首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
In this study, a dynamic flood‐frequency analysis model considering the storm coverage effect is proposed and applied to six sub‐basins in the Pyungchang River basin, Korea. The model proposed is composed of the rectangular pulse Poisson process model for rainfall, the Soil Conservation Service curve number method for infiltration and the geomorphoclimatic instantaneous unit hydrograph for runoff estimation. Also, the model developed by Marco and Valdes is adopted for quantifying the storm‐coverage characteristics. By comparