首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Simultaneous field monitoring of runoff and suspended sediment loads from a 30 ha, artificially‐drained, mixed‐agricultural catchment in Herefordshire, UK indicates field drains are the dominant pathway for the transfer of runoff and sediment to the stream. Surface runoff pathways draining 6·2% of the catchment area transported around 1% of the catchment sediment load, while subsurface runoff in field drains draining 26·5% of the catchment transported around 24% of the sediment load. The explanations offered here for the dominance of drainflow—the spatial limitation of surface runoff generation and low hillslope‐stream connectivity of surface runoff compared with subsurface runoff—are also likely to apply to other artificially‐drained lowland agricultural catchments in the UK. These catchments are usually on poorly‐drained soils, and land management can have a considerable effect on the operation of runoff pathways and the transfer of sediment from hillslope to stream. As a result, subsurface inputs may also dominate sediment transfers in other underdrained catchments. The focus on sediment and pollutant losses via surface runoff pathways means that pollution inputs from subsurface, preferential pathways have been unfairly neglected, and it may be more important to focus on subsurface sediment and sediment‐associated pollution inputs for mitigation rather than inputs from surface pathways. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
Our understanding of the effect of scale on runoff and sediment transfers within catchments is currently limited by a lack of available data. A multi‐scale dataset of 17 rainfall events collected simultaneously at four spatial scales within a small agricultural catchment in 2005–2006 is presented. Analysis using exploratory techniques and a two‐step, zero‐inflated lognormal mixed‐effects regression model, has demonstrated that event responses, and event response characteristics representing runoff and sediment peaks and area‐normalized yields, are scale dependent, and hence cannot be transferred directly between scales. Runoff and sediment yields increase as scale increases, and it is proposed that this effect, which differs from that observed in the few other studies of scale effects undertaken, is due to increasing connectivity within the catchment, and the dominance of preferential flow pathways including through macropores and field drains. The processes contributing to scale dependence in the data, and the possibility that certain processes dominate at particular scales, are discussed. The data presented here help to improve our spatial understanding of runoff and sediment transport in small agricultural catchments, and provide examples of the type of spatial dataset and the type of analysis that are essential if we are to develop models which are able to predict runoff and soil erosion accurately, and allow us to manage runoff and sediment transport effectively across scales. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
This study examines the particle size characteristics of hillslope soils and fluvial suspended sediments in an agricultural catchment. Samples of surface runoff and stream flow were collected periodically and analysed for the size distributions of the effective (undispersed) sediment. This sediment was subsequently dispersed and the ultimate size distributions determined. The median effective particle size of stream suspended sediment was considerably coarser than the median ultimate particle size, indicating that most of the load included a substantial proportion of aggregates. Moreover, the proportion of fine material (i.e. silt and clay) increased, and the proportion of sand-sized material decreased, with increasing discharge. This decrease in sediment size with increased flow, which is contrary to the traditional assumption of a positive discharge/particle size relationship, is thought to reflect: (i) the influx of silt and clay, predominantly the former, originating on the catchment slopes and brought to the stream by overland flow along vehicle wheelings, roads and tracks; and (ii) erosion of fine material from the channel bed and banks. During large storms, however, the proportion of sand-sized sediment increased during the rising limb of the hydrograph, as a result of the entrainment of coarser source material from the valley floor during overbank flooding. The stream suspended sediment was finer than the catchment soils and considerably finer than material eroding from the catchment slopes during storms. The degree of clay and silt enrichment in the suspended sediments was largely the result of preferential deposition of the coarser fraction during the transport and delivery of sediment from its source to basin outlet. The data from this study confirm that a significant mode of sediment transport in fluvial systems is in the form of aggregates, and that the dispersed sediment size distribution is inappropriate for determining the transportability of sediment by flow. © 1997 by John Wiley & Sons, Ltd.  相似文献   

