首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Heyin Chen 《水文科学杂志》2013,58(10):1739-1758
Abstract

Changes in climate and land cover are among the principal variables affecting watershed hydrology. This paper uses a cell-based model to examine the hydrologic impacts of climate and land-cover changes in the semi-arid Lower Virgin River (LVR) watershed located upstream of Lake Mead, Nevada, USA. The cell-based model is developed by considering direct runoff based on the Soil Conservation Service - Curve Number (SCS-CN) method and surplus runoff based on the Thornthwaite water balance theory. After calibration and validation, the model is used to predict LVR discharge under future climate and land-cover changes. The hydrologic simulation results reveal climate change as the dominant factor and land-cover change as a secondary factor in regulating future river discharge. The combined effects of climate and land-cover changes will slightly increase river discharge in summer but substantially decrease discharge in winter. This impact on water resources deserves attention in climate change adaptation planning.
Editor Z.W. Kundzewicz  相似文献   

2.
The change of hydrological regimes may cause impacts on human and natural system. Therefore, investigation of hydrologic alteration induced by climate change is essential for preparing timely proper adaptation to the changes. This study employed 24 climate projections from the Coupled Model Intercomparison Project Phase 5 (CMIP5) under Representative Concentration Pathway (RCP) 4.5 scenario. The climate projections were downscaled at a station‐spacing for seven Korean catchments by a statistical downscaling method that preserves a long‐term trend in climate projections. Using an ensemble of future hydrologic projections simulated by three conceptual rainfall‐runoff models (GR4J, IHACRES, and Sacramento models), we calculated Hydrologic Alteration Factors (HAFs) to investigate degrees of variations in Indicators of Hydrologic Alteration (IHAs) derived from the hydrologic projections. The results showed that the seven catchments had similar trend in terms of the HAFs for the 24 IHAs. Given that more frequent severe floods and droughts were projected over Korean catchments, sound water supply strategies are definitely required to adapt to the alteration of streamflow. A wide range of HAFs between rainfall‐runoff models for each catchment was detected by large variations in the magnitude of HAFs with the hydrologic models and the difference could be the hydrologic prediction uncertainty. There were no‐consistent tendency in the order of HAFs between the hydrologic models. In addition, we found that the alterations of hydrologic regimes by climate change are smaller as the size of catchment is larger. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
I. W. Jung  D. H. Bae  B. J. Lee 《水文研究》2013,27(7):1033-1045
Seasonality in hydrology is closely related to regional water management and planning. There is a strong consensus that global warming will likely increase streamflow seasonality in snow‐dominated regions due to decreasing snowfall and earlier snowmelt, resulting in wetter winters and drier summers. However, impacts to seasonality remain unclear in rain‐dominated regions with extreme seasonality in streamflow, including South Korea. This study investigated potential changes in seasonal streamflow due to climate change and associated uncertainties based on multi‐model projections. Seasonal flow changes were projected using the combination of 13 atmosphere–ocean general circulation model simulations and three semi‐distributed hydrologic models under three different future greenhouse gas emission scenarios for two future periods (2020s and 2080s). Our results show that streamflow seasonality is likely to be aggravated due to increases in wet season flow (July through September) and decreases in dry season flow (October through March). In South Korea, dry season flow supports water supply and ecosystem services, and wet season flow is related to flood risk. Therefore, these potential changes in streamflow seasonality could bring water management challenges to the Korean water resources system, especially decreases in water availability and increases in flood risk. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
Climate change can cause considerable changes in water resources and assessing the potential impacts can provide important information for regional sustainable development. The objectives were to evaluate the possible impacts of climate change during 2010-2039 on water resources (runoff, soil water content, and evapotranspiration) in the Heihe watershed on the Loess Plateau of China and to further explore adaptive measures to cope with the changes. Projections of four climate models (CCSR/NIES, CGCM2, CSIRO...  相似文献   

5.
