2, GLUE and ParaSol). Initially, a sensitivity analysis was conducted using the LH-OAT method. Subsequent sensitive parameter calibration and SWAT prediction uncertainty were analysed by considering, firstly, deterministic discharge data (assuming no uncertainty in discharge data) and secondly, uncertainty in discharge data through the development of a methodology that accounts explicitly for error in the rating curve (the stage?discharge relationship). To efficiently compare the different uncertainty methods and the effect of the uncertainty of the rating curve on model prediction uncertainty, common criteria were set for the likelihood function, the threshold value and the number of simulations. The results show that model prediction uncertainty is not only case-study specific, but also depends on the selected uncertainty analysis technique. It was also found that the 95% model prediction uncertainty interval is wider and more successful at encompassing the observations when uncertainty in the discharge data is considered explicitly. The latter source of uncertainty adds additional uncertainty to the total model prediction uncertainty.
Editor D. Koutsoyiannis; Associate editor D. Gerten

Citation Sellami, H., La Jeunesse, I., Benabdallah, S., and Vanclooster, M., 2013. Parameter and rating curve uncertainty propagation analysis of the SWAT model for two small Mediterranean watersheds. Hydrological Sciences Journal, 58 (8), 1635?1657.  相似文献   

9.
Parameter sensitivity of the Distributed Hydrology‐Soil‐Vegetation Model (DHSVM) was studied in two contrasting environments: (1) Pang Khum Experimental Watershed (PKEW) in tropical northern Thailand; and (2) Cedar River basin (CRB) in Washington State of the temperate US Pacific Northwest. The analysis shows that for both basins, the most sensitive soil parameters were porosity, lateral saturated hydraulic conductivity, and the exponential decrease rate of lateral saturated hydraulic conductivity with soil depth. The most sensitive vegetation parameters were leaf area index, vegetation height, vapour pressure deficit, minimum stomatal resistance (for both grassland and forest scenarios), hemisphere fractional coverage, overstory fractional coverage, and trunk space (for the forest scenario only). Parameter sensitivity was basin‐specific, with the humid, temperate CRB being more influenced by vegetation parameters, while tropical PKEW was more influenced by soil properties. Increases and decreases in parameter values resulted in opposite and unequal changes in bias and root mean square error (RMSE), indicating the non‐linearity of physical process represented in the hydrological model. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
In this paper, we analyse the uncertainty and parameter sensitivity of a conceptual water quality model, based on a travel time distribution (TTD) approach, simulating electrical conductivity (EC) in the Duck River, Northwest Tasmania, Australia for a 2-year period. Dynamic TTDs of stream water were estimated using the StorAge Selection (SAS) approach, which was coupled with two alternate methods to model stream water EC: (1) a solute-balance approach and (2) a water age-based approach. Uncertainty analysis using the Differential Evaluation Adoptive Metropolis (DREAM) algorithm showed that: 1. parameter uncertainty was a small contribution to the overall uncertainty; 2. most uncertainty was related to input data uncertainty and model structure; 3. slightly lower total error was obtained in the water age-based model than the solute-balance model; 4. using time-variant SAS functions reduced the model uncertainty markedly, which likely reflects the effect of dynamic hydrological conditions over the year affecting the relative importance of different flow pathways over time. Model parameter sensitivity analysis using the Variogram Analysis of Response Surfaces (VARS-TOOL) framework found that parameters directly related to the EC concentration were most sensitive. In the solute-balance model, the rainfall concentration Crain and in the age-based model, the parameter controlling the rate of change of EC with age (λ) were the most sensitive parameter. Model parameters controlling the age mixes of both evapotranspiration and streamflow water fluxes (i.e., the SAS function parameters) were influential for the solute-balance model. Little change in parameter sensitivity over time was found for the age-based concentration relationship; however, the parameter sensitivity was quite dynamic over time for the solute-balance approach. The overarching outcomes provide water quality modellers, engineers and managers greater insight into catchment functioning and its dependence on hydrological conditions.  相似文献   