4.
J. Holden  T. P. Burt 《水文研究》2002,16(13):2537-2557
Blanket peat covers the headwaters of many major European rivers. Runoff production in upland blanket peat catchments is flashy with large flood peaks and short lag times; there is minimal baseflow. Little is known about the exact processes of infiltration and runoff generation within these upland headwaters. This paper presents results from a set of rainfall simulation experiments performed on the blanket peat moorland of the North Pennines, UK. Rainfall was simulated at low intensities (3–12 mm h?1), typical of natural rainfall, on bare and vegetated peat surfaces. Runoff response shows that infiltration rate increases with rainfall intensity; the use of low‐intensity rainfall therefore allows a more realistic evaluation of infiltration rates and flow processes than previous studies. Overland flow is shown to be common on both vegetated and bare peat surfaces although surface cover does exert some control. Most runoff is produced within the top few centimetres of the peat and runoff response decreases rapidly with depth. Little vertical percolation takes place to depths greater than 10 cm owing to the saturation of the peat mass. This study provides evidence that the quickflow response of upland blanket peat catchments is a result of saturation‐excess overland flow generation. Rainfall–runoff response from small plots varies with season. Following warm, dry weather, rainfall tends to infiltrate more readily into blanket peat, not just initially but to the extent that steady‐state surface runoff rates are reduced and more flow takes place within the peat, albeit at shallow depth. Sediment erosion from bare peat plots tends to be supply limited. Seasonal weather conditions may affect this in that after a warm, dry spell, surface desiccation allows sediment erosion to become transport limited. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

5.
Investigation of the variations in runoff, sediment load, and their dynamic relation is conducive to understanding hydrological regime changes and supporting channel regulation and fluvial management. This study is undertaken in the Xihanshui catchment, which is known for its high sediment-laden in the Jialing River of the Yangtze River basin, southern China, to evaluate the change characteristics of runoff, sediment load, and their relationship at multi-temporal scales from 1966 to 2016. The results showed that runoff changed significantly for more months, whereas the significant changes in monthly sediment load occurred from April to September. The contributions of runoff in summer and autumn and sediment load in summer to their annual value changes were greater. Annual runoff and sediment load in the Xihanshui catchment both exhibited significant decreasing trends (p < 0.05) with a significant mutation in 1993 (p < 0.05). The average annual runoff in the change period (1994–2016) decreased by 49.58% and annual sediment load displayed a substantial decline with a reduction of 77.77% in comparison with the reference period (1966–1993) due to climate change and intensive human activity. The power functions were satisfactory to describe annual and extreme monthly runoff–sediment relationships, whereas the monthly runoff–sediment relationship and extreme monthly sediment-runoff relationship were changeable. Spatially, annual runoff–sediment relationship alteration could be partly attributed to sediment load changes in the upstream area and runoff variations in the downstream region. Three quantitative methods revealed that the main driver for significant reductions of annual runoff and sediment load is the human activity dominated by soil and water conservation measures, while climate change only contributed 22.73%–38.99% (mean 32.07%) to the total runoff reduction and 3.39%–35.56% (mean 17.32%) to the total decrease in sediment load.  相似文献   

6.
The relationship between the synoptic weather types (WTs), runoff and sediments in a Mediterranean mountain landscape was analysed. The study was performed between 2005 and 2012 using one of the most complete and extensive daily databases of rainfall, runoff and sediment recorded in the Spanish Pyrenees, coupled with WTs defined from the National Meteorological Center/National Center for Atmospheric Research (NMC/NCAR) 40‐Year Reanalysis Project ? ? Correction added on 18 December 2013, after online publication: EMULATE project was replaced with NMC/NCAR 40‐Year Reanalysis Project.
. The results show that the three wettest WTs accounted for 30% of rainy days and 46% of rainfall, but comprised only 13% of total daily records. To obtain a much more robust association between WTs and rainfall an analysis was carried out using a longer rainfall record (1989–2011). The analyses confirmed that the results obtained from the Araguás catchment are representative of a longer time span. The cyclonic, north‐westerly and westerly WTs play an important role in runoff generation, coinciding with the wettest WTs. Extreme floods are commonly associated also with south‐westerly and westerly airflows, whereas less flooding was generated under cyclonic circulations. Sediment transport was concentrated in 2.9% of total time mainly related to westerly WTs. Seasonal differences exist in WT frequency. In winter and spring north‐west and West are the most prominent WTs related to rainfall, water and sediment yield, although in spring cyclonic frequency was higher. During autumn north‐west and south‐west were the most frequent, but sediment yield was produced nearby under south‐west flow. In summer the WTs that produce sediment are north and west. A magnitude–frequency analysis shows the different behaviour of WTs according to their efficiency in producing runoff and sediment. A study with different monitored areas around the Iberian Peninsula and the Mediterranean basin would be very valuable in providing information for hydrological and sediment behaviour under the current conditions of global climate change. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
This study examines runoff and sediment generation rates within the road prism on unsealed road segments in the Cuttagee Creek catchment near Bermagui in New South Wales, Australia. A large (600 m2) rainfall simulator was used to measure runoff and sediment yields from each of the potential sediment and runoff sources and pathways. These included the road surface, table‐drain, upslope contributing area and cutslope face, and the entire road segment as measured at the drain outlet. Experiments were conducted on two major types of road (ridge‐top and cut‐and‐fill) of varying traffic usage and maintenance standard for two 30‐minute simulations of increasing rainfall intensity. From the range of possible sources within the road prism, the road surface produced the dominant source of excess runoff and sediment at each site with limited contributions from the table‐drain, cutslope face or contributing hillslope. Sediment generation varied significantly with road usage and traffic intensity. Road usage was strongly related to the amount of loose available sediment as measured prior to the experiments. Table‐drains acted primarily as sediment traps during the low rainfall event but changes in sediment concentration within the drains were observed as runoff volumes increased during the higher rainfall event of 110 mm h?1, releasing sediment previously stored in litter and organic dams. The experiments demonstrate the potential roles of various features of the road prism in the generation and movement of sediment and water. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

