首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Radionuclides released to the environment and deposited with or onto snow can be stored over long time periods if ambient temperature stays low, particularly in glaciated areas or high alpine sites. The radionuclides will be accumulated in the snowpack during the winter unless meltwater runoff at the snow base occurs. They will be released to surface waters within short time during snowmelt in spring. In two experiments under controlled melting conditions of snow in the laboratory, radionuclide migration and runoff during melt‐freeze‐cycles were examined. The distribution of Cs‐134 and Sr‐85 tracers in homogeneous snow columns and their fractionation and potential preferential elution in the first meltwater portions were determined. Transport was associated with the percolation of meltwater at ambient temperatures above 0 °C after the snowpack became ripe. Mean migration velocities in the pack were examined for both nuclides to about 0.5 cm hr?1 after one diurnal melt‐freeze‐cycle at ambient temperatures of ?2 to 4 °C. Meltwater fluxes were calculated with a median of 1.68 cm hr?1. Highly contaminated portions of meltwater with concentration factors between 5 and 10 against initial bulk concentrations in the snowpack were released as ionic pulse with the first meltwater. Neither for caesium nor strontium preferential elution was observed. After recurrent simulated day‐night‐cycles (?2 to 4 °C), 80% of both radionuclides was released with the first 20% of snowmelt within 4 days. 50% of Cs‐134 and Sr‐85 were already set free after 24 hr. Snowmelt contained highest specific activities when the melt rate was lowest during the freeze‐cycles due to concentration processes in remaining liquids, enhanced by the melt‐freeze‐cycling. This implies for natural snowpack after significant radionuclide releases, that long‐time accumulation of radionuclides in the snow during frost periods, followed by an onset of steady meltwater runoff at low melt rates, will cause the most pronounced removal of the contaminants from the snow cover. This scenario represents the worst case of impact on water quality and radiation exposure in aquatic environments.  相似文献   

2.
Stable isotope exchange processes between solid and liquid phases of a natural melting snowpack are investigated in detail by separating the liquid water from snow grains at different depths of the snowpack and collecting the bottom discharge using a lysimeter. In the melting–freezing mass exchange process between the two phases, the theoretical slope of the δD? δ18O line for newly refrozen ice is calculated to be nearly that of pore water. However, based on observations of the isotopic evolution and snow grain coarsening of the snowpack, it is demonstrated that the slope of the δD? δ18O line for newly refrozen ice is equal to that of the original ice. This is proved to be due to preferential water flow in the snowpack, which leads to relatively more deuterium and less oxygen‐18 in the mobile water than the immobile water because of the kinetic effect. Higher mass exchange rate in the mobile water region results in excess deuterium in the bulk refrozen ice, compared with the fractionation of uniform fractionation factors and exchange rate. This effect, which is termed the ‘preferential exchange rate effect of isotopic fractionation’, is shown to be larger in the lower part than the upper part of the snowpack. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
The isotopic composition of solid and liquid portions of natural melting snowpack is investigated in detail by the separating of liquid water from snow grains at different depths of the snowpack. The slope of the δD–δ18O line for the liquid phase is found to be lower than for the solid phase. This is proved to be due to the isotopic fractionation occurring in the melt–freeze mass exchange within the snowpack. Melting of the snowpack has no clear impact on the δD–δ18O line for the solid phase, but the slope of the δD–δ18O line for the liquid shows an overall slight decrease in the melting period. When the snowpack is refrozen, the refreezing process would inevitably cause the slope of the solid phase to decrease because of the discrepancy between the slopes of the two phases. Thus the slope of the solid would become lower and lower as the diurnal melt–freeze episodes cycle throughout the melting season. This effect is then demonstrated by looking into the isotopic composition changes of glacier firn. The extent of the effect depends on the snowpack properties and environmental conditions. The slope changes also result in a decreasing trend in deuterium excess. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