11.
In hydrological modelling, the challenge is to identify an optimal strategy to exploit tools and available observations in order to enhance model reliability. The increasing availability of data promotes the use of new calibration techniques able to make use of additional information on river basins. In the present study, a lumped hydrological model—designed with the aim of utilizing remotely sensed data—is introduced and calibrated, adopting four different schemes that adopt, to varying extents, available physical information. The physically consistent conceptualization of the hydrological model used allowed development of a step by step calibration based on a combination of information, such as remotely sensed data describing snow cover, recession curves obtained from streamflow measurements, and time series of surface run‐off obtained with a baseflow mathematical filter applied to the streamflow time‐series. Results suggest that the use of physical information in the calibration procedure tends to increase model reliability with respect to approaches where the parameters are calibrated using an overall statistic based, considerably or exclusively, on streamflow data.  相似文献   

12.
Recent research into flood modelling has primarily concentrated on the simulation of inundation flow without considering the influences of channel morphology. River channels are often represented by a simplified geometry that is implicitly assumed to remain unchanged during flood simulations. However, field evidence demonstrates that significant morphological changes can occur during floods to mobilize the boundary sediments. Despite this, the effect of channel morphology on model results has been largely unexplored. To address this issue, the impact of channel cross‐section geometry and channel long‐profile variability on flood dynamics is examined using an ensemble of a 1D–2D hydraulic model (LISFLOOD‐FP) of the ~1 : 2000 year recurrence interval floods in Cockermouth, UK, within an uncertainty framework. A series of simulated scenarios of channel erosional changes were constructed on the basis of a simple velocity‐based model of critical entrainment. A Monte‐Carlo simulation framework was used to quantify the effects of this channel morphology together with variations in the channel and floodplain roughness coefficients, grain size characteristics and critical shear stress on measures of flood inundation. The results showed that the bed elevation modifications generated by the simplistic equations reflected an approximation of the observed patterns of spatial erosion that enveloped observed erosion depths. The effect of uncertainty on channel long‐profile variability only affected the local flood dynamics and did not significantly affect the friction sensitivity and flood inundation mapping. The results imply that hydraulic models generally do not need to account for within event morphodynamic changes of the type and magnitude of event modelled, as these have a negligible impact that is smaller than other uncertainties, e.g. boundary conditions. Instead, morphodynamic change needs to happen over a series of events to become large enough to change the hydrodynamics of floods in supply limited gravel‐bed rivers such as the one used in this research. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
Abstract

Different sets of parameters and conceptualizations of a basin can give equally good results in terms of predefined objective functions. Therefore, a need exists to tackle equifinality and quantify the uncertainty bands of a model. In this paper we use the concepts of equifinality, identifiability and uncertainty to propose a simple method aimed at constraining the equifinal parameters and reducing the uncertainty bands of model outputs, and obtaining physically possible and reasonable models. Additionally, the uncertainty of equifinal solutions is quantified to estimate the amount by which output uncertainty can be reduced by knowing how to discard most of the equifinal solutions of a model. As a study case, a conceptual model of the Chillán basin in Chile is carried out. From the study it is concluded that using identifiability analysis makes it possible to constrain equifinal solutions with reduced uncertainty and realistic models, resulting in a framework that can be recommended to practitioners, especially due to the simplicity of the method.  相似文献   