8.
Research on arable sandy loam and silty clay loam soils on 4° slopes in England has shown that tramlines (i.e. the unseeded wheeling areas used to facilitate spraying operations in cereal crops) can represent the most important pathway for phosphorus and sediment loss from moderately sloping fields. Detailed monitoring over the October–March period in winters 2005–2006 and 2006–2007 included event‐based sampling of surface runoff, suspended and particulate sediment, and dissolved and particulate phosphorus from hillslope segments (each ~300–800 m2) established in a randomized block design with four replicates of each treatment at each of two sites on lighter and heavier soils. Experimental treatments assessed losses from the cropped area without tramlines, and from the uncropped tramline area, and were compared to losses from tramlines which had been disrupted once in the autumn with a shallow tine. On the lighter soil, the effects of removal or shallow incorporation of straw residues was also determined. Research on both sandy and silty clay loam soils across two winters showed that tramline wheelings represented the dominant pathway for surface runoff and transport of sediment, phosphorus and nitrogen from cereal crops on moderate slopes. Results indicated 5·5–15·8% of rainfall lost as runoff, and losses of 0·8–2·9 kg TP ha?1 and 0·3–4·8 t ha?1 sediment in tramline treatments, compared to only 0·2–1·7% rainfall lost as runoff, and losses of 0·0–0·2 kg TP ha?1 and 0·003–0·3 t ha?1 sediment from treatments without tramlines or those where tramlines had been disrupted. The novel shallow disruption of tramline wheelings using a tine once following the autumn spray operation consistently and dramatically reduced (p < 0·001) surface runoff and loads of sediment, total nitrogen and total phosphorus to levels similar to those measured in cropped areas between tramlines. Results suggest that options for managing tramline wheelings warrant further refinement and evaluation with a view to incorporating them into spatially‐targeted farm‐level management planning using national or catchment‐based agri‐environment policy instruments aimed at reducing diffuse pollution from land to surface water systems. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
The runoff and sediment yield data from the Qiaozidonggou, Qiaozixigou, and Lu'ergou watersheds, in the Loess Plateau of China are used to calibrate and validate the runoff and sediment yield simulated by GeoWEPP model of the WEPP Model at watershed scale. The indices of relative error, R, correlation coefficient, Re, and Nash-Suttcliffe efficiency coefficient Ens are used to evaluate the model fit. The eco-hydrological responses in the Luoyugou and Lu'ergou watersheds are also forecast based on the WEPP Model. Meanwhile, the relation between vegetation pattern changes and sediment yield in the watershed is discussed, and the responses of runoff and sediment yield in the watersheds concerning forest growth stages are studied. The results show that the relative errors of simulated values of runoff and sediment yield are below 30%, the correlation coefficients axe above 0.90, and the Nash-Suttcliffe efficiency coefficients axe above 0.80. The simulation results present satisfactory performance, thus, the model could be used to simulate the runoff and sediment yield in these small watersheds. It is also observed that soil erosion tended to become severe as precipitation increased in the watershed, while soil erosion has a decreasing trend as forest cover increases and vegetation pattern is optimized. When the watershed is fully covered by forest, erosion and sediment yield are minimized. When the forest cover is about 30% and evenly distributed in the watershed, the erosion intensity is lower than if the forest cover is collectively distributed in the watershed. Erosion varies with different forest growth stages in the watershed; it is more serious at the young and near planting stage and is the smallest at the mature forest stage.  相似文献   

