首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although rewetting practices have been implemented in several cutover raised bogs, their effects on discharge patterns have not received much attention. In 1983, after peat extraction had stopped in the Leegmoor, a cutover raised bog in Germany, an experimental area was set up in order to monitor rewetting and subsequent restoration. Discharge was measured since 1984. The results suggest that rewetted raised bogs may not be effective as regulators of stream flow. An increase of low flows during a decade of rewetting could partly be attributed to weather variation. A comparison of the Leegmoor with a nearby control catchment produced similar results. A shift in the relationship between discharge and groundwater level over time was recorded. This is probably a result of the development of vegetation and a corresponding reduction of the area of open water, leading to an increase of resistance to water flow. The Leegmoor data demonstrate that the daily discharge pattern is most flashy immediately after the start of rewetting and will gradually smooth. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

2.
We assess the ability of multivariate statistical analyses applied to event hydrographs parameters, to characterize a catchment hydrological behaviour. Motivation for such an approach lies in the fact that streamflow records have yet to be exploited to their full potential towards hydrological interpretation and can be used to infer a catchment state of connectivity from a qualitative standpoint. We have therefore processed 96 event hydrographs from a small headwater temperate humid forested catchment using principal component analysis, variation partitioning and classification tree analysis. These techniques prove to be promising in discriminating contrasted types of hydrologic responses (e.g. low‐ vs high‐magnitude events, slow vs quick timing events), identifying the main hydro‐meteorological variables that control these responses and determining thresholds values of the hydro‐meteorological variables leading to a switch between catchment response types. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
Geographically isolated wetlands, those entirely surrounded by uplands, provide numerous landscape‐scale ecological functions, many of which are dependent on the degree to which they are hydrologically connected to nearby waters. There is a growing need for field‐validated, landscape‐scale approaches for classifying wetlands on the basis of their expected degree of hydrologic connectivity with stream networks. This study quantified seasonal variability in surface hydrologic connectivity (SHC) patterns between forested Delmarva bay wetland complexes and perennial/intermittent streams at 23 sites over a full‐water year (2014–2015). Field data were used to develop metrics to predict SHC using hypothesized landscape drivers of connectivity duration and timing. Connection duration was most strongly related to the number and area of wetlands within wetland complexes as well as the channel width of the temporary stream connecting the wetland complex to a perennial/intermittent stream. Timing of SHC onset was related to the topographic wetness index and drainage density within the catchment. Stepwise regression modelling found that landscape metrics could be used to predict SHC duration as a function of wetland complex catchment area, wetland area, wetland number, and soil available water storage (adj‐R2 = 0.74, p < .0001). Results may be applicable to assessments of forested depressional wetlands elsewhere in the U.S. Mid‐Atlantic and Southeastern Coastal Plain, where climate, landscapes, and hydrological inputs and losses are expected to be similar to the study area.  相似文献   

