首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Knowledge of the spatial–temporal variability of soil water content is critical for water management and restoration of vegetation in semi-arid areas. Using the temporal stability method, we investigated soil water relations and spatial–temporal variability of volumetric soil water content (VSWC) in the grassland–shrubland–forest transect at a typical semi-arid subalpine ecosystem in the Qilian Mountains, northwestern China. The VSWC was measured on 48 occasions to a depth of 70 cm at 50 locations along a 240-m transect during the 2016–2017 growing seasons. Results revealed that temporal variability in VSWC in the same soil layer in the three vegetation types and averaged across vegetation types tended to exhibit similar patterns of a decrease with increasing soil depth. Temporal stability in each vegetation type was stronger with an increase in soil depth. However, the results of temporal stability determined with standard deviation of relative difference (SDRD) disagreed with those based on the Spearman's rank correlation coefficient; the forest site had the highest Spearman rank correlation coefficient while the shrubland—the smallest SDRD in the 0–20 cm soil layer. Correlation analyses of VSWCs between two vegetation types indicated that soil water was related among all three vegetation types at the 0–20, and 0–70 cm soil layer, but in the 20–40 and 40–70 cm soil layers, significant correlation (p < .01) occurred only between adjacent vegetation types. In the upper soil layer (0–20 cm), soil water relations were mainly affected by surface runoff. In the lower soil layer (20–40 and 40–70 cm), soil water relations among the three vegetation types were highly complex, and probably resulting from a combination of root distribution and activity, interflow, and the impact of deep soil freeze–thaw dynamics. These results suggest that the factors affecting soil water are complex, and further research should address the relative importance of and interactions among different determining factors.  相似文献   

2.
The unique ecological landscapes are composed of the mountain systems with the obviousvertical differentiation, vast natural desert systems, and oasis systems on which the human beings rely for the existence in the arid areas in West China. Oases are the …  相似文献   

3.
Soil moisture data of 45 years from European Center for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40) and the in situ observational data are used to study the temporal and spatial characteristics of the soil moisture in boreal spring in the area to the east of 100°E in China. Results show that ERA-40 soil moisture well reproduces the temporal and spatial features of observations. ERA-40 data capture the spatial pattern that the soils in Northeast China and Southwest China are wetter than those...  相似文献   