10.
The impact of vegetated filter strips (VFS) on sediment removal from runoff has been studied extensively in recent years. Vegetation is believed to increase water infiltration and decrease water turbulence thus enhancing sediment deposition within filter media. In the study reported here, field experiments have been conducted to examine the efficiency of vegetated filter strips for sediment removal from cropland runoff. Twenty filters with varying length, slope and vegetated cover were used under simulated runoff conditions with an average sediment concentration of 2700 mg/L. The filters were 2, 5, 10 and 15 m long with a slope of 2·3 and 5% and three types of vegetation. Three other strips with bare soil were used as a control. The experimental results showed that the average sediment trapping efficiency of all filters was 84% and ranging from 68% in a 2‐m filter to as high as 98% in a 15‐m long filter compared with only 25% for the control. The length of filter has been found to be the predominant factor affecting sediment deposition in VFS up to 10 m. Increasing filter length to 15 m did not improve sediment trapping efficiency under the present experimental conditions. The rate of incoming flow and vegetation cover percentage has a secondary effect on sediment deposition in VFS. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

11.
Our ability to understand erosion processes in semi‐arid ecosystems depends on establishing relationships between rainfall and runoff. This requires collection of extensive and accurate hydrologic and sediment data sets. A supercritical flume with a total load traversing slot sediment sampler used on several sites at the Walnut Gulch Experimental Watershed (WGEW) near Tombstone, AZ has proven to be a reliable way to measure flow and sediment discharge from small watersheds. However, it requires installation of a costly structure that is only suitable for relatively small flows. A more commonly used method based on ease of installation and expense is the pump sampler. One example of this is a set of instrumentation developed by the Australian Commonwealth Scientific and Industrial Research Organization (CSIRO), in which the pump sediment sampler is part of an in‐channel, fully automated system for measuring water velocity, depth, turbidity and collecting runoff samples. A 3.7 ha arid watershed at WGEW was instrumented with both systems and hydrologic and sediment data were collected and compared during a 2 year period. Total sediment yield for the entire period measured by the CSIRO pump sampler (11.6 t ha‐1) was similar to that by traversing slot sampler (11.5 t ha‐1). The pump sampler accurately estimated the amount of fine (< 0.5 mm) sediment fractions exported, but consistently underestimated the coarse (>0.5 mm) sediment fractions. Median sediment diameter of samples collected by traversing slot and pump sampler were 0.32 and 0.22 mm, respectively. This study outlines the benefits and limitations of the pump sampler based system for monitoring sediment concentration and yield in high‐energy headwater catchments, and makes recommendations for improvement of its performance. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
水利工程兴建后洞庭湖径流与泥沙的变化   总被引:6,自引:6,他引:6  
本文根据1951—1988年洞庭湖及其入湖河流的水文泥沙资料,研究大型水利工程兴建后洞庭湖径流与泥沙的变化。研究表明,近40年来洞庭湖的径流量减少了29.2%,输沙量减少了48.7%。引起水沙变化的主要原因是荆江四口分流河床的淤积,使荆江入湖的径流量与输沙量减少。1966—1972年下荆江三个弯道裁弯取直,使荆江河床下切,导致荆江及其分流水位的下降,也促使荆江分流的流量与输沙量的减少。40年来洞庭湖水流变化的趋势对洞庭湖、江汉平原与长江中下游的防洪较为有利。  相似文献   