Snow temperature is a major component of many physical processes in a snowpack. The temperature and the change in temperature across a layer have a dominant effect on physical properties of snow grains as well as its hardness, strength, and failure resistance. In this study, temperature and snow cover thickness were measured during the snow season of 2007–2008 in 11 elevation classes and in three different sampling locations, one in an open area and two under different forest canopy covers for each class along Kartalkaya road, Bolu. Each sampling site was visited 44 times to collect data including snow depth, snow surface temperature, ground temperature, and temperature within snowpack at 20‐cm intervals. Seven different models are developed to determine snowpack temperature variations under forest canopy covers and in an open area with different leaf area index values. All models were performed using a multilayer perceptron (MP) method for the Bolu–Kartalkaya area, Turkey. MP approach constitutes a standard form of neural network modeling and can modify two‐layer linear perceptron methods using three and more layers. The ability of MP is to handle complex nonlinear interactions, which ease the natural process of modeling. This method can overcome complex computations using neuron networks, and they can easily nonlinearly link input and output variables. The predictive errors are determined on the basis of mean absolute error and mean square error criteria. The Nash–Sutcliffe sufficiency score showing compliance between observed and predicted values is also calculated. According to the mean absolute error, the mean square error, and the Nash–Sutcliffe sufficiency score criteria, the predictive errors are within reasonable error intervals, justifying the use of the developed MP models for engineering applications. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
High‐resolution, spatially extensive climate grids can be useful in regional hydrologic applications. However, in regions where precipitation is dominated by snow, snowmelt models are often used to account for timing and magnitude of water delivery. We developed an empirical, nonlinear model to estimate 30‐year means of monthly snowpack and snowmelt throughout Oregon. Precipitation and temperature for the period 1971–2000, derived from 400‐m resolution PRISM data, and potential evapotranspiration (estimated from temperature and day length) drive the model. The model was calibrated using mean monthly data from 45 SNOTEL sites and accurately estimated snowpack at 25 validation sites: R2 = 0·76, Nash‐Sutcliffe Efficiency (NSE) = 0·80. Calibrating it with data from all 70 SNOTEL sites gave somewhat better results (R2 = 0·84, NSE = 0·85). We separately applied the model to SNOTEL stations located < 200 and ≥ 200 km from the Oregon coast, since they have different climatic conditions. The model performed equally well for both areas. We used the model to modify moisture surplus (precipitation minus potential evapotranspiration) to account for snowpack accumulation and snowmelt. The resulting values accurately reflect the shape and magnitude of runoff at a snow‐dominated basin, with low winter values and a June peak. Our findings suggest that the model is robust with respect to different climatic conditions, and that it can be used to estimate potential runoff in snow‐dominated basins. The model may allow high‐resolution, regional hydrologic comparisons to be made across basins that are differentially affected by snowpack, and may prove useful for investigating regional hydrologic response to climate change. Published in 2011 by John Wiley & Sons, Ltd.  相似文献   

6.
The influence of winter on methane (CH4) stored in pore water and emitted through snow was investigated in a temperate poor fen in New Hampshire over two winters. Methane accumulated beneath ice layers (1 cm) deposited by freezing rain, resulting in snow-pore air mixing ratios as high as 140 ppmv during the first winter and 600 ppmv during the second. An early winter snow crust of 300 kg m?3 caused no discontinuity in a linear mixing ratio profile and therefore was not observed to retard snowpack emissions. Methane concentration-depth profiles in pore water steepened and concentrations increased by as much as 400 μM at the 10 and 20 cm depths as the ice cover formed. This suggests that the peat-ice cover plays an important part in CH4 build-up in pore water by limiting the transport of gases between the peat and the atmosphere. Pore water concentrations gradually declined through late winter. The seasonality of dissolved CH4 in pore water over two winters and one summer showed an average annual amplitude of 1.3 gCH4m?2 (25–75cm depth range), with a winter maximum of 4.7gCH4m?2. Emissions during the winter with average snowfall accounted for a larger percentage (9.2% in 1993–1994) of total annual emission than the winter with below-average snowfall and warmer air temperature (2% in 1994–1995). Emissions averaged 56 and 26mg m?2 day?1 during the first and second winter (December, January and February), respectively.  相似文献   

7.
