首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this study, we aimed to clarify spatial variations in xylem sap flow, and to determine the impacts of these variations on stand‐scale transpiration (E) estimates. We examined circumferential and radial variations in sap flow velocity (Fd) measured at several directions and depths in tree trunks of black locust (Robinia pseudoacacia) and native oak (Quercus liaotungensis), both of which have ring‐porous wood anatomy, in forest stands on the Loess Plateau, China. We evaluated the impacts of circumferential variations in Fd on stand‐scale transpiration estimates using a simple scaling exercise. We found significant circumferential variations in Fd in the outermost xylem in both species (coefficients of variation = 20–45%). For both species, Fd measured at the inner xylem was smaller than that of the outermost xylem and the Fd at the depth of > 10 mm was almost zero. The simple exercises showed that omitting circumferential variations in Fd affected the E estimate by 16–21%, which was less than the effects of omitting within‐tree radial and tree‐to‐tree variations in Fd in both species. These results suggest that circumferential variations in Fd can be a minor source of error for E estimates compared with within‐tree radial and tree‐to‐tree variations in Fd, regardless of the significant circumferential variations. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
Forest species composition may change following a disturbance. This change can affect long term water yield from forested catchments when the replaced and replacement species have different evapotranspiration rates. Following strip‐thinning experiments that removed 50% of the overstorey basal area in several Eucalyptus regnans water supply catchments in south eastern Australia, Acacia spp. (Acacia dealbata and Acacia melanoxylon) became the dominant overstorey species in most of the cut strips. More recently, low regeneration of E. regnans following wildfires in 2009 may result in mixed Acacia and E. regnans stands in some catchments. We compared transpiration of E. regnans and Acacia stands in the uncut and cut strips of a catchment that was strip‐thinned in early 1980s (Crotty Creek). We also compared transpiration and throughfall in a mixed E. regnansA. dealbata regrowth stand 20 years after clear‐fell logging (Road 8). Sap flow was measured for 13 and 6 months at Crotty Creek and Road 8, respectively. In both studies, mean daily sap flow density of Acacia spp. was lower than of E. regnans. Estimated Leaf Area Index of E. regnans stands was slightly greater than that of Acacia spp. Stomatal conductance (gc), estimated by inverting the Penman–Monteith equation, differed between the species suggesting species‐level physiological differences with Acacia being more sensitive to vapour pressure deficit than E. regnans. Throughfall measurements at Road 8 indicated interception was slightly higher in A. dealbata but only enough to offset about 13% of the difference in transpiration. Replacement of E. regnans by Acacia dominated stands may, therefore, decrease catchment evapotranspiration and increase streamflow.  相似文献   

3.
Spatial and temporal variation in wet canopy conditions following precipitation events can influence processes such as transpiration and photosynthesis, which can be further enhanced as upper canopy leaves dry more rapidly than the understory following each event. As part of a larger study aimed at improving land surface modelling of evapotranspiration processes in wet tropical forests, we compared transpiration among trees with exposed and shaded crowns under both wet and dry canopy conditions in central Costa Rica, which has an average 4200 mm annual rainfall. Transpiration was estimated for 5 months using 43 sap flux sensors in eight dominant, ten midstory and eight suppressed trees in a mature forest stand surrounding a 40‐m tower equipped with micrometeorological sensors. Dominant trees were 13% of the plot's trees and contributed around 76% to total transpiration at this site, whereas midstory and suppressed trees contributed 18 and 5%, respectively. After accounting for vapour pressure deficit and solar radiation, leaf wetness was a significant driver of sap flux, reducing it by as much as 28%. Under dry conditions, sap flux rates (Js) of dominant trees were similar to midstory trees and were almost double that of suppressed trees. On wet days, all trees had similarly low Js. As expected, semi‐dry conditions (dry upper canopy) led to higher Js in dominant trees than midstory, which had wetter leaves, but semi‐dry conditions only reduced total stand transpiration slightly and did not change the relative proportion of transpiration from dominant and midstory. Therefore, models that better capture forest stand wet–dry canopy dynamics and individual tree water use strategies are needed to improve accuracy of predictions of water recycling over tropical forests. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