13.
ABSTRACT

This study investigated the impacts of changes in land cover and climate on runoff and sediment yield in a river basin in India. Land Change Modeler was used to derive the future land cover and its changes using the Sankey diagram approach. The future climatic parameters were derived from five general circulation models for two emission scenarios with representative concentration pathways (RCPs) 4.5 and 8.5. The land cover and climate change impacts on runoff and sediment yield were estimated using SWAT model. The results show important changes in land cover and indicate that urban and agricultural areas strongly influence the runoff and sediment yield. Among the land cover and climate change impacts, climate has more predominant (70%–95%) impact. Runoff and sediment yield are likely to decrease in both RCP scenarios in the future period. The impacts of land cover changes are more prominent on sediment yield than runoff.  相似文献   

14.
This paper investigates the effect of introducing spatially varying rainfall fields to a hydrological model simulating runoff and erosion. Pairs of model simulations were run using either spatially uniform (i.e. spatially averaged) or spatially varying rainfall fields on a 500‐m grid. The hydrological model used was a simplified version of Thales which enabled runoff generation processes to be isolated from hillslope averaging processes. Both saturation excess and infiltration excess generation mechanisms were considered, as simplifications of actual hillslope processes. A 5‐year average recurrence interval synthetic rainfall event typical of temperate climates (Melbourne, Australia) was used. The erosion model was based on the WEPP interrill equation, modified to allow nonlinear terms relating the erosion rate to rainfall or runoff‐squared. The model results were extracted at different scales to investigate whether the effects of spatially varying rainfall were scale dependent. A series of statistical metrics were developed to assess the variability due to introducing the spatially varying rainfall field. At the catchment (approximately 150 km2) scale, it was found that particularly for saturation excess runoff, model predictions of runoff were insensitive to the spatial resolution of the rainfall data. Generally, erosion processes at smaller sub‐catchment scales, particularly when the sediment generation equation had non linearity, were more sensitive to spatial rainfall variability. Introducing runon infiltration reduced the total runoff and sediment yield at all scales, and this process was also most sensitive to the rainfall resolution. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
东、南洞庭湖的径流、泥沙特征及冲淤规律   总被引:2,自引:2,他引:2  
通过实地调查并对1957年以来水文、泥沙观测资料做系统分析和计算,探讨东、南洞庭湖出、入湖水量、沙量的年际和年内变化特征,以及长江下荆江段裁弯对湖区径流和泥沙的影响。提出了湖区泥沙汛淤枯冲的变化规律及水位升降与湖区泥沙冲淤的关系;论证了丰、平、枯年湖区淤积严重,面积日益缩小对径流的调节作用正在减弱。  相似文献   

16.
Abstract

Tile drainage influences infiltration and surface runoff and is thus an important factor in the erosion process. Tile drainage reduces surface runoff, but questions abound on its influence on sediment transport through its dense network and into the stream network. The impact of subsurface tiling on upland erosion rates in the Le Sueur River watershed, USA, was assessed using the Water Erosion Prediction Project (WEPP) model. Six different scenarios of tile drainage with varying drainage coefficient and management type (no till and autumn mulch-till) were evaluated. The mean annual surface runoff depth, soil loss rate and sediment delivery ratio (SDR) for croplands, based on a 30-year simulation for the watershed with untiled autumn mulch-till (Scenario 1), were estimated to be 83.5 mm, 0.27 kg/m2 and 86.7%, respectively; on no-till management systems (Scenario 4), the respective results were 72.3 mm, 0.06 kg/m2 and 88.2%. Tile drains reduced surface runoff, soil loss and SDR estimates for Scenario 1 by, on average, 14.5, 8.1 and 7.9%, respectively; and for Scenario 4 by an estimated 31.5, 22.1 and 20.2%, respectively. The impact of tile drains on surface runoff, soil loss and SDR was greater under the no-till management system than under the autumn mulch-till management system. Comparison of WEPP outputs with those of the Soil Water Assessment Tool (SWAT) showed differences between the two methods.