We assessed the relative hydrological impacts of climate change and urbanization using an integrated approach that links the statistical downscaling model (SDSM), the Hydrological Simulation Program—Fortran (HSPF) and the impervious cover model (ICM). A case study of the Anyangcheon watershed, a representative urban region in Korea, illustrates how the proposed framework can be used to analyse the impacts of climate change and urbanization on water quantity and quality. The evaluation criteria were measurements of low flow (99, 95, and 90 percentile flow), high flow (10, 5, and 1 percentile value), pollutant concentration (30, 10, and 1 percentile value), and the numbers of days required to satisfy the target water quantity and quality for a sensitive comparison of subtle impacts of variations in these measures. Nine scenarios, including three climate scenarios (present conditions, A1B, and A2) and three land use change scenarios, were analysed using the HSPF model. The impacts of climate change on low flow (34·1–59·8% increase) and high flow (29·1–37·1% increase) were found to be much greater than those on the biochemical oxygen demand (BOD) (3·8–10·0% decrease). On the other hand, the impacts of urbanization on water quality (19·0–44·6% increase) are more significant than those on high (1·0–4·4% increase) and low flow (11·4–25·6% decrease). Furthermore, low flows are more sensitive to urbanization than high flows. The number of days required to satisfy the target water quantity and quality can be a sensitive criterion to compare the subtle impacts of climate and urbanization on human society, especially as they are much more sensitive than low flow and pollutant concentration. Finally, urbanization has a potent impact on BOD while climate change has a high impact on flow rate. Therefore, the impacts of both climate change and urbanization must be included in watershed management and water resources planning for sustainable development. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
The climate sensitive analysis of potential climate change on streamflow has been conducted using a hydrologic model to identify hydrologic variability associated with climate scenarios as a function of perturbed climatic variables (e.g. carbon dioxide, temperature, and precipitation). The interannual variation of water resources availability as well as low flow frequency driven by monsoonal time shifts have been investigated to evaluate the likelihood of droughts in a changing climate. The results show that the timing shift of the monsoon window associated with future climate scenarios clearly affect annual water yield change of ? 12 and ? 8% corresponding to 1‐month earlier and 1‐month later monsoon windows, respectively. Also, a more severe low flow condition has been predicted at 0·03 m3/s as opposed to the historic 7Q10 flow of 1·54 m3/s given at extreme climate scenarios. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
Land use/cover (LULC) and climate change are two main factors affecting watershed hydrology. In this paper, individual and combined impacts of LULC and climate change on hydrologic processes were analysed applying the model Soil and Water Assessment Tool in a coastal Alabama watershed in USA. Temporally and spatially downscaled Global Circulation Model outputs predict a slight increase in precipitation in the study area, which is also projected to experience substantial urban growth in the future. Changes in flow frequency and volume in the 2030s (2016–2040) compared to a baseline period (1984–2008) at daily, monthly and annual time scales were explored. A redistribution of daily streamflow is projected when either climate or LULC change was considered. High flows are predicted to increase, while low flows are expected to decrease. Combined change effect results in a more noticeable and uneven distribution of daily streamflow. Monthly average streamflow and surface runoff are projected to increase in spring and winter, but especially in fall. LULC change does not have a significant effect on monthly average streamflow, but the change affects partitioning of streamflow, causing higher surface runoff and lower baseflow. The combined effect leads to a dramatic increase in monthly average streamflow with a stronger increasing trend in surface runoff and decreasing trend in baseflow. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
Climate change would significantly affect many hydrologic systems, which in turn would affect the water availability, runoff, and the flow in rivers. This study evaluates the impacts of possible future climate change scenarios on the hydrology of the catchment area of the Tunga–Bhadra River, upstream of the Tungabhadra dam. The Hydrologic Engineering Center's Hydrologic Modeling System version 3.4 (HEC‐HMS 3.4) is used for the hydrological modelling of the study area. Linear‐regression‐based Statistical DownScaling Model version 4.2 (SDSM 4.2) is used to downscale the daily maximum and minimum temperature, and daily precipitation in the four sub‐basins of the study area. The large‐scale climate variables for the A2 and B2 scenarios obtained from the Hadley Centre Coupled Model version 3 are used. After model calibration and testing of the downscaling procedure, the hydrological model is run for the three future periods: 2011–2040, 2041–2070, and 2071–2099. The impacts of climate change on the basin hydrology are assessed by comparing the present and future streamflow and the evapotranspiration estimates. Results of the water balance study suggest increasing precipitation and runoff and decreasing actual evapotranspiration losses over the sub‐basins in the study area. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