Hydrologic variability during 2005–2011 was observed and analyzed at an upland oak/pine forest in the New Jersey Pinelands. The forest experienced defoliation by Gypsy moth (Lymantria dispar L.) in 2007, drought conditions in 2006 and a more severe drought in 2010. By using sap flux and eddy covariance measurements, stream discharge data from USGS, soil water changes, precipitation (P) and precipitation throughfall, a local water balance was derived. Average annual canopy transpiration (EC) during 2005–2011 was 201 mm a?1 ± 47 mm a?1. A defoliation event reduced EC by 20% in 2007 compared with the 2005–2011 mean. During drought years in 2006 and 2010, stand transpiration was reduced by 8% in July 2006 and by 18% in 2010, respectively, compared with the overall July average. During July 2007, after the defoliation and subsequent reflushing of half of the leaves, EC was reduced by 25%. This stand may experience higher sensitivity to drought when recovering from a defoliation event as evidenced by the higher reduction of EC in 2010 (post‐defoliation) compared with 2006 (pre‐defoliation). Stream water discharge was normalized to the watershed area by dividing outflow with the watershed area. It showed the greatest correlation with transpiration for time lags of 24 days and 219 days, suggesting hydrological connectivity on the watershed scale; stream water discharge increases when transpiration decreases, coinciding with leaf‐on and leaf‐off conditions. Thus, any changes in transpiration or precipitation will also alter stream water discharge and therefore water availability. Under future climate change, frequency and intensity of precipitation and episodic defoliation events may alter local water balance components in this upland oak/pine forest. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
Stand transpiration (E) estimated using the sap‐flux method includes uncertainty induced by variations in sap flux (F) within a tree (i.e. radial and azimuthal variations) and those between trees. Unlike radial variations, azimuthal variations are not particularly systematic (i.e. higher/lower F is not always recorded for a specific direction). Here, we present a theoretical framework to address the question on how to allocate a limited number of sensors to minimize uncertainty in E estimates. Specifically, we compare uncertainty in E estimates for two cases: (1) measuring F for two or more directions to cover azimuthal variations in F and (2) measuring F for one direction to cover between‐tree variations in F. The framework formulates the variation in the probability density function for E (σE) based on F recorded in m different azimuthal directions (e.g. north, east, south and west). This formula allows us to determine the m value that minimizes σE. This study applied the framework to F data recorded for a 55‐year‐old Cryptomeria japonica stand. σE for m = 1 was found to be less than the values for m = 2, 3 and 4. Our results suggest that measuring F for one azimuthal direction provides more reliable E estimates than measuring F for two or more azimuthal directions for this stand, given a limited number of sensors. Application of this framework to other datasets helps us decide how to allocate sensors most effectively. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
Studies of evapotranspiration (ET) processes in forests often only measure one component of total ET, most commonly interception. This study examined all three components of annual ET (interception, evaporation from the forest floor and transpiration) and the correlations between them at 18 plantation forest sites in two species. All plantations had closed canopies, and sparse or no understorey. Single‐sided leaf area index averaged 3.5 (standard deviation ±0.5) in Eucalyptus globulus Labill. and 6.1 (±0.8) in Pinus radiata D.Don. Measurements included annual totals of rainfall in the open and under the canopy, stem flow (four sites only), evaporation from the forest floor and transpiration by the overstorey. Interception (I) averaged 19% (±4.9) of annual rainfall in E. globulus compared with 31% (±11.1) in P. radiata. However, higher annual interception in P. radiata did not result in higher total ET because annual evaporation from the forest floor (E) averaged 29% (±4.9) of rainfall in E. globulus but only 15% (±3.5) in P. radiata. Hence, the relative contribution of annual I plus E to ET did not differ significantly between the two species, averaging 48% (±7.3) of annual rainfall in E. globulus compared with 46% (±11.8) in P. radiata. As reported previously, transpiration did not differ significantly between the two species either, but was strongly related to depth‐to‐groundwater. In closed canopy plantations, mean annual ET did not differ between the two species. We conclude that when grown in plantations under similar soil and climatic conditions, conifer and broad‐leaved tree species can have similar annual ET, once the canopy of the plantation has closed. Lower average annual interception in broad‐leaved trees was offset by higher soil evaporation. These results highlight the importance of measuring all components of ET in studies of vegetation water use. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
To analyse suspended sediment sources in unmanaged Japanese cypress plantation watersheds, field measurements and fingerprinting of the suspended sediment was conducted in the Shimanto River basin in southern Japan. For sediment fingerprinting, 137Cs and 210Pbex were detected by means of gamma‐ray spectrometry in the surface soil of the forest floor, stream bank and truck trail and mobilized sediment by interrill erosion. The 137Cs and 210Pbex activities associated with the forest floor materials were considerably higher than those of the stream bank and truck trail. The 137Cs and 210Pbex activities associated with the suspended sediment were found to vary with the sampling period. Evidently, the suspended sediment can comprise materials generated from the forest floor by interrill erosion and those from the truck trail and/or stream bank. The multivariate sediment‐mixing model using 137Cs and 210Pbex showed that the contribution of the forest floor varied periodically, ranging from 23–56% in the Hinoki 156 subwatershed and from 18–85% in the Hinoki 155 subwatershed. The difference in the average contribution of the forest floor between Hinoki 156 (46%) and Hinoki 155 (69%) may relate to the presence of truck trail networks in the watershed. The truck trail network can play roles of sediment source and pathway for sediment from forest floor to stream channel due to the concentrated overland flow on the truck trail during heavy rainfall events. These results indicate that the forest floor should be recognized as a major source of suspended sediment in unmanaged Japanese cypress plantation watersheds. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
Haloxylon ammodendron is a desert shrub used extensively in China for restoring degraded dry lands. An understanding of the water source used by H. ammodendron plantations is critical achieving sustainable vegetation restoration. We measured mortality, shoot size, and rooting depth in 5‐, 10‐, 20‐, and 40‐year‐old H. ammodendron plantations. We examined stable isotopic ratios of oxygen (δ18O) in precipitation, groundwater, and soil water in different soil layers and seasons, and in plant stem water to determine water sources at different shrub ages. We found that water acquisition patterns in H. ammodendron plantations differed with plantation age and season. Thus, the main water source for 5‐year‐old shrubs was shallow soil water. Water sources of 10‐year‐old shrubs shifted depending on the soil water conditions during the season. Although their tap roots could absorb deep soil water, the plantation main water sources were from soil water, and about 50% of water originated from shallow and mid soil. This pattern might occur because main water sources in these plantations were changeable over time. The 20‐ and 40‐year‐old shrubs acquired water mainly from permanent groundwater. We conclude that the main water source of a young H. ammodendron plantation was soil water recharged by precipitation. However, when roots reached sufficient depth, water originated mainly from the deep soil water, especially in the dry season. The deeply rooted 20‐ and 40‐year‐old shrubs have the ability to exploit a deep and reliable water source. To achieve sustainability in these plantations, we recommend a reduction in the initial density of H. ammodendron in the desert‐oasis ecotone to decelerate the consumption of shallow soil water during plantation establishment.  相似文献   

9.
Liwen Zhao  Wenzhi Zhao 《水文研究》2015,29(13):2983-2993
With a maize seed planting area of about 67 000 hm2, Zhangye city supplies the seeds for more than 40% of the maize planting area in China. Irrigation water is often overused to ensure the quality of the maize seeds, leading to serious water shortage problems in recent years. An accurate and convenient estimate of canopy transpiration is of particular importance to ease the problem. In this paper, leaf transpiration and sap flow in a maize field were measured in 2012 using a portable photosynthesis system and a heat balance sap flow system. Based on a large amount of meteorological data and relevant maize plant‐growing parameters, canopy transpiration was up‐scaled from both leaf transpiration (Tl) and sap flow (Tf), and also calculated by the FAO‐56 dual crop coefficient method (T). Comparing these three types of transpiration, Tf was proved to be more reliable than Tl. Taking Tf as a benchmark, the basal crop coefficient (Kcb, the key parameter of FAO‐56 dual crop coefficient method) was further adjusted and verified for the maize plants in this region. In addition, the errors when using up‐scaling methods and FAO‐56 dual crop coefficient method are summarized. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
Conservation management for the water dependent desert‐oasis ecotone in arid northwest China requires information on the water use of the dominant species. However, no studies have quantified their combined water use or linked species composition to ecotone transpiration. Here, the water use of three dominant shelterbelt shrubs (Haloxylon ammodendron, Nitraria tangutorum, and Calligonum mongolicum) within an ecotone was measured throughout the full leaf‐out period for three shrub species from 30 May to 16 October 2014, with sap flow gauges using the stem heat balance approach. Species‐specific transpiration was estimated by scaling up sap flow velocities measured in individual stems, to stand area level, using the frequency distribution of stem diameter and assuming a constant proportionality between sap flow velocity and basal cross‐sectional area for all stems. The mean peak sap flux densities (Jsn) for H. ammodendron, N. tangutorum, and C. mongolicum, were 40.12 g cm?2 h?1, 71.33 g cm?2 h?1, and 60.34 g cm?2 h?1, respectively, and the mean estimated daily area‐averaged transpiration rates (Tdaily) for the same species were 0.56 mm day?1, 0.34 mm day?1, and 0.11 mm day?1. The accumulative stand transpiration was approximately 140.8 mm throughout the measurement period, exceeding precipitation by as much as 42.1 mm. Furthermore, Tdaily of these shrubs appeared to be much less sensitive to soil moisture as compared to atmospheric drivers, and the relationship between Jsn and atmospheric drivers was likely uninfluenced by soil moisture regimes in the whole profile (to 1‐m depth), especially for H. ammodendron and C. mongolicum. Results indicate that these shrubs may use deep soil water recharged by capillary rise, or may directly access shallow groundwater. This study provides quantitative data offering important implications for ecotone conservation and water and land resource management. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
Artemisia ordosica is considered as an excellent sand‐fixing plant in revegetated desert areas, which plays a pertinent role in stabilizing the mobile dunes and sustaining the desert ecosystems. Stem sap flows of about 10‐year‐old Artemisia ordosica plants were monitored continuously with heat balance method for the entire growing season in order to understand the water requirement and the effects of environmental factors on its transpiration and growth. Environment factors such as solar radiation, air temperatures, relative humidity, wind speed and precipitation were measured by the eddy covariance. Diurnal and seasonal variations of sap flow rate with different stem diameters and their correlation with meteorological factors and reference evapotranspiration were analysed. At the daily time scale, there was a significantly linear relationship between sap flow rate and reference evapotranspiration with a correlation coefficient of R2 = 0·6368. But at the hourly time scale, the relationship of measured sap flow rate and calculated reference evapotranspiration (ET0) was affected by the precipitation. A small precipitation would increase the sap flow and the ET0; however, when the precipitation is large, the sap flow and ET0 decrease. Leaf area index had a coincident variation with soil water content; both were determined by the precipitation, and meteorological factors were the most significant factors that affected the sap flow of Artemisia ordosica in the following order: solar radiation > vapour pressure deficit > relative humidity > air temperature > wind speed. The close correlation between daily sap flow rate and meteorological factors in the whole growing season would provide us an accurate estimation of the transpiration of Artemisia ordosica and rational water‐carrying capacity of sand dunes in the revegetated desert areas. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