A one‐dimensional energy and mass balance snow model (SNTHERM) has been modified for use with supraglacial snowpacks and applied to a point on Haut Glacier d'Arolla, Switzerland. It has been adapted to incorporate the underlying glacier ice and a site‐specific, empirically derived albedo routine. Model performance was tested against continuous measurements of snow depth and meltwater outflow from the base of the snowpack, and intermittent measurements of surface albedo and snowpack density profiles collected during the 1993 and 2000 melt seasons. Snow and ice ablation was simulated accurately. The timing of the daily pattern of meltwater outflow was well reproduced, although magnitudes were generally underestimated, possibly indicating preferential flow into the snowpack lysimeter. The model was used to assess the quantity of meltwater stored temporally within the unsaturated snowpack and meltwater percolation rates, which were found to be in agreement with dye tracer experiments undertaken on this glacier. As with other energy balance studies on alpine valley glaciers, the energy available for melt was dominated by net radiation (64%), with a sizable contribution from sensible heat flux (36%) and with a negligible latent heat flux overall, although there was more complex temporal variation on diurnal timescales. A basic sensitivity analysis indicated that melt rates were most sensitive to radiation, air temperature and snowpack density, indicating the need to accurately extrapolate/interpolate these variables when developing a spatially distributed framework for this model. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
The Special Sensor Microwave/Imager (SSM/I) radiometer is a useful tool for monitoring snow wetness on a large scale because water content has a significant effect on the microwave emissions at the snowpack surface. To date, SSM/I snow wetness algorithms, based on statistical regression analysis, have been developed only for specific regions. Inadequate ground-based snow wetness measurements and the non-linearity between SSM/I brightness temperatures (TBs) and snow wetness over varied vegetation covered terrain has impeded the development of a general model. In this study, we used a previously developed linear relationship between snowpack surface wetness (% by volume) and concurrent air temperature (°C) to estimate the snow wetness at ground weather stations. The snow condition (snow free, dry, wet or refrozen snow) of each SSM/I pixel (a 37 × 29 km area at 37.0 GHz) was determined from ground-measured weather data and the TB signature. SSM/I TBs of wet snow were then linked with the snow wetness estimates as an input/output relationship. A single-hidden-layer back-propagation (backprop) artificial neural network (ANN) was designed to learn the relationships. After training, the snow wetness values estimated by the ANN were compared with those derived by regression models. Results show that the ANN performed better than the existing regression models in estimating snow wetness from SSM/I data over terrain with different amounts of vegetation cover.  相似文献   

9.