Editor Z.W. Kundzewicz

Citation Maalim, F.K. and Melesse. A.M., 2013. Modelling impacts of subsurface drainage on surface runoff and sediment yield in the Le Sueur Watershed in Minnesota, USA. Hydrological Sciences Journal, 58 (3), 570–586.  相似文献   

17.
It is important to evaluate the impacts of grasses on soil erosion process so as to use them effectively to control soil and water losses on the Loess Plateau. Laboratory-simulated rainfall experiments were conducted to investigate the runoff and sediment processes on sloped loess surfaces with and without the aboveground parts of grasses and moss (GAM: grass and moss; NGAM: no grass and moss) under slope gradients of 5°, 10°, 15°, 20°, 25° and 30°. The results show that runoff from GAM and NGAM plots increased up to a slope gradient of 10° and decreased thereafter, whereas the runoff coefficients increased with gradient. The average runoff rates and runoff coefficients of NGAM plots were less than those of GAM plots except for the 5° slope. This behaviour may be due to the reduction in water infiltration under moss. The difference between GAM and NGAM plots in average runoff rates varied from 1·4 to 8%. At the same gradients, NGAM plots yielded significantly (α = 0·05) more sediment than GAM plots. Average sediment deliveries for different slopes varied from 0·119 to 3·794 g m−2 min−1 from GAM plots, and from 0·765 to 16·128 g m−2 min−1 from NGAM plots. Sediment yields from GAM plots were reduced by 45 to 85%, compared with those from the NGAM plots. Plots at 30° yielded significantly higher sediments than at the other gradients. Total sediments S increased with slope gradients G in a linear form, i.e. S = 9·25G − 39·6 with R2 = 0·77*, for the GAM plots, and in an exponential model, i.e. S = 40·4 exp(0·1042G) with R2 = 0·93**, for the NGAM plots. In all cases, sediment deliveries decreased with time, and reached a relative steady state at a rainfall duration of 14 min. Compared with NGAM plots, the final percentage reductions in sediment delivery from GAM plots were higher than those at the initial time of rainfall at all slopes. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
太湖表层沉积物中有机氯农药残留及遗传毒性初步研究   总被引:7,自引:2,他引:7  
赵中华  张路  于鑫  李正魁 《湖泊科学》2008,20(5):579-584
采用GC-ECD对太湖表层沉积物中的有机氯农药含量进行了定性定量分析.太湖20个采样点均有不同程度的有机氯农药检出,16种有机氯农药总量为4.22-460.99ng/g(dw),北部湖区、潮心区以及沿岸区等均有高值点出现,与沉积物有机质含量、氮磷营养盐含量分布并不一致.检出率最高的有机氯农药组分为DDTs、HCHs.DDTs含量检出顺序为P,P'-DDT>P,P'-DDD>P,P'-DDE,说明环境中可能仍然具有DDT箱入特征;HCHs中?HCH,?HCH检出相当,怃-HCH检出较高,主要为早期残留.结合鼠伤寒沙门氏菌/哺乳动物微粒体酶系(Ames)试验研究太湖典型溯区表层沉积物中有机污染物的遗传毒性,初步确定可能的生态风险因子.  相似文献   

19.
Haiyun Shi  Guangqian Wang 《水文研究》2015,29(14):3236-3246
Due to climate change and its aggravation by human activities (e.g. hydraulic structures) over the past several decades, the hydrological conditions in the middle Yellow River have markedly changed, leading to a sharp decrease in runoff and sediment discharge. This paper focused on the impacts of climate change and hydraulic structures on runoff and sediment discharge, and the study area was located in the 3246 km2 Huangfuchuan (HFC) River basin. Changes in annual runoff and sediment discharge were initially analysed by using the Mann–Kendall trend test and Pettitt change point test methods. Subsequently, periods of natural and disturbed states were defined. The results showed that both the annual runoff and sediment discharge presented statistically significant decreasing trends. However, compared with the less remarkable decline in annual rainfall, it was inferred that hydraulic structures might be another important cause for the sharp decrease in runoff and sediment discharge in this region. Consequently, sediment‐trapping dams (STDs, a type of large‐sized check dam used to prevent sediment from entering the Yellow River main stem) were considered in this study. Through evaluating the impacts of the variation in rainfall patterns (i.e. amount and intensity) and the STD construction, a positive correlation between rainfall intensity and current STD construction was found. This paper revealed that future soil and water conservation measures should focus on areas with higher average annual rainfall and more rainstorm hours. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
地震波传播数值模拟   总被引:8,自引:10,他引:8  
本文概述了地震数值模拟及其理论基础,阐述了地震数值模拟方法及特点.综述了地震数值模拟方法、三维建模和计算机硬件平台等方面的现状和进展.最后。给出了地震波数值模拟在地震勘探方法研究、地震观测系统优化设计、地震数据处理、地震资料解释、开发地震等方面的应用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号