4.
Streams in the McMurdo Dry Valleys (MDVs) of Antarctica moderate an important hydrologic and biogeochemical connection between upland alpine glaciers, valley‐bottom soils, and lowland closed‐basin lakes. Moreover, MDV streams are simple but dynamic systems ideal for studying interacting hydrologic and ecological dynamics. This work synthesizes 20 years of hydrologic data, collected as part of the MDVs Long‐Term Ecological Research project, to assess spatial and temporal dynamics of hydrologic connectivity between glaciers, streams, and lakes. Long‐term records of stream discharge (Q), specific electrical conductance (EC), and water temperature (T) from 18 streams were analysed in order to quantify the magnitude, duration, and frequency of hydrologic connections over daily, annual, and inter‐annual timescales. At a daily timescale, we observe predictable diurnal variations in Q, EC, and T. At an annual timescale, we observe longer streams to be more intermittent, warmer, and have higher median EC values, compared to shorter streams. Longer streams also behave chemostatically with respect to EC, whereas shorter streams are more strongly characterized by dilution. Inter‐annually, we observe significant variability in annual runoff volumes, likely because of climatic variability over the 20 record years considered. Hydrologic connections at all timescales are vital to stream ecosystem structure and function. This synthesis of hydrologic connectivity in the MDVs provides a useful end‐member template for assessing hydrologic connectivity in more structurally complex temperate watersheds. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
Understanding near-stream groundwater dynamics and flow directions is important for predicting hillslope-stream connectivity, streamflow generation, and hydrologic controls of streamwater quality. To determine the drivers of groundwater flow in the stream corridor (i.e., the stream channel and the adjacent groundwater in footslopes and riparian areas), we observed the water levels of 36 wells and 7 piezometers along a headwater stream section over a period of 18 months. Groundwater dynamics during events were controlled by the initial position of the groundwater table relative to the subsurface structure. The near-stream groundwater table displayed a fast and pronounced response to precipitation events when lying in fractured bedrock with low storage capacity, and responded less frequently and in a less pronounced way when lying in upper layers with high storage capacity. Precipitation depth, intensity, regolith thickness above the fractured bedrock, and proximity to and elevation above the stream channel also had an effect on the groundwater dynamics, which varied with hydrologic conditions. Our high-frequency and spatially dense measurements highlight the competing influence of groundwater inflow from upslope locations, streamwater level and bedrock properties on the spatiotemporal dynamics of flowpaths in the stream corridor. Near-stream groundwater pointed uniformly towards the stream channel when the stream corridor was hydrologically connected to upslope groundwater. However, local interruptions of the water inflow from upslope locations caused flow reversals towards the footslopes. The direction of near-stream groundwater followed the local fractured bedrock topography during dry hydrologic conditions on a few occasions after events. The outcomes of this research contribute to a better understanding of the drivers controlling spatiotemporal changes in near-stream groundwater dynamics and flow directions in multiple wetness states of the stream corridor.  相似文献   

6.
The intensity of soil loss and sediment delivery, representing hydrologic and geomorphic processes within a catchment, accelerates with rapid changes in land cover and rainfall events. An underlying component of sustainable management of water resources is an understanding of spatial and temporal variability and the adverse influences of regional parameters involved in generating sediment following widespread changes in land cover. A calibrated algorithm of soil loss coupled with a sediment delivery ratio (SDR) was applied in raster data layers to improve the capability of a combined model to estimate annual variability in sediment yields related to changes in vegetation cover identified by analyses of SPOT imagery. Four catchments in Kangaroo River State forest were assessed for annual changes in sediment yields. Two catchments were selectively logged in 2007, while the two other sites remained undisturbed. Results of SDR estimates indicated that only a small proportion of total eroded sediment from hillslopes is transported to catchment outlets. Larger SDR values were estimated in regions close to catchment outlets, and the SDR reduced sharply on hillslopes further than 200–300 m from these areas. Estimated sediment yield increased by up to 30% two years after land cover change (logging) in 2009 when more storm events were recorded, despite the moderate density of vegetation cover in 2009 having almost recovered to its initial pre‐logging (2005) condition. Rainfall had the most significant influence on streamflow and sediment delivery in all catchments, with steeply sloping areas contributing large amounts of sediment during moderate and high rainfall years in 2007 and 2009. It is concluded that the current scenario of single‐tree selection logging utilized in the study area is an acceptable and environmentally sound land management strategy for preservation of soil and water resources. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
Recent studies have demonstrated that compartmentalized pools of water preferentially supply either plant transpiration (poorly mobile water) or streamflow and groundwater (highly mobile water) in some catchments, a phenomenon referred to as ecohydrologic separation. The omission of processes accounting for ecohydrologic separation in standard applications of hydrological models is expected to influence estimates of water residence times and plant water availability. However, few studies have tested this expectation or investigated how ecohydrologic separation alters interpretations of stores and fluxes of water within a catchment. In this study, we compare two rainfall‐runoff models that integrate catchment‐scale representations of transport, one that incorporates ecohydrologic separation and one that does not. The models were developed for a second‐order watershed at the H.J. Andrews Experimental Forest (Oregon, USA), the site where ecohydrologic separation was first observed, and calibrated against multiple years of stream discharge and chloride concentration. Model structural variations caused mixed results for differences in calibrated parameters and differences in storage between reservoirs. However, large differences in catchment storage volumes and fluxes arise when considering only mobile water. These changes influence interpreted residence times for streamflow‐generating water, demonstrating the importance of ecohydrologic separation in catchment‐scale water and solute transport.  相似文献   