14.
Uncertainties in structural engineering are often arising from the modeling assumptions and errors, or from variability in input loadings. A practical approach for dealing with them is to perform sensitivity and uncertainty analysis in the framework of stochastic and probabilistic methods. These analyses can be statically and dynamically performed through nonlinear static pushover and IDA techniques, respectively. Of the existing structures, concrete gravity dams are infrastructures which may encounter many uncertainties. In this research, probabilistic analysis of the seismic performance of gravity dams is presented. The main characteristics of the nonlinear tensile behavior of mass concrete, along with the intensity of earthquake excitations are considered as random variables in the probabilistic analysis. Using the tallest non‐overflow monolith of the Pine Flat gravity dam as a case study, its response under static and dynamic situations is reliably examined utilizing different combinations of parameters in the material and the seismic loading. The sensitivity analysis reveals the relative importance of each parameter independently. It will be shown that the undamaged modulus of elasticity and tensile strength of mass concrete have more significant roles on the seismic resistance of the dam than the ultimate inelastic tensile strain. In order to propagate the parametric uncertainty to the actual seismic performance of the dam, probabilistic simulation methods such as Monte Carlo simulation with Latin hypercube sampling, and approximate moment estimation techniques will be used. The final results illustrate the possibility of using a mean‐parameter dam model to estimate the mean seismic performance of the dam. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
Uncertainty is inherent in modelling studies. However, the quantification of uncertainties associated with a model is a challenging task, and hence, such studies are somewhat limited. As distributed or semi‐distributed hydrological models are being increasingly used these days to simulate hydrological processes, it is vital that these models should be equipped with robust calibration and uncertainty analysis techniques. The goal of the present study was to calibrate and validate the Soil and Water Assessment Tool (SWAT) model for simulating streamflow in a river basin of Eastern India, and to evaluate the performance of salient optimization techniques in quantifying uncertainties. The SWAT model for the study basin was developed and calibrated using Parameter Solution (ParaSol), Sequential Uncertainty Fitting Algorithm (SUFI‐2) and Generalized Likelihood Uncertainty Estimation (GLUE) optimization techniques. The daily observed streamflow data from 1998 to 2003 were used for model calibration, and those for 2004–2005 were used for model validation. Modelling results indicated that all the three techniques invariably yield better results for the monthly time step than for the daily time step during both calibration and validation. The model performances for the daily streamflow simulation using ParaSol and SUFI‐2 during calibration are reasonably good with a Nash–Sutcliffe efficiency and mean absolute error (MAE) of 0.88 and 9.70 m3/s for ParaSol, and 0.86 and 10.07 m3/s for SUFI‐2, respectively. The simulation results of GLUE revealed that the model simulates daily streamflow during calibration with the highest accuracy in the case of GLUE (R2 = 0.88, MAE = 9.56 m3/s and root mean square error = 19.70 m3/s). The results of uncertainty analyses by SUFI‐2 and GLUE were compared in terms of parameter uncertainty. It was found that SUFI‐2 is capable of estimating uncertainties in complex hydrological models like SWAT, but it warrants sound knowledge of the parameters and their effects on the model output. On the other hand, GLUE predicts more reliable uncertainty ranges (R‐factor = 0.52 for daily calibration and 0.48 for validation) compared to SUFI‐2 (R‐factor = 0.59 for daily calibration and 0.55 for validation), though it is computationally demanding. Although both SUFI‐2 and GLUE appear to be promising techniques for the uncertainty analysis of modelling results, more and more studies in this direction are required under varying agro‐climatic conditions for assessing their generic capability. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
How much data is needed for calibration of a hydrological catchment model? In this paper we address this question by evaluating the information contained in different subsets of discharge and groundwater time series for multi‐objective calibration of a conceptual hydrological model within the framework of an uncertainty analysis. The study site was a 5·6‐km2 catchment within the Forsmark research site in central Sweden along the Baltic coast. Daily time series data were available for discharge and several groundwater wells within the catchment for a continuous 1065‐day period. The hydrological model was a site‐specific modification of the conceptual HBV model. The uncertainty analyses were based on a selective Monte Carlo procedure. Thirteen subsets of the complete time series data were investigated with the idea that these represent realistic intermittent sampling strategies. Data subsets included split‐samples and various combinations of weekly, monthly, and quarterly fixed interval subsets, as well as a 53‐day ‘informed observer’ subset that utilized once per month samples except during March and April—the months containing large and often dominant snow melt events—when sampling was once per week. Several of these subsets, including that of the informed observer, provided very similar constraints on model calibration and parameter identification as the full data record, in terms of credibility bands on simulated time series, posterior parameter distributions, and performance indices calculated to the full dataset. This result suggests that hydrological sampling designs can, at least in some cases, be optimized. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
大型浅水湖泊藻类模型参数敏感性分析   总被引:1,自引:1,他引:1  
选取太湖作为典型湖泊在之前研究基础上建立藻类模型,对模型中与藻类有关的40个参数进行拉丁超立方抽样,并使用区域敏感性分析方法和普适似然不确定性分析方法进行敏感性分析.结果表明:在所选的40个参数中,有7个参数是敏感的参数,对模拟的结果影响较大.在藻类生长、基础代谢、牧食和沉降4个藻类变化过程中藻类生长的敏感参数最多,影响最大;在藻类生长项中,叶绿素的消光系数是藻类生长光照限制中的最敏感参数,而最低适宜生长温度及其对藻类生长的影响系数则是温度限制中的敏感参数;并且不同湖区的不确定性在不同时间差异明显,对于藻类低浓度湖区和藻类暴发期的模拟需要加以关注.  相似文献   