Direct measurements of winter water loss due to sublimation were made in a sub‐alpine forest in the Rocky Mountains of Colorado. Above‐and below‐canopy eddy covariance systems indicated substantial losses of winter‐season snow accumulation in the form of snowpack (0·41 mm d?1) and intercepted snow (0·71 mm d?1) sublimation. The partitioning between these over and under story components of water loss was highly dependent on atmospheric conditions and near‐surface conditions at and below the snow/atmosphere interface. High above‐canopy sensible heat fluxes lead to strong temperature gradients between vegetation and the snow‐surface, driving substantial specific humidity gradients at the snow surface and high sublimation rates. Intercepted snowfall resulted in rapid response of above‐canopy latent heat fluxes, high within‐canopy sublimation rates (maximum = 3·7 mm d?1), and diminished sub‐canopy snowpack sublimation. These results indicate that sublimation losses from the sub‐canopy snowpack are strongly dependent on the partitioning of sensible and latent heat fluxes in the canopy. This compels comprehensive studies of snow sublimation in forested regions that integrate sub‐canopy and over‐story processes. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
Despite its strong impact on the time evolution of the snowpack, current estimation of new snow density (ρhn) is usually accomplished either by using local empirical techniques or by assuming a constant snow density. Faced with the lack of an estimation model of ρhn valid for a wide spatial scale and supported by a suitable number of observations, this study aims to develop simple monthly linear regression models at scale of the entire Italian Alpine chain based on 12,112 snowfall observations at 122 stations, using only air temperature as predictor. Moreover, the remaining variance is investigated in both time and space, also considering some qualitative features of the snowfall events. The daily ρhn measurements present a mean value of 115 kg m?3 (105 and 159 kg m?3 for dry and wet conditions, respectively). The mean air temperature of the 24 hr preceding the snowfall event has been found to be the best predictor of the ρhn, within 31% of uncertainty. The analysis of associated residues allows supporting the idea that the adoption of a more local approach than the one analysed here is not able to substantially increase the predictive capabilities of the model. In fact, the main factor explaining the remaining variance over the air temperature is the wind, but in a complex orography, as mountain regions are, supplying realistic local wind fields is particularly challenging. Therefore, we conclude that using only the daily mean temperature as predictor is a good choice for estimating daily new snow density at scale of Italian Alpine chain, as well as at more regional scale.  相似文献   

11.
Warm winters and high precipitation in north-eastern Japan generate snow covers of more than three meters depth and densities of up to 0.55 g cm−3. Under these conditions, rain/snow ratio and snowmelt have increased significantly in the last decade under increasing warm winters. This study aims at understanding the effect of rain-on-snow and snowmelt on soil moisture under thick snow covers in mid-winter, taking into account that snowmelt in spring is an important source of water for forests and agriculture. The study combines three components of the Hydrosphere (precipitation, snow cover and soil moisture) in order to trace water mobility in winter, since soil temperatures remained positive in winter at nearly 0.3°C. The results showed that soil moisture increased after snowmelt and especially after rain-on-snow events in mid-winter 2018/2019. Rain-on-snow events were firstly buffered by fresh snow, increasing the snow water equivalent (SWE), followed by water soil infiltration once the water storage capacity of the snowpack was reached. The largest increase of soil moisture was 2.35 vol%. Early snowmelt increased soil moisture with rates between 0.02 and 0.035 vol% hr−1 while, rain-on-snow events infiltrated snow and soil faster than snowmelt and resulted in rates of up to 1.06 vol% hr−1. These results showed the strong connection of rain, snow and soil in winter and introduce possible hydrological scenarios in the forest ecosystems of the heavy snowfall regions of north-eastern Japan. Effects of rain-on-snow events and snowmelt on soil moisture were estimated for the period 2012–2018. Rain/snow ratio showed that only 30% of the total precipitation in the winter season 2011/2012 was rain events while it was 50% for the winter 2018/2019. Increasing climate warming and weakening of the Siberian winter monsoons will probably increase rain/snow ratio and the number of rain-on-snow events in the near future.  相似文献   

12.
Seasonal low flows are important for sustaining ecosystems and for supplying human needs during the dry season. In California's Sierra Nevada mountains, low flows are primarily sustained by groundwater that is recharged during snowmelt. As the climate warms over the next century, the volume of the annual Sierra Nevada snowpack is expected to decrease by ~40–90%. In eight snow‐dominated catchments in the Sierra Nevada, we analysed records of snow water equivalent (SWE) and unimpaired streamflow records spanning 10–33 years. Linear extrapolations of historical SWE/streamflow relationships suggest that annual minimum flows in some catchments could decrease to zero if peak SWE is reduced to roughly half of its historical average. For every 10% decrease in peak SWE, annual minimum flows decrease 9–22% and occur 3–7 days earlier in the year. In two of the study catchments, Sagehen and Pitman Creeks, seasonal low flows are significantly correlated with the previous year's snowpack as well as the current year's snowpack. We explore how future warming could affect the relationship between winter snowpacks and summer low flows, using a distributed hydrologic model Regional Hydro‐ecologic Ecosystem Simulation System (RHESSys) to simulate the response of two study catchments. Model results suggest that a 10% decrease in peak SWE will lead to a 1–8% decrease in low flows. The modelled streams do not dry up completely, because the effects of reduced SWE are partly offset by increased fall or winter net gains in storage, and by shifts in the timing of peak evapotranspiration. We consider how groundwater storage, snowmelt and evapotranspiration rates, and precipitation phase (snow vs rain) influence catchment response to warming. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
14.