8.
The transferability of hydrologic models is of ever increasing importance for making improved hydrologic predictions and testing hypothesized hydrologic drivers. Here, we present an investigation into the variability and transferability of the recently introduced catchment connectivity model (Smith et al., 2013 ). The catchment connectivity model was developed following extensive experimental observations identifying the key drivers of streamflow in the Tenderfoot Creek Experimental Forest (Jencso et al., 2009 ; Jencso et al., 2010 ), with the goal of creating a simple model consistent with internal observations of catchment hydrologic connectivity patterns. The model was applied across seven catchments located within Tenderfoot Creek Experimental Forest to investigate spatial variability and transferability of model performance and parameterization. The results demonstrated that the model resulted in historically good fits (based on previous studies at the sites) to both the hydrograph and internal water table dynamics (corroborated with experimental observations). The impact of a priori parameter limits was also examined. It was observed that enforcing field‐based limits on model parameters resulted in slight reductions to streamflow hydrograph fits, but significant improvements to model process fidelity (as hydrologic connectivity), as well as moderate improvement in the transferability of model parameterizations from one catchment to the next. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
Connectivity has become an increasingly used concept in hydrological and sediment research. In order to quantify it, various indices have been proposed since the start of the 21st century including the index of connectivity. This index is based on a limited number of factors, the most important one being topography. Sediment connectivity indices values probably depend on the digital elevation model (DEM) resolution. The aim of this study was, first, to compare the effect of DEM pixel size (between 0.25 and 10 m, using an UAV) in the Belgian loess belt, a lowland area. We show that the index values were lower when the pixel size decreased (a difference of about 20% in value between 0.25 and 10 m). In addition, the impact of linear features in the watershed (e.g. grass strip, bank and road) was lower with the largest pixel sizes, and the connectivity pattern was affected with a pixel size of 5 m or more. At lower pixel sizes (1 m or below), some more disconnected regions appeared. These corresponded with zones where there had been water stagnation during and after rainfalls, and was corroborated by field observations. This confirmed the need for a proper resolution according to the objectives of the study. The second aim of this study was to deduce a minimum pixel size for connectivity study, helping local erosion or sedimentation location and consequent land management decisions. In our context, 1 m stands as the optimum DEM resolution. This pixel size permitted location of all ‘key areas’ in terms of erosion. Very high resolutions (<0.5 m) did not generate much more information, and their calculation time was far greater. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

10.
Digital elevation model (DEM) resolution influences hydrological simulation. However, its influence when modelling hydrological connectivity (HC) in woody crops remains to be seen. We assessed surface topography, microtopography and HC in an agricultural sub‐catchment (27.4 ha) using six photogrammetry‐derived DEMs with 0.03, 0.05, 0.1, 0.2, 0.5 and 1 m cell sizes. Land uses included vineyards, olive groves, cereal fields, and forestry patches. We ran an updated version of Borselli's HC index (IC) using the D‐Infinity approach. We assessed HC in woody crops at high spatial resolution for the first time. After analysing the differences in the contributing area, the flow width, the soil roughness, the convergence index and the IC (normalised and non‐normalised) at different scales (hillslope, land uses and compartments, ephemeral gullies, depositional areas and the sub‐catchment outlet) and accounting for the field vertical components, we propose an optimum DEM resolution (0.2 m) to improve modelling of structural HC in woody crops. The modelled hydrological features at this threshold resolution matched well with the geomorphic features associated with the short‐ and medium‐term patterns of soil redistribution. Higher DEM resolutions, especially at 0.03 and 0.05 m, introduced bias in the input data and the IC computations. Finally, we observed good agreement between the outputs at the lowest resolution, 1 × 1 m, and the long‐term soil redistribution patterns (functional connectivity). Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

11.
Abstract

Rainfall–runoff induced soil erosion causes important environmental degradation by reducing soil fertility and impacting on water availability as a consequence of sediment deposition in surface reservoirs used for water supply, particularly in semi-arid areas. However, erosion models developed on experimental plots cannot be directly applied to estimate sediment yield at the catchment scale, since sediment redistribution is also controlled by the transport conditions along the landscape. In particular, representation of landscape connectivity relating to sediment transfer from upslope areas to the river network is required. In this study, the WASA-SED model is used to assess the spatial and temporal patterns of water and sediment connectivity for a semi-arid meso-scale catchment (933 km2) in Brazil. It is shown how spatial and temporal patterns of sediment connectivity within the catchment change as a function of landscape and event characteristics. This explains the nonlinear catchment response in terms of sediment yield at the outlet.