Land‐cover/climate changes and their impacts on hydrological processes are of widespread concern and a great challenge to researchers and policy makers. Kejie Watershed in the Salween River Basin in Yunnan, south‐west China, has been reforested extensively during the past two decades. In terms of climate change, there has been a marked increase in temperature. The impact of these changes on hydrological processes required investigation: hence, this paper assesses aspects of changes in land cover and climate. The response of hydrological processes to land‐cover/climate changes was examined using the Soil and Water Assessment Tool (SWAT) and impacts of single factor, land‐use/climate change on hydrological processes were differentiated. Land‐cover maps revealed extensive reforestation at the expense of grassland, cropland, and barren land. A significant monotonic trend and noticeable changes had occurred in annual temperature over the long term. Long‐term changes in annual rainfall and streamflow were weak; and changes in monthly rainfall (May, June, July, and September) were apparent. Hydrological simulations showed that the impact of climate change on surface water, baseflow, and streamflow was offset by the impact of land‐cover change. Seasonal variation in streamflow was influenced by seasonal variation in rainfall. The earlier onset of monsoon and the variability of rainfall resulted in extreme monthly streamflow. Land‐cover change played a dominant role in mean annual values; seasonal variation in surface water and streamflow was influenced mainly by seasonal variation in rainfall; and land‐cover change played a regulating role in this. Surface water is more sensitive to land‐cover change and climate change: an increase in surface water in September and May due to increased rainfall was offset by a decrease in surface water due to land‐cover change. A decrease in baseflow caused by changes in rainfall and temperature was offset by an increase in baseflow due to land‐cover change. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Global climate change will likely increase temperature and variation in precipitation in the Himalayas, modifying both supply of and demand for water. This study assesses combined impacts of land‐cover and climate changes on hydrological processes and a rainfall‐to‐streamflow buffer indicator of watershed function using the Soil Water Assessment Tool (SWAT) in Kejie watershed in the eastern Himalayas. The Hadley Centre Coupled Model Version 3 (HadCM3) was used for two Intergovernmental Panel on Climate Change (IPCC) emission scenarios (A2 and B2), for 2010–2099. Four land‐cover change scenarios increase forest, grassland, crops, or urban land use, respectively, reducing degraded land. The SWAT model predicted that downstream water resources will decrease in the short term but increase in the long term. Afforestation and expansion in cropland will probably increase actual evapotranspiration (ET) and reduce annual streamflow but will also, through increased infiltration, reduce the overland flow component of streamflow and increase groundwater release. An expansion in grassland will decrease actual ET, increase annual streamflow and groundwater release, while decreasing overland flow. Urbanization will result in increases in streamflow and overland flow and reductions in groundwater release and actual ET. Land‐cover change dominated over effects on streamflow of climate change in the short and middle terms. The predicted changes in buffer indicator for land‐use plus climate‐change scenarios reach up to 50% of the current (and future) range of inter‐annual variability. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
This study develops a novel approach for modelling and examining the impacts of time–space land‐use changes on hydrological components. The approach uses an empirical land‐use change allocation model (CLUE‐s) and a distributed hydrological model (DHSVM) to examine various land‐use change scenarios in the Wu‐Tu watershed in northern Taiwan. The study also uses a generalized likelihood uncertainty estimation approach to quantify the parameter uncertainty of the distributed hydrological model. The results indicate that various land‐use policies—such as no change, dynamic change and simultaneous change—have different levels of impact on simulating the spatial distributions of hydrological components in the watershed study. Peak flow rates under simultaneous and dynamic land‐use changes are 5·71% and 2·77%, respectively, greater than the rate under the no land‐use change scenario. Using dynamic land‐use changes to assess the effect of land‐use changes on hydrological components is more practical and feasible than using simultaneous land‐use change and no land‐use change scenarios. Furthermore, land‐use change is a spatial dynamic process that can lead to significant changes in the distributions of ground water and soil moisture. The spatial distributions of land‐use changes influence hydrological processes, such as the ground water level of whole areas, particularly in the downstream watershed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