4.
Soil moisture is essential for plant growth and terrestrial ecosystems, especially in arid and semi‐arid regions. This study aims to quantify the variation of soil moisture content and its spatial pattern as well as the influencing factors. The experiment is conducted in a small catchment named Yangjuangou in the loess hilly region of China. Soil moisture to a depth of 1 m has been obtained by in situ sampling at 149 sites with different vegetation types before and after the rainy season. Elevation, slope position, slope aspect, slope gradient and vegetation properties are investigated synchronously. With the rainy season coming, soil moisture content increases and then reaches the highest value after the rainy season. Fluctuation range and standard deviation of soil moisture decrease after a 4‐month rainy season. Standard deviation of soil moisture increases with depth before the rainy season; after the rainy season, it decreases within the 0‐ to 40‐cm soil depth but then increases with depths below 40 cm. The stability of the soil moisture pattern at the small catchment scale increases with depth. The geographical position determines the framework of soil moisture pattern. Soil moisture content with different land‐use types is significantly increased after the rainy season, but the variances of land‐use types are significantly different. Landform and land‐use types can explain most of the soil moisture spatial variations. Soil moisture at all sample sites increases after the rainy season, but the spatial patterns of soil moisture are not significantly changed and display temporal stability despite the influence of the rainy season. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
6.
Understanding the dynamics of spatial and temporal variability of soil moisture at the regional scale and daily interval, respectively, has important implications for remote sensing calibration and validation missions as well as environmental modelling applications. The spatial and temporal variability of soil moisture was investigated in an agriculturally dominated region using an in‐situ soil moisture network located in central Saskatchewan, Canada. The study site evaluated three depths (5, 20, 50 cm) through 139 days producing a high spatial and temporal resolution data set, which were analysed using statistical and geostatistical means. Processes affecting standard deviation at the 5‐cm depth were different from the 20‐cm and 50‐cm depths. Deeper soil measurements were well correlated through the field season. Further analysis demonstrated that lag time to maximum correlation between soil depths increased through the field season. Temporal autocorrelation was approximately twice as long at depth compared to surface soil moisture as measured by the e‐folding frequency. Spatial correlation was highest under wet conditions caused by uniform rainfall events with low coefficient of variation. Overall soil moisture spatial and temporal variability was explained well by rainfall events and antecedent soil moisture conditions throughout the Kenaston soil moisture network. It is expected that the results of this study will support future remote sensing calibration and validation missions, data assimilation, as well as hydrologic model parameterization for use in agricultural regions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
Soil moisture state and variability control many hydrological and ecological processes as well as exchanges of energy and water between the land surface and the atmosphere. However, its state and variability are poorly understood at spatial scales larger than the fields (i.e. 1 km2) as well as the ability to extrapolate field scale to larger spatial scales. This study investigates soil moisture profiles, their spatial organization, and physical drivers of variability within the Walnut Creek watershed, Iowa, during Soil Moisture Experiment 2005 and relates the watershed scale findings to previous field‐scale results. For all depths, the watershed soil moisture variability was negatively correlated with the watershed mean soil moisture and followed an exponential relationship that was nearly identical to that for field scales. This relationship differed during drying and wetting. While the overall time stability characteristics were improved with observation depth, the relatively wet and dry locations were consistent for all depths. The most time stable locations, capturing the mean soil moisture of the watershed within ± 0·9% volumetric soil moisture, were typically found on hill slopes regardless of vegetation type. These mild slope locations consistently preserve the time stability patterns from field to watershed scales. Soil properties also appear to impact stability but the findings are sensitive to local variations that may not be well defined by existing soil maps. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
The antecedent soil moisture status of a catchment is an important factor in hydrological modelling. Traditional Hortonian infiltration models assume that the initial moisture content is constant across the whole catchment, despite the fact that even in small catchments antecedent soil moisture exhibits tremendous spatial heterogeneity. Spatial patterns of soil water distribution across three transects (two in a burnt area and one in an unburnt area) in a semi‐arid area were studied. At the transect scale, when the factors affecting soil moisture were limited to topographical position or local topography, spatial patterns showed time stability, but when other factors, such as vegetation, were taken into account, the spatial patterns became time unstable. At the point scale, and in the same areas, topographical position was the main factor controlling time stability. Scale dependence of time stability was studied and local topography and vegetation presence were observed to play an important role for the correlation between consecutive measures depending on the scale. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