18.
Diagnostic analyses of hydrological models intend to improve the understanding of how processes and their dynamics are represented in models. Temporal patterns of parameter dominance could be precisely characterized with a temporally resolved parameter sensitivity analysis. In this way, the discharge conditions are characterized, that lead to a parameter dominance in the model. To achieve this, the analysis of temporal dynamics in parameter sensitivity is enhanced by including additional information in a three‐tiered framework on different aggregation levels. Firstly, temporal dynamics of parameter sensitivity provide daily time series of their sensitivities to detect variations in the dominance of model parameters. Secondly, the daily sensitivities are related to the flow duration curve (FDC) to emphasize high sensitivities of model parameters in relation to specific discharge magnitudes. Thirdly, parameter sensitivities are monthly averaged separately for five segments of the FDC to detect typical patterns of parameter dominances for different discharge magnitudes. The three methodical steps are applied on two contrasting catchments (upland and lowland catchment) to demonstrate how the temporal patterns of parameter dynamics represent different hydrological regimes. The discharge dynamic in the lowland catchment is controlled by groundwater parameters for all discharge magnitudes. In contrast, different processes are relevant in the upland catchment, because the dominances of parameters from fast and slow runoff components in the upland catchment are changing over the year for the different discharge magnitudes. The joined interpretation of these three diagnostic steps provides deeper insights of how model parameters represent hydrological dynamics in models for different discharge magnitudes. Thus, this diagnostic framework leads to a better characterization of model parameters and their temporal dynamics and helps to understand the process behaviour in hydrological models. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
Landscape evolution models (LEMs) have the capability to characterize key aspects of geomorphological and hydrological processes. However, their usefulness is hindered by model equifinality and paucity of available calibration data. Estimating uncertainty in the parameter space and resultant model predictions is rarely achieved as this is computationally intensive and the uncertainties inherent in the observed data are large. Therefore, a limits-of-acceptability (LoA) uncertainty analysis approach was adopted in this study to assess the value of uncertain hydrological and geomorphic data. These were used to constrain simulations of catchment responses and to explore the parameter uncertainty in model predictions. We applied this approach to the River Derwent and Cocker catchments in the UK using a LEM CAESAR-Lisflood. Results show that the model was generally able to produce behavioural simulations within the uncertainty limits of the streamflow. Reliability metrics ranged from 24.4% to 41.2% and captured the high-magnitude low-frequency sediment events. Since different sets of behavioural simulations were found across different parts of the catchment, evaluating LEM performance, in quantifying and assessing both at-a-point behaviour and spatial catchment response, remains a challenge. Our results show that evaluating LEMs within uncertainty analyses framework while taking into account the varying quality of different observations constrains behavioural simulations and parameter distributions and is a step towards a full-ensemble uncertainty evaluation of such models. We believe that this approach will have benefits for reflecting uncertainties in flooding events where channel morphological changes are occurring and various diverse (and yet often sparse) data have been collected over such events.  相似文献   

20.
Abstract

The water-centric community has continuously made efforts to identify, assess and implement rigorous uncertainty analyses for routine hydrological measurements. This paper reviews some of the most relevant efforts and subsequently demonstrates that the Guide to the expression of uncertainty in measurement (GUM) is a good candidate for estimation of uncertainty intervals for hydrometry. The demonstration is made by implementing the GUM to typical hydrometric applications and comparing the analysis results with those obtained using the Monte Carlo method. The results show that hydrological measurements would benefit from the adoption of the GUM as the working standard, because of its soundness, the availability of software for practical implementation and potential for extending the GUM to hydrological/hydraulic numerical simulations.

Editor D. Koutsoyiannis

Citation Muste, M., Lee, K. and Bertrand-Krajewski, J.-L., 2012. Standardized uncertainty analysis for hydrometry: a review of relevant approaches and implementation examples. Hydrological Sciences Journal, 57 (4), 643–667.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号