We investigated, through hydrologic modelling, the impact of the extent and density of canopy cover on streamflow timing and on the magnitude of peak and late summer flows in the upper Tuolumne basin (2600–4000 m) of the Sierra Nevada, California, under current and warmer temperatures. We used the Distributed Hydrology Soil Vegetation Model for the hydrologic modelling of the basin, assuming four vegetation scenarios: current forest (partial cover, 80% density), all forest (uniform coverage, 80% density), all barren (no forest) and thinned forest (partial cover, 40% density) for a medium‐high emissions scenario causing a 3.9 °C warming over a 100‐year period (2001–2100). Significant advances in streamflow timing, quantified as the centre of mass (COM) of over 1 month were projected for all vegetation scenarios. However, the COM advances faster with increased forest coverage. For example, when forest covered the entire area, the COM occurred on average 12 days earlier compared with the current forest coverage, with the rate of advance higher by about 0.06 days year?1 over 100 years and with peak and late summer flows lower by about 20% and 27%, respectively. Examination of modelled changes in energy balance components at forested and barren sites as temperatures rise indicated that increases in net longwave radiation are higher in the forest case and have a higher contribution to melting earlier in the calendar year when shortwave radiation is a smaller fraction of the energy budget. These increases contributed to increased midwinter melt under the forest at temperatures above freezing, causing decreases in total accumulation and higher winter and early spring melt rates. These results highlight the importance of carefully considering the combined impacts of changing forest cover and climate on downstream water supply and mountain ecosystems. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
A physically based distributed hydrological model developed at the University of Yamanashi based on block‐wise use of TOPMODEL and the Muskingum–Cunge method (YHyM/BTOPMC), integrated with a simple degree‐day–based snow accumulation/melt sub‐model, was applied to evaluate hydrological responses under changing climatic conditions in the snow‐fed Kali Gandaki River Basin (KGRB) in Western Nepal. Rainy season precipitation (June to September) in the basin takes up about 80% of the annual precipitation, and dry season runoff is largely contributed by snowmelt. Climate change is likely to increase the probability of extreme events and problems related to water availability. Therefore, the study aimed to simulate runoff pattern under changing climatic conditions, which will be helpful in the management of water resources in the basin. Public domain global data were widely used in this study. The model was calibrated and validated with an acceptable degree of accuracy. The results predicted that the annual average discharge will increase by 2.4%, 3.7%, and 5.7% when temperature increases by 1, 2, and 3 °C compared with the reference scenario. Similarly, maximum, minimum, and seasonal discharges in the monsoon and pre‐monsoon seasons will also increase with rising temperature. Snowmelt runoff is found sensitive to temperature changes in the KGRB. Increasing temperature will cause a faster snowmelt, but precipitation will increase the snowpack and also shed a positive effect on the total annual and monsoonal discharge. For the combined scenarios of increasing temperature and precipitation, the annual average discharge will increase. In contrast, discharge during the increasing temperature and decreasing precipitation will tend to decrease. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
Understanding potential hydrologic influences to continued climate change in Himalayan watersheds is important for management of transnational water resources. This study estimates the climate change impacts on hydrologic processes of the Kali Gandaki watershed from central Himalayan region using the Soil and Water Assessment Tool. Daily predicted stream discharge of the basin for 1981–95 following calibration was accurate with Nash Sutcliffe Efficiency value >0.75. Sensitivity analysis of the hydrologic parameters showed the precipitation and temperature lapse rates as the most sensitive parameters to the stream discharge. To assess the influence of continued climate change on hydrologic processes, we modified the weather inputs for the model using average, minimum and maximum temperature, and precipitation changes for the Special Report on Emission Scenarios B1, A1B and A2 derived from 16 General Circulation Models for 2080s. Mean annual stream discharge was approximately 39% higher than current values for the maximum temperature and precipitation changes of the A2 scenario and 22% less for minimum changes of the same scenario. Stream discharge was projected to be changed by +9% during monsoon season and by ?6% during pre‐monsoon season. Snowfall and snow melt were projected to be 30% and 29%, respectively, less than the current average for the maximum temperature and precipitation changes of the A2 scenario. Future simulations showed potential increase in monsoonal stream discharge associated with projected higher precipitation which when coupled with enhanced summer glacier melt might influence the downstream water availability of the basin. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