9.
Y. Zhao  S. Peth  X. Y. Wang  H. Lin  R. Horn 《水文研究》2010,24(18):2507-2519
Temporal stability of soil moisture spatial patterns has important implications for optimal soil and water management and effective field monitoring. The aim of this study was to investigate the temporal stability of soil moisture spatial patterns over four plots of 105 m × 135 m in grid size with different grazing intensities in a semi‐arid steppe in China. We also examined whether a time‐stable location can be identified from causative factors (i.e. soil, vegetation, and topography). At each plot, surface soil moisture (0–6 cm) was measured about biweekly from 2004 to 2006 using 100 points in each grid. Possible controls of soil moisture, including soil texture, organic carbon, bulk density, vegetation coverage, and topographic indices, were determined at the same grid points. The results showed that the spatial patterns of soil moisture were considerably stable over the 3‐y monitoring period. Soil moisture under wet conditions (averaged volumetric moisture contents > 20%) was more stable than that under dry ( ) or moist ( ) conditions. The best representative point for the whole field identified in each plot was accurate in representing the field mean moisture over time (R2 ≥ 0·97; p < 0·0001). The degree of temporal persistence varied with grazing intensity, which was partly related to grazing‐induced differences in soil and vegetation properties. The correlation analysis showed that soil properties, and to a lesser extent vegetation and topographic properties, were important in controlling the temporal stability of soil moisture spatial patterns in this relatively flat grassland. Response surface regression analysis was used to quantitatively identify representative monitoring locations a priori from available soil‐plant parameters. This allows appropriate selection of monitoring locations and enhances efficiency in managing soil and water resources in semi‐arid environments. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
Temporal stability of soil water content (TS SWC) is an often‐observed phenomenon, which characterization finds multiple applications. Climate and variability in soil properties are usually mentioned as factors of TS SWC, but their effects are far from clear. The objective of this work was to use SWC modeling to evaluate the effects of climate and soil hydraulic properties on the TS of soil water at different measurement schedules. We selected four representative climates found in USA and simulated the multiyear SWC dynamics for sandy loam, loam, and silty clay loam soils, all having the lognormal spatial distribution of the saturated hydraulic conductivity. The CLIMGEN and the HYDRUS6 codes were used to generate weather patterns and to simulate SWC, respectively. Four different methods were applied to select the representative location (RL). The low probability of having the same variability of mean relative differences of soil water under different climates was found in most of the cases. The probability that the variance of mean relative differences depended on sampling frequency was generally higher than 91% for the three soils. The interannual difference in mean relative differences variation from short and intensive summer campaigns was highly probable for all climates and soils. The RLs changed as climate and measurement scheduling changed, and they were less pronounced for coarse‐textured soils. The RL selection methods based solely on bias provided more consistency as compared with other methods. The TS appears to be the result of the interplay between climate, soil properties, and survey protocols. One implication of this factor interaction effect on TS SWC is that a simulation study can be useful to decide on the feasibility of including a search for TS‐based RLs for a specific site. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
Gangcai Liu  Jianhui Zhang 《水文研究》2007,21(20):2778-2784
High frequency seasonal drought in purple soils (Regosols in FAO taxonomy) of the hilly upland areas of Sichuan basin, China, is one of the key restrictive factors for crop production. In order to manage irrigation and fertilizer application in these soils effectively, the soil water content in a sloped plot with 60 cm soil depth was measured by neutron probe devices to investigate the soil moisture regime during the 1998 rainy season after various amounts of rainfall events. The results showed that variation of soil moisture along the slope positions was highest in the top soil layer during the period of sporadic rainfall that did not induce any runoff. The coefficients of variation of soil moisture at various slope positions (upper, middle, and lower) are 17·36%, 8·95%, 10·25%, 8·58%, 8·05% and 9·21% at the 10 cm, 20 cm, 30 cm, 40 cm, 50 cm and 60 cm soil depths respectively. When surface runoff occurred, the soil moisture dynamics at various positions on the plot were then very different. Soil water content decreased more rapidly on the upper slope than on the middle and lower slope positions. When both surface runoff and throughflow occurred, the soil moisture dynamics in the various layers showed a stable period (soil water content is near constant as time elapses) that lasted about 1 week. Also, the pattern of moisture dynamics is ‘decreasing–stabilization–decreasing’. Thus, irrigation and fertilization management according to the spatial and temporal features of soil moisture dynamics on sloped land can increase the water and fertilizer utilization efficacy by reducing their losses during the stable period. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
A simple conceptual hydrological model that explicitly includes the lateral movement of soil water and operates efficiently at the landscape scale is outlined. It is applied to five areas of ecological interest in the UK to provide distributed mean monthly soil moisture on a 50 m grid. As the model's driving variables—daily rainfall and potential evapotranspiration—are assumed constant over each of the tracts of land, the variability in soil moisture is due to different soil types and to topographic effects. Box plots of the mean monthly simulated soil moisture clearly show the spread of values occasioned by modelling the lateral water movement down the hillslope. The general magnitude of the results are compared with published data wherever possible and there is some discussion of the form of the curve used in the model to describe the attenuation of evapotranspiration with decreasing soil moisture. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