Citation Medeiros, P. H. A., Güntner, A., Francke, T., Mamede, G. L. & de Araújo, J. C. (2010) Modelling spatio-temporal patterns of sediment yield and connectivity in a semi-arid catchment with the WASA-SED model. Hydrol. Sci. J. 55(4), 636–648.  相似文献   

12.
Hydrological studies across varied climatic and physiographic regions have observed small changes in the ‘states of wetness’; based on average soil moisture, can lead to dramatic changes in the amount of water delivered to the stream channel. This non-linear behaviour of the storm response has been attributed to a critical switching in spatial organization of shallow soil moisture and hydrologic connectivity. However, much of the analysis of the role of soil moisture organization and connectivity has been performed in small rangeland catchments. Therefore, we examined the relationship between hydrologic connectivity and runoff response within a temperate forested watershed of moderate relief. We have undertaken spatial surveys of shallow soil moisture over a sequence of storms with varying antecedent moisture conditions. We analyse each survey for evidence of hydrologic connectivity and we monitor the storm response from the catchment outlet. Our results show evidence of a non-linear response in runoff generation over small changes in measures of antecedent moisture conditions; yet, unlike the previous studies of rangeland catchments, in this forested landscape we do not observe a significant change in geostatistical hydrologic connectivity with variations in antecedent moisture conditions. These results suggest that a priori spatial patterns in shallow soil moisture in forested terrains may not always be a good predictor of critical hydrologic connectivity that leads to threshold change in runoff generation, as has been the case in rangeland catchments. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
This study delineated spatially and temporally variable runoff generation areas in the Sand Mountain region pasture of North Alabama under natural rainfall conditions, and demonstrated that hydrologic connectivity is important for generating hillslope response when infiltration‐excess (IE) runoff mechanism dominates. Data from six rainfall events (13·7–32·3 mm) on an intensively instrumented pasture hillslope (0·12 ha) were analysed. Analysis of data from surface runoff sensors, tipping bucket rain gauge and HS‐flume demonstrated spatial and temporal variability in runoff generation areas. Results showed that the maximum runoff generation area, which contributed to runoff at the outlet of the hillslope, varied between 67 and 100%. Furthermore, because IE was the main runoff generation mechanism on the hillslope, the data showed that as the rainfall intensity changed during a rainfall event, the runoff generation areas expanded or contracted. During rainfall events with high‐intensity short‐ to medium‐duration, 4–8% of total rainfall was converted to runoff at the outlet. Rainfall events with medium‐ to low‐intensity, medium‐duration were found less likely to generate runoff at the outlet. In situ soil hydraulic conductivity (k) was measured across the hillslope, which confirmed its effect on hydrologic connectivity of runoff generation areas. Combined surface runoff sensor and k‐interpolated data clearly showed that during a rainfall event, lower k areas generate runoff first, and then, depending on rainfall intensity, runoff at the outlet is generated by hydrologically connected areas. It was concluded that in IE‐runoff‐dominated areas, rainfall intensity and k can explain hydrologic response. The study demonstrated that only connected areas of low k values generate surface runoff during high‐intensity rainfall events. Identification of these areas would serve as an important foundation for controlling nonpoint source pollutant transport, especially phosphorus. The best management practices can be developed and implemented to reduce transport of phosphorus from these hydrologically connected areas. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
Although catchment storage is an intrinsic control on the rainfall–runoff response of streams, direct measurement remains a major challenge. Coupled models that integrate long‐term hydrometric and isotope tracer data are useful tools that can provide insights into the dynamics of catchment storage and the volumes of water involved. In this study, we use a tracer‐aided hydrological model to characterize catchment storage as a dynamic control on system function related to streamflow generation, which also allows direct estimation of the nonstationarity of water ages. We show that in a wet Scottish upland catchment dominated by runoff generation from riparian peats (histosols) with high water storage, nonstationarity in water age distributions is only clearly detectable during more extreme wet and dry periods. This is explained by the frequency and longevity of hydrological connectivity and the associated relative importance of flow paths contributing younger or older waters to the stream. Generally, these saturated riparian soils represent large mixing zones that buffer the time variance of water age and integrate catchment‐scale partial mixing processes. Although storage simulations depend on model performance, which is influenced by input variability and the degree of isotopic damping in the stream, a longer‐term storage analysis of this model indicates a system that is only sensitive to more extreme hydroclimatic variability. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
Concentrated erosion, a major feature of land degradation, represents a serious problem for soil and water resources management and a threat to ecosystems. Understanding the internal mechanisms (de-)coupling sediment pathways can improve the management and resilience of catchments. In this study, concentrated erosion and deposition forms were mapped accurately through field and aerial unmanned aerial vehicle (UAV) campaigns, in order to assess the evolution of connectivity pathways over a series of three contrasted and consecutive flood events occurring between October 2016 and January 2017 (return period ranging from 0.5 to 25 years) in a small Mediterranean agricultural catchment (Can Revull, Mallorca, Spain; 1.4 km2). In addition, a morphometric index of connectivity (IC) was used to identify the potential trajectories of different concentrated erosion forms and deposition areas. IC predictions were calibrated by identifying the optimal critical thresholds, i.e. those most consistent with field observations after each of the events studied. The results found that the index performed well in predicting the occurrence and the length/area of the different type of landforms, giving kappa (κ) coefficients of variation ranging between 0.21 and 0.92 and linear correlations R2 between 0.33 and 0.72. The type of landform affected the correspondence of IC predictions and field observations, with lower thresholds the greater the magnitude of their associated geomorphic processes. Rainfall magnitude proved to be a very important factor controlling the development of erosion and deposition landforms, with large differences in length/area between the contrasted events. The evolution of the observed trajectories revealed feedback dynamics between the structural and functional connectivity of the catchment, in which morphological changes determined the spatial distribution of the processes’ activity in the successive events and vice versa. © 2020 John Wiley & Sons, Ltd.  相似文献   