Climate change and land use/cover change (LUCC) are two factors that produce major impacts on hydrological processes. Understanding and quantifying their respective influence is of great importance for water resources management and socioeconomic activities as well as policy and planning for sustainable development. In this study, the Soil and Water Assessment Tool (SWAT) was calibrated and validated in upper stream of the Heihe River in Northwest China. The reliability of the SWAT model was corroborated in terms of the Nash–Sutcliffe efficiency (NSE), the correlation coefficient (R), and the relative bias error (BIAS). The findings proposed a new method employing statistical separation procedures using a physically based modeling system for identifying the individual impacts of climate change and LUCC on hydrology processes, in particular on the aspects of runoff and evapotranspiration (ET). The results confirmed that SWAT was a powerful and accurate model for diagnosis of a key challenge facing the Heihe River Basin. The model assessment metrics, NSE, R, and BIAS, in the data were 0.91%, 0.95%, and 1.14%, respectively, for the calibration period and 0.90%, 0.96%, and ?0.15%, respectively, for the validation period. An assessment of climate change possibility showed that precipitation, runoff, and air temperature exhibited upward trends with a rate of 15.7 mm, 6.1 mm, and 0.38 °C per decade for the 1980 to 2010 period, respectively. Evaluation of LUCC showed that the changes in growth of vegetation, including forestland, grassland, and the shrub area have increased gradually while the barren area has decreased. The integrated effects of LUCC and climate change increased runoff and ET values by 3.2% and 6.6% of the total runoff and ET, respectively. Climate change outweighed the impact of LUCC, thus showing respective increases in runoff and ET of about 107.3% and 81.2% of the total changes. The LUCC influence appeared to be modest by comparison and showed about ?7.3% and 18.8% changes relative to the totals, respectively. The increase in runoff caused by climate change factors is more than the offsetting decreases resulting from LUCC. The outcomes of this study show that the climate factors accounted for the notable effects more significantly than LUCC on hydrological processes in the upper stream of the Heihe River.  相似文献   

16.
In this study, we investigated the responses of hydrology and sediment yield with impacts of land‐use and climate change scenarios in the Be River Catchment, using the Soil and Water Assessment Tool (SWAT) hydrological model. The calibration and validation results indicated that the SWAT model is a powerful tool for simulating the impact of environmental change on hydrology and sediment yield in this catchment. The hydrologic and sediment yield responses to land‐use and climate changes were simulated based on the calibrated model. The results indicated that a 16.3% decrease in forest land is likely to increase streamflow (0.2 to 0.4%), sediment load (1.8 to 3.0%), and surface runoff (SURQ) (4.8 to 10.7%) and to decrease groundwater discharge (GW_Q) (3.5 to 7.9%). Climate change in the catchment leads to decreases in streamflow (0.7 to 6.9%) and GW_Q (3.0 to 8.4%), increase in evapotranspiration (0.5 to 2.9%), and changes in SURQ (?5.3 to 2.3%) and sediment load (?5.3 to 4.4%). The combined impacts of land‐use and climate changes decrease streamflow (2.0 to 3.9%) and GW_Q (12.3 to 14.0%), increase evapotranspiration (0.7 to 2.8%), SURQ (8.2 to 12.4%), and sediment load (2.0 to 7.9%). In general, the separate impacts of climate and land‐use changes on streamflow, sediment load, and water balance components are offset each other. However, SURQ and some component of subsurface flow are more sensitive to land‐use change than to climate change. Furthermore, the results emphasized water scarcity during the dry season and increased soil erosion during the wet season. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