W. Zhao  X. Chang  Z. Zhang 《水文研究》2009,23(10):1461-1470
As an important source of income in the region's economy, the jujube plantations are very common in arid north‐western China, and their planted areas continue to expand. In the central Heihe River Basin of arid north‐western China, Linze jujube (Zizyphus jujuba Mill. var. inermis (Bunge) Rehd.) plantations cover more than 10,000 ha, too. Water use by this species is expected to change or modify catchment hydrological process. To our knowledge, there is no information on the transpiration and canopy conductance of the jujube plantations in arid north‐western China. Therefore, Transpiration and canopy conductance were monitored in a 14‐year‐old Linze jujube orchard. The experiment was carried out in the central Heihe River Basin, near Pingchuan Town (Linze County, Gansu Province, China) during growing season of 2006, from May to the first ten days of October. Eight trees were used to measure sap flow using the heat‐pulse‐velocity method. The orchard was irrigated adequately during the study. Transpiration was estimated from the sap flow measurements. During the experiment, the transpiration rate of the orchard ranged from 0·32 to 1·40 mm per day. Canopy conductance was obtained from estimated daily transpiration and climatic variables measured on a half‐hour basis, and canopy conductance for water vapour transfer was between 1·20 to 82·57 mm s?1, with a mean of 11·86 ± 6·84 mm s?1 during the observation period. Air temperature and vapour‐pressure deficit exhibited a linear relationship with sap flow velocity and the relationship between these factors and canopy conductance could be represented by an exponential decay function. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
This study was undertaken to evaluate the effects of climatic variability on inter‐annual variations in each component of evapotranspiration (ET) and the total ET in a temperate coniferous forest in Japan. We conducted eddy covariance flux and meteorological measurements for 7 years and parameterized a one‐dimensional multi‐layer biosphere‐atmosphere model (Kosugi et al., 2006 ) that partitions ET to transpiration (Tr), wet‐canopy evaporation (Ewet), and soil evaporation (Esoil). The model was validated with the observed flux data. Using the model, the components of ET were estimated for the 7 years. Annual precipitation, ET, Tr, Ewet, and Esoil over the 7 years were 1536 ± 334 mm, 752 ± 29 mm, 425 ± 37 mm, 219 ± 34 mm, and 108 ± 10 mm, respectively. The maximum inter‐annual fluctuation of observed ET was 64 mm with a coefficient of variance (CV) of 2.7%, in contrast to relatively large year‐to‐year variations in annual rainfall (CV = 20.1%). Tr was related to the vapour pressure deficit, incoming radiation, and air temperature with relatively small inter‐annual variations (CV = 8.2%). Esoil (CV = 8.6%) was related mainly to the vapour pressure deficit. Ewet was related to precipitation with large inter‐annual variations (CV = 14.3%) because of the variability in precipitation. The variations in Ewet were counterbalanced by the variations in Tr and Esoil, producing the small inter‐annual variations in total ET. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
Measurements of sap flow, meteorological parameters, soil water content and tension were made for 4 months in a young cashew (Anacardium occidentale L.) plantation during the 2002 rainy season in Ejura, Ghana. This experiment was part of a sustainable water management project in West Africa. The Granier system was used to measure half‐hourly whole‐tree sap flow. Weather variables were observed with an automatic weather station, whereas soil moisture and tension were measured with a Delta‐T profile probe and tensiometers respectively. Clearness index (CI), a measure of the sky condition, was significantly correlated with tree transpiration (r2 = 0·73) and potential evaporation (r2 = 0·86). Both diurnal and daily stomata conductance were poorly correlated with the climatic variables. Estimated daily canopy conductance gc ranged from 4·0 to 21·2 mm s−1, with a mean value of 8·0 ± 3·3 mm s−1. Water flux variation was related to a range of environmental variables: soil water content, air temperature, solar radiation, relative humidity and vapour pressure deficit. Linear and non‐linear regression models, as well as a modified Priestley–Taylor formula, were fitted with transpiration, and the well‐correlated variables, using half‐hourly measurements. Measured and predicted transpiration using these regression models were in good agreement, with r2 ranging from 0·71 to 0·84. The computed measure of accuracy δ indicated that a non‐linear model is better than its corresponding linear one. Furthermore, solar radiation, CI, clouds and rain were found to influence tree water flux. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

15.