15.
Snowpacks and forests have complex interactions throughout the large range of altitudes where they co-occur. However, there are no reliable data on the spatial and temporal interactions of forests with snowpacks, such as those that occur in nearby areas that have different environmental conditions and those that occur during different snow seasons. This study monitored the interactions of forests with snowpacks in four forest stands in a single valley of the central Spanish Pyrenees during three consecutive snow seasons (2015/2016, 2016/2017 and 2017/2018). Daily snow depth data from time-lapse cameras were compared with snow data from field surveys that were performed every 10–15 days. These data thus provided information on the spatial and temporal changes of snow–water equivalent (SWE). The results indicated that forest had the same general effects on snowpack in each forest stand and during each snow season. On average, forest cover reduced the duration of snowpack by 17 days, reduced the cumulative SWE of the snowpack by about 60% and increased the spatial heterogeneity of snowpack by 190%. Overall, forest cover reduced SWE total accumulation by 40% and the rate of SWE accumulation by 25%. The forest-mediated reduction of the accumulation rate, in combination with the occasional forest-mediated enhancement of melting rate, explained the reduced duration of snowpacks beneath forest canopies. However, the magnitude and timing of certain forest effects on snowpack had significant spatial and temporal variations. This variability must be considered when selecting the location of an experimental site in a mountainous area, because the study site should be representative of surrounding areas. The same considerations apply when selecting a time period for study.  相似文献   

16.
A degree‐day‐based model is presented for a 1 year ahead runoff forecast, with 1 day time steps. The input information is a single snowpack evaluation collected at the beginning of the snowmelt season. The snow‐cover dynamics, the key information for long‐term snowmelt forecast, are described by the snow‐line dynamics, i.e. by the movements of the downhill snowpack limit. The snowmelt volume, estimated by the snow‐line dynamics, is the exogenous input of an autoregressive transformation model. The model is calibrated by a least‐squares procedure on the basis of observed daily runoff data and the corresponding measurements of the snowpack volume (one measurement per year). A real‐world case study on the Alto Tunuyan River basin (2380 km2, Argentinean Andes) is presented. The 1 year ahead Alto Tunuyan River runoff patterns, computed for both calibration and validation periods, reveal high agreement with observed streamflows. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

17.