13.
14.
Variability and time‐stability analysis for field‐scale (800 m) Electronically Scanned Thinned Array Radiometer soil moisture within a satellite scale footprint (∼ 50 km) were quantified using observations from the Southern Great Plains Hydrology Experiment 1997 and 1999 (SGP97 and SGP99). The pixels' time‐stability properties were examined with respect to soil, vegetation and topographic parameters in order to determine which physical parameters can be used to identify good candidate observation locations for validating soil moisture from satellite observations and global‐scale model output. The results show that the time‐stability concept remains valid at the satellite scale. The root mean square error values were 1·47, 1·51, 1·93 and 2·32% for the 1st, 2nd, 50th and 100th most stable fields, respectively. The most stable locations had sand and clay percentages consistent with sandy loam soils and moderate to high normalized difference vegetation index values. Neither land cover nor topography properties could be used to identify potentially stable fields in the study region. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
ABSTRACT

In order to improve the soil moisture (SM) modelling capacity, a regional SM assimilation scheme based on an empirical approach considering spatial variability was constructed to assimilate in situ observed SM data into a hydrological model. The daily variable infiltration capacity (VIC) model was built to simulate SM in the Upper Huai River Basin, China, with a resolution of 5 km × 5 km. Through synthetic assimilation experiments and validations, the assimilated SM was evaluated, and the assimilation feedback on evapotranspiration (ET) and streamflow are analysed and discussed. The results show that the assimilation scheme improved the SM modelling capacity, both spatially and temporally. Moreover, the simulated ET was continually affected by changes in SM simulation, and the streamflow predictions were improved after applying the SM assimilation scheme. This study demonstrates the potential value of in situ observations in SM assimilation, and provides valuable ways for improving hydrological simulations.  相似文献   

16.
The coarse resolution soil moisture (SM) data from NASA SMAP mission have been steadily produced with the expected performance since April 2015. These coarse resolution observations could be downscaled to fine resolution using fine scale observations of SM sensitive quantities from existing satellite sensors. For operational users who need near-real-time (NRT) high resolution SM data, the downscaling approach should be feasible for operational implementation, requiring limited ancillary information and primarily depending on readily available satellite observations. Based on these principles, nine potential candidate downscaling schemes were selected for developing an optimal downscaling strategy. Using remotely sensed land surface temperature (LST) and enhanced vegetation index (EVI) observations, the optimal downscaling approach was tested for operational producing a NRT 1 km SM data product from SMAP. Comprehensive assessments on the 1 km SM product were conducted based on agreement statistics with in-situ SM measurements. Statistical results show that the accuracy of the original coarse spatial resolution SMAP SM product can be significantly improved by 8% by the downscaled 1 km SM. With respect to the in-situ measurements, the 1 km SM mapping capability developed here presents a clear advantage over the SMAP/Sentinel SM data product; and it also provides better data availability for users. This study suggests that a NRT 1 km SMAP SM data product could be routinely generated from SMAP at the centre for Satellite Applications and Research of NOAA NESDIS for operational users.  相似文献   

17.
Soil moisture prediction is of great importance in crop yield forecasting and drought monitoring. In this study, the multi-layer root zone soil moisture (0-5, 0-10, 10-40 and 40-100 cm) prediction is conducted over an agriculture dominant basin, namely the Xiang River Basin, in southern China. The support vector machines (SVM) coupled with dual ensemble Kalman filter (EnKF) technique (SVM-EnKF) is compared with SVM for its potential capability to improve the efficiency of soil moisture prediction. Three remote sensing soil moisture products, namely SMAP, ASCAT and AMSR2, are evaluated for their performance in multi-layer soil moisture prediction with SVM and SVM-EnKF, respectively. Multiple cases are designed to investigate the performance of SVM, the effectiveness of coupling dual EnKF technique and the applicability of the remote sensing products in soil moisture prediction. The main results are as follows: (a) The efficiency of soil moisture prediction with SVM using meteorological variables as inputs is satisfactory for the surface layers (0-5 and 0-10 cm), while poor for the root zone layers (10-40 and 40-100 cm). Adding SMAP as input to SVM can improve its performance in soil moisture prediction, with more than 47% increase in the R-value and at least 11% reduction in RMSE for all layers. However, adding ASCAT or AMSR2 has no improvement for its performance. (b) Coupling dual EnKF can significantly improve the performance of SVM in the soil moisture prediction of both surface and the root zone layers. The increase in R-value is above 80%, while the reduction in BIAS and RMSE is respectively more than 90% and 63%. However, adding remote sensing soil moisture products as inputs can no further improve the performance of SVM-EnKF. (c) The SVM-EnKF can eliminate the influence of remote sensing soil moisture extreme values in soil moisture prediction, therefore, improve its accuracy.  相似文献   