To elucidate splash erosion processes under natural rainfall conditions, temporal variations in splash detachment were observed using a piezoelectric saltation sensor (H11B; Sensit Co., Portland, ND, USA). Preliminary laboratory tests of Sensit suggested that they were suitable for field observations. Field observations were conducted between July and September 2006 in 21‐ and 36‐year‐old Japanese cypress (Chamaecyparis obtusa) plantations with mean stand heights of 9·2 m and 17·4 m, respectively. Splash detachment (in g m?2) was measured seven times using splash cups, and raindrop kinetic energy (in J m?2 mm?1) in both stands was measured using laser drop‐sizing (LD) gauges. Sensit was installed to record saltation counts, which were converted to temporal data of splash detachment (splash rate; in g m?2 10 min?1) using the relationship between splash detachment and saltation counts. Surface runoff was monitored using runoff plots of 0·5 m width and 2·0 m length to obtain temporal data of flow depth (in millimeters). Both total splash detachment and raindrop kinetic energy were larger in the older stand. Increased splash rates per unit throughfall were found in both stands after rainless durations longer than approximately one day in both stands. However, a lower splash rate was found in the 21‐year stand after rainfall events. During extreme rainstorms, the 21‐year stand showed a low runoff rate and a decline in the splash rate, while the 36‐year stand showed a higher splash rate and increased flow depth. The piezoelectric sensor proved to be a useful means to elucidate splash erosion processes in field conditions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Large land areas in Sweden are planned to be planted with high producing, short rotation forest stands of willow in the beginning of the 1990s. Since willow is a highly hydrophilic species, this new land use may have strong implications on water resources. To assess these implications, evaporation of Salix viminalis and Salix viminalis x caprea stands in lysimeters was analysed with the simple, yet physically realistic KAUSHA model. Parameter values for the Lohammar equation were deduced (b = 100 m3 kg?1, kmax = 0.01 m s?1), believed to be applicable to other sites. Simulated evaporation during the 1980 growth season for a normal stand with a production of 12 tonnes of dry matter per hectare per season was 526 mm, of which 375 mm was transpiration, 56 mm interception evaporation, and 95 mm soil evaporation. For an optimally irrigated 20-tonnes stand, the total evaporation was 584 mm, of which 430 mm was transpiration. As a comparison, Penman open water evaporation was 430 mm. To avoid soil water stress in the 20-tonnes stand, 140 mm was needed as irrigation, equivalent to 25 per cent of the mean annual precipitation. Since intensively cultivated willow plantations seemed to be using much water, it was concluded that introduction of this agri-forestry practice must be carefully planned to make use of this property, e.g. in biological filters or in reclaiming water-logged land.  相似文献   

17.