16.
The Demnitzer Millcreek catchment (DMC), is a 66 km2 long-term experimental catchment located 50 km SE of Berlin. Monitoring over the past 30 years has focused on hydrological and biogeochemical changes associated with de-intensification of farming and riparian restoration in the low-lying landscape dominated by rain-fed farming and forestry. However, the hydrological function of the catchment, which is closely linked to nutrient fluxes and highly sensitive to climatic variability, is still poorly understood. In the last 3 years, a prolonged drought period with below-average rainfall and above-average temperatures has resulted in marked hydrological change. This caused low soil moisture storage in the growing season, agricultural yield losses, reduced groundwater recharge, and intermittent streamflows in parts of an increasingly disconnected channel network. This paper focuses on a two-year long isotope study that sought to understand how different parts of the catchment affect ecohydrological partitioning, hydrological connectivity and streamflow generation during drought conditions. The work has shown the critical importance of groundwater storage in sustaining flows, basic in-stream ecosystem services and the dominant influence of vegetation on groundwater recharge. Recharge was much lower and occurred during a shorter window of time in winter under forests compared to grasslands. Conversely, groundwater recharge was locally enhanced by the restoration of riparian wetlands and storage-dependent water losses from the stream to the subsurface. The isotopic variability displayed complex emerging spatio-temporal patterns of stream connectivity and flow duration during droughts that may have implications for in-stream solute transport and future ecohydrological interactions between landscapes and riverscapes. Given climate projections for drier and warmer summers, reduced and increasingly intermittent streamflows are very likely not just in the study region, but in similar lowland areas across Europe. An integrated land and water management strategy will be essential to sustaining catchment ecosystem services in such catchment systems in future.  相似文献   

17.
Hydrological connectivity is a critical determinant of wetland functions and health, especially in wetlands that have been heavily fragmented and regulated by human activities. However, investigating hydrological connectivity in these wetlands is challenging due to the costs of high-resolution and large-scale monitoring required in order to identify hydrological barriers within the wetlands. To overcome this challenge, we here propose an interferometric synthetic aperture radar (InSAR)-based methodology to map hydrologic connectivity and identify hydrological barriers in fragmented wetlands. This methodology was applied along 70 transects across the Baiyangdian, the largest freshwater wetland in northern China, using Sentinel 1A and 1B data, covering the period 2016–2019. We generated 58 interferograms providing information on relative water level changes across the transects that showed the high coherence needed for the assessment of hydrological connectivity. We mapped the permanent and conditional (temporary) barriers affecting connectivity. In total, 11% of all transects are permanently disconnected by hydrological barriers across all interferograms and 58% of the transects are conditionally disconnected. Areas covered by reed grasslands show the most undisturbed hydrological connectivity while some of these barriers are the result of ditches and channels within the wetland and low water levels during different periods of the year. This study highlights the potential of the application of Wetland InSAR to determine hydrological connectivity and location of hydrological barriers in highly fragmented wetlands, and facilitates the study of hydrological processes from large spatial scales and long-time scales using remote sensing technique.  相似文献   