18.
In steep soil‐mantled landscapes, the initiation of shallow landslides is strongly controlled by the distribution of vegetation, whose roots reinforce the soil. The magnitude of root reinforcement depends on the number, diameter distribution, orientation and the mechanical properties of roots that cross potential failure planes. Understanding how these properties vary in space and time in forests remains a significant challenge. Here we test the hypothesis that spatio‐temporal variations in root reinforcement along a hillslope occur as a function of topographic soil moisture gradients. To test this hypothesis we compared root reinforcement measurements from relatively dry, divergent noses to relatively wet, convergent hollows in the southern Appalachian Mountains, North Carolina, USA. Our initial results showed that root reinforcement decreased in areas of higher soil moisture because the tensile strength of roots decreased. A post hoc laboratory experiment further demonstrated that root tensile strength decreased as root moisture content increased. This effect is consistent with other experiments on stem woods showing that increased water content in the cell wall decreases tensile strength. Our experimental data demonstrated that roots can adjust to changes in the external root moisture conditions within hours, suggesting that root moisture content will change over the timescale of large storm events (hours–days). We assessed the effects of the dynamic changes in root tensile strength to the magnitude of apparent cohesion within the infinite slope stability model. Slopes can be considerably less stable when precipitation‐driven increases in saturated soil depth both increase pore pressures and decrease root reinforcement. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
Rainfall is considered as the dominant water replenishment in desert ecosystems, and the conversion of rainfall into soil water availability plays a central role in sustaining the ecosystem function. In this study, the role of biological soil crusts (BSCs), typically formed in the revegetated desert ecosystem in the Tengger Desert of China, in converting rainfall into soil water, especially for the underlying soil moisture dynamics, was clarified by taking into account the synthetic effects of BSCs, rainfall characteristics, and antecedent soil water content on natural rainfall conditions at point scale. Our results showed that BSCs retard the infiltration process due to its higher water holding capacity during the initial stage of infiltration, such negative effect could be offset by the initial wet condition of BSCs. The influence of BSCs on infiltration amount was dependent on rainfall regime and soil depth. BSCs promoted a higher infiltration through the way of prolonged water containing duration in the ground surface and exhibited a lower infiltration at deep soil layer, which were much more obvious under small and medium rainfall events for the BSCs area compared with the sand area. Generally, the higher infiltration at top soil layer only increased soil moisture at 0.03 m depth; in consequence, there was no water recharge for the deep soil, and thus, BSCs had a negative effect on soil water effectiveness, which may be a potential challenge for the sustainability of the local deep‐rooted vegetation under the site specific rainfall conditions in northwestern China.  相似文献   

20.
This article investigates the soil moisture dynamics within two catchments (Stanley and Krui) in the Goulburn River in NSW during a 3‐year period (2005–2007) using the HYDRUS‐1D soil water model. Sensitivity analyses indicated that soil type, and leaf area index were the key parameters affecting model performance. The model was satisfactorily calibrated on the Stanley microcatchment sites with a single point rainfall record from this microcatchment for both surface 30 cm and full‐profile soil moisture measurements. Good correlations were obtained between observed and simulated soil water storage when calibrations for one site were applied to the other sites. We extended the predictions of soil moisture to a larger spatial scale using the calibrated soil and vegetation parameters to the sites in the Krui catchment where soil moisture measurement sites were up to 30 km distant from Stanley. Similarly good results show that it is possible to use a calibrated soil moisture model with measurements at a single site to extrapolate the soil moisture to other sites for a catchment with an area of up to 1000 km2 given similar soils and vegetation and local rainfall data. Site predictions were effectively improved by our simple data assimilation method using only a few sample data collected from the site. This article demonstrates the potential usefulness of continuous time, point‐scale soil moisture data (typical of that measured by permanently installed TDR probes) and simulations for predicting the soil wetness status over a catchment of significant size (up to 1000 km2). Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号