Assessment of potential climate change impacts on stream water temperature (Ts) across large scales remains challenging for resource managers because energy exchange processes between the atmosphere and the stream environment are complex and uncertain, and few long‐term datasets are available to evaluate changes over time. In this study, we demonstrate how simple monthly linear regression models based on short‐term historical Ts observations and readily available interpolated air temperature (Ta) estimates can be used for rapid assessment of historical and future changes in Ts. Models were developed for 61 sites in the southeastern USA using ≥18 months of observations and were validated at sites with longer periods of record. The Ts models were then used to estimate temporal changes in Ts at each site using both historical estimates and future Ta projections. Results suggested that the linear regression models adequately explained the variability in Ts across sites, and the relationships between Ts and Ta remained consistent over 37 years. We estimated that most sites had increases in historical annual mean Ts between 1961 and 2010 (mean of +0.11 °C decade?1). All 61 sites were projected to experience increases in Ts from 2011 to 2060 under the three climate projections evaluated (mean of +0.41 °C decade?1). Several of the sites with the largest historical and future Ts changes were located in ecoregions home to temperature‐sensitive fish species. This methodology can be used by resource managers for rapid assessment of potential climate change impacts on stream water temperature. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
This paper presents the first high resolution temperature data from a small Agrostis magellanica mire on subantarctic Marion Island as part of an ongoing island‐wide monitoring project on subsurface ground temperature variability. Variations in ground temperatures were found to be directly linked to the passage of synoptic scale weather systems that influence thermal characteristics and heat fluxes especially in the upper 30 cm of the mire. Preliminary data published here suggest that shallow temperatures will be most affected by changes in synoptic climate that Marion Island is currently experiencing with an increase in average temperatures and a reduction in temperature variability with depth. This study proposes that to effectively detect the ecosystem responses to climate change in a maritime sub‐Antarctic environment the temporal scale of measurement needs to be at least on a diurnal scale to be effective. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
This study presents time‐varying suspended sediment‐discharge rating curves to model suspended‐sediment concentrations (SSCs) under alternative climate scenarios. The proposed models account for hysteresis at multiple time scales, with particular attention given to systematic shifts in sediment transport following large floods (long‐term hysteresis). A series of nested formulations are tested to evaluate the elements embedded in the proposed models in a case study watershed that supplies drinking water to New York City. To maximize available data for model development, a dynamic regression model is used to estimate SSC based on denser records of turbidity, where the parameters of this regression are allowed to vary over time to account for potential changes in the turbidity‐SSC relationship. After validating the proposed rating curves, we compare simulations of SSC among a subset of models in a climate change impact assessment using an ensemble of flow simulations generated using a stochastic weather generator and hydrologic model. We also examine SSC estimates under synthetic floods generated using a peaks‐over‐threshold model. Our results indicate that estimates of extreme SSC under new climate and hydrologic scenarios can vary widely depending on the selected model and may be significantly underestimated if long‐term hysteresis is ignored when simulating impacts under sequences of large storm event. Based on the climate change scenarios explored here, average annual maximum SSC could increase by as much as 2.45 times over historical values.  相似文献   

20.
This paper investigates the potential impacts of climate change on water resources in northern Tuscany, Italy. A continuous hydrological model for each of the seven river basins within the study area was calibrated using historical data. The models were then driven by downscaled and bias‐corrected climate projections of an ensemble of 13 regional climate models (RCMs), under two different scenarios of representative concentration pathway (RCP4.5 and RCP8.5). The impacts were examined at medium term (2031–2040) and long term (2051–2060) in comparison with a reference period (2003–2012); the changes in rainfall, streamflow, and groundwater recharge were investigated. A high degree of uncertainty characterized the results with a significant intermodel variability, the period being equal. For the sake of brevity, only the results for the Serchio River basin were presented in detail. According to the RCM ensemble mean and the RCP4.5, a moderate decrease in rainfall, with reference to 2003–2012, is expected at medium term (?0.6%) and long term (?2.8%). Due to the warming of the study area, the reduction in the streamflow volume is two times the precipitation decrease (?1.1% and ?6.8% at medium and long term, respectively). The groundwater recharge is mainly affected by the changes in climate with expected percolation volume variations of ?3.3% at 2031–2040 and ?8.1% at 2051–2060. The impacts on the Serchio River basin water resources are less significant under the RCP8.5 scenario. The presence of artificial structures, such as dam‐reservoir systems, can contribute to mitigate the effects of climate change on water resources through the implementation of appropriate regulation strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号