18.
Intensive agricultural practices on sensitive soils induce high erosion rates in central Belgium. Expert-rules models quantify runoff and erosion at catchment scale, avoiding over-parameterization, and can include some direct or indirect connectivity features. The aim of this article is to test the ability of an expert-based model, LandSoil, to quantify runoff and to locate erosion and sedimentation areas in a small cultivated loamy catchment in Belgium during the years 2014, 2015 and 2016. Spatialized data are important for assessing model outputs and the erosive response. Measurements of runoff and observation of spatial erosion/deposition patterns, especially around major connectivity points, permitted an assessment of the reliability of the model results. Runoff modelling gave contrasting results (good linear adjustment at the outlet of the 83 ha sub-catchment (point 1): r2 of 0.96, Nash–Sutcliffe criterion of 0.95; less good at the outlet of the 3.9 ha sub-catchment (point 2): r2 of 0.28, Nash–Sutcliffe criterion of –0.47). For point 2 the poor results are explained by the very few runoff events observed, a scaling effect and the small area with a single land use. Graduated rulers demonstrate that the model is able to provide a coherent pattern of erosion/deposition. The study highlights great sensitivity to the effect of land use, land allocation, landscape design and slope gradients. Grass strips induce deposition of eroded particles when slopes are gentle (< 2%). Woodland strips decrease connectivity by being in the stream but deposit thinner sediment layers. Field boundaries have a role in the transport, but not really the quantity, of sediments. This model validation in the Belgian loess context allows us to use LandSoil in other similar environments in order to estimate the effects of landscape management scenarios. © 2020 John Wiley & Sons, Ltd.  相似文献   

19.
Streamflow response in Boreal Plains catchments depends on hydrological connectivity between forested uplands, lakes, and peatlands, and their hydrogeomorphic setting. Expected future drying of the Boreal Plains ecozone is expected to reduce hydrological connectivity of landscape units. To better understand run‐off generation during dry periods, we determined whether peatland and groundwater connectivity can dampen expected future water deficits in forests and lakes. We studied Pine Fen Creek catchment in the Boreal Plains ecozone of central Saskatchewan, Canada, which has a large, valley‐bottom, terminally positioned peatland, two lakes, and forested uplands. A shorter intensive study permitted a more detailed partitioning of water inputs and outputs within the catchment during the low flow period, and an assessment of a 10‐year data set provided insight into the function of the peatland over a range of climate conditions. Using a water balance approach, we learned that two key processes regulate flow of Pine Fen Creek. The cumulative impact of landscape unit hydrological connectivity and the peatland's hydrological functional state were needed to understand catchment response. There was evidence of a run‐off threshold which, when crossed, changed the peatland's hydrological function from transmission to run‐off generation. Results also suggest the peatland should behave more often as a transmitter of groundwater than as a generator of run‐off under a drier climate future, owing to a reduced water supply.  相似文献   

20.
Models are widely used to simulate hydrological response and the generation and transport of constituents such as salt, phosphorus, and nitrogen from catchments to streams. Several models use a spatial representation with catchments divided into subcatchments. Variations in land use and other characteristics within subcatchments are represented by spatially lumped hydrologic response units (HRUs) or functional units instead of using fully distributed models. This approach disregards any spatial interaction between HRUs, including their connectivity to each other and to the stream and the influence of these interactions on water and constituent export. A spatially explicit hydrological model (Thales) was used to simulate a variety of theoretical catchments with soils dominated by combinations of infiltration excess, saturation excess, and subsurface stormflow processes and different soil constituent concentrations that were spatially interacting (i.e. located along a hillslope sequence). The modelling results show that the response of both runoff and concentration is sensitive to varying spatial arrangements due to interactions of runoff, infiltration, and chemical processes between the different soil types in many but not all situations. Results highlight the importance of considering connectivity of pathways when modelling hydrological response and constituents export. This is achieved by comparing pairs of simulations and the corresponding differences in the exported loads. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号