Snow is a critical storage component in the hydrologic cycle, but current measurement networks are sparse. In addition, the heterogeneity of snow requires surveying larger areas to measure the areal average. We presented snow measurements using GPS interferometric reflectometry (GPS‐IR). GPS‐IR measures a large area (~100 m2), and existing GPS installations around the world have the potential to expand existing snow measurement networks. GPS‐IR uses a standard, geodetic GPS installation to measure the snow surface via the reflected component of the signal. We reported GPS‐IR snow depth measurements made at Niwot Ridge, Colorado, from October 2009 through June 2010. This site is in a topographic saddle at 3500 m elevation with a peak snow depth of 1.7 m near the GPS antenna. GPS‐IR measurements are compared with biweekly snow surveys, a continuously operating scanning laser system and an airborne light detection and ranging (LIDAR) measurement. The GPS‐IR measurement of peak snowpack (1.36–1.76 m) matches manual measurements (0.95–1.7 m) and the scanning laser (1.16 m). GPS‐IR has RMS error of 13 cm (bias = 10 cm) compared with the laser, although differences between the measurement locations make comparison imprecise. Over the melt season, when the snowpack is more homogenous, the difference between the GPS‐IR and the laser is reduced (RMS = 9 cm, bias = 6 cm). In other locations, the GPS and the LIDAR agree on which areas have more or less snow, but the GPS estimates more snow on the ground on tracks to the west (1.58 m) than the LIDAR (1.14 m). Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
The geophysical, thermodynamic and dielectric properties of snow are important state variables that are known to be sensitive to Arctic climate variability and change. Given recent observations of changes in the Arctic physical system (Arctic Climate Impact Assessment, 2004), it is important to focus on the processes that give rise to variability in the horizontal, vertical and temporal dimensions of the life‐history of snow on sea ice. The objectives in this study are to present these ‘state’ variables and to investigate the processes that govern variability in the vertical, horizontal and temporal dimension by using a case study over land‐fast first‐year sea ice for the period December 2003 to June 2004. Results from two sampling areas (thin and thick snowpacks) show that differences in snowpack thickness can substantially change the vertical and temporal evolution of snow properties. During the late fall and early winter (cooling period) we measured no significant changes in the physical properties, except for thin snow‐cover salinity, which decreased throughout the period. Fall‐snow desalination was only observed under thin snowpacks with a rate of ?0·12 ppt day?1. Significant changes occurred in the late winter and early spring (warming period), especially for snow grain size. Snow grain kinetic growth of 0·25–0·48 mm·day?1 was measured coincidently with increasing salinity and wetness for both thin and thick snowpacks. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
Information on snow properties plays an important role in hydrological, meteorological and climatological applications. Passive microwave remote sensing is an effective method to retrieve snowpack parameters; however, the observations can be obscured if there is wet snow in the satellite footprint. To study the emission properties of wet snow and check its response to snow wetness, this paper applies the multi‐layer Helsinki University of Technology (HUT) snow emission model coupled with the Advanced Integral Equation Model to simulate the low‐wetness snowpack observed at Luancheng in November 2009, and the high wetness snowpack observed at Weissfluhjoch in June 1995. Input parameters are acquired by the in‐situ snow pit measurements, while the snow grain size is fitted by comparing model predictions with the observed passive microwave signals at a range of observing angles. Results show that the application of a multi‐layer model is capable to consider the distribution pattern of the snow wetness along the snow profile and the refrozen ice crust of the snow surface. The multi‐layer HUT model is able to reproduce the wet snow emission properties, with an rms error of 4.4 K (at Luancheng) and 5.7 K (at Weissfluhjoch) at vertical polarization, and an rms error of 7.9 K (at Luancheng) and 11.4 K (at Weissfluhjoch) at horizontal polarization. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
We evaluate the reliability of the joint use of Ground Penetrating Radar (GPR) and Time Domain Reflectometry (TDR) to map dry snow depth, layering, and density where the snowpack thickness is highly irregular and the use of classical survey methods (i.e., hand probes and snow sampling) is unsustainable.We choose a test site characterised by irregular ground morphology, slope, and intense wind action (about 3000 m a.s.l., Western Alps, northern Italy) in dry snow conditions and with a snow-depth ranging from 0.3 m to 3 m over a few tens of metres over the course of a season.The combined use of TDR and high-frequency GPR (at a nominal frequency of 900 MHz) allows for rapid high-resolution imaging of the snowpack. While the GPR data show the interface between the snowpack and the ground, the snow layering, and the presence of snow crusts, the TDR survey allows the local calibration of wave speed based on GPR measurements and the estimation of layer densities. From January to April, there was a slight increase in the average wave speed from 0.22 to 0.24 m/ns from the accumulation zone to the eroded zone. The values are consistent with density values in the range of 350–450 kg/m3, with peaks of 600 kg/m3, as gravimetrically measured from samples from snow pits at different times. The conversion of the electromagnetic wave speed into density agrees with the core samples, with an estimated uncertainty of about 10%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号