The aim of this study was to obtain the diurnal and seasonal changes of trunk sap flow in desert‐living Caragana korshinskii so as to understand its water requirement and ecological significance. The experiment was carried out with 15‐year old Caragana korshinskii grown in north‐west China under natural conditions. Heat pulse sensors based on the heat compensation theory were applied to measure the trunk sap flow, and soil moisture content at 0–300 cm layer, using tube‐type time domain reflectometry (Tube‐TDR). The solar radiation, the maximum and minimum air temperatures, relative humidity, wind speed, wind direction and precipitation were measured at a standard automatic weather station. The diurnal and seasonal variations of sap flow rate, the sap velocity at different positions in the trunk and the sap flow rate under different weather conditions were analysed. And the correlation between the sap flow rate and the meteorological factors was also analysed. Results showed that the trunk sap flow varied regularly in the diurnal term and the sap flow velocity decreased with the probe‐inserted depth into the sapwood. Magnitude of sap flow changed considerably between sunny and rainy days. The order of the main meteorological factors affecting the sap flow rate of Caragana korshinskii shrubs were: vapour pressure deficit > solar radiation > air temperature > wind speed. The close correlation between daily sap flow rate and meteorological factors in the whole growing season can be used to estimate the transpiration of Caragana korshinskii. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
Field experiments were conducted to investigate the effects of leaf area index and soil moisture content on evapotranspiration and its components within an apple orchard in northwest China for 2 years. Evapotranspiration in the non‐rainfall period was estimated using two approaches: the soil water balance method based on tube‐type time‐domain reflection measurements, and sap flow plus micro‐lysimeter methods. The two methods were in good agreement, with differences usually less than 10%. The components of evapotranspiration varied with canopy development. During spring and autumn, soil evaporation was dominating as result of low leaf area index. In summer, plant transpiration became significant, with an average transpiration to evapotranspiration ratio of 0·87. The crop coefficient Kc showed a strong linear dependence on leaf area index. The water stress coefficient Ks was around 1·0 when soil moisture was above 23% and started to decrease linearly after that. This study demonstrates that prediction of evapotranspiration in apple orchards can be made using the Food and Agriculture Organization's crop coefficient method from commonly available meteorological data in the area. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
Street and garden trees in urban areas are often exposed to advection of strong vapour pressure deficit (VPD) air that can raise the whole‐tree transpiration rate (ET), known as the oasis effect. However, urban trees tend to have small soil volume compared with natural conditions, and so they are believed to strongly regulate stomata. ET characteristics of such urban trees have not been well understood because of a lack of reliable measurement methods. Therefore, we propose a novel weighing lysimeter method and investigate the whole‐tree water balance of an isolated container‐grown Zelkova serrata to examine (a) which biotic and abiotic factors determine ET and (b) which spatial and temporal information is needed to predict ET under urban conditions. Whole‐tree water balance and environmental conditions were measured from 2010 to 2012. Although leaf area substantially increased in the study period, daily ET did not vary much. ET increased with VPD almost linearly in 2010 but showed saturation in 2011 and 2012. Root water uptake lagged ET by 40 min in 2012. These results suggest that the small planter box interfered with root growth and that hydraulic supply capacities did not increase sufficiently to support leaf area increase. From analysis of water balance, we believe that neglecting soil drought effects on street trees without irrigation in Japan will overestimate ET over 4–5 sunny days at the longest. This is unlike previous studies of forest.  相似文献   

20.
Bananas are widely cultivated in tropical and subtropical countries and about 220 tons of biomass waste is produced per hectare of banana plantation. Banana pseudostem contains nearly 90% of moisture and about 4–5 m3 sap is generated from one ton of dried stem with high chemical oxygen demand(COD) and biological oxygen demand (BOD). The feasibility of using banana sap as a feedstock to produce ethanol is evaluated in this study. Banana sap is obtained by crushing the pseudostems and concentrated ten times and supplementing with other industrial byproducts such as corn steep liquor(CSL), spent wash (SW), and yeast extract (YE) for ethanol production. Acid and alkali hydrolyzes are performed to enhance the sugar levels of the sap before fermentation. Two different strains of Saccharomyces cerevisiae (MTCC170 and MTCC180) are used for fermentation. In general, supplementation of banana sap with industrial byproducts significantly enhanced the ethanol production. The maximum ethanol production (2.5 g ?1) is observed with concentrated banana sap supplemented with 25% SW (v/v) with MTCC170, which is 16‐fold higher than banana sap alone. Theethanol content is also higher in alkali‐hydrolyzed banana sap supplemented with 25% SW compared to control. These results suggest that banana sap can be used as a renewable source to produce ethanol by supplementing with other industrial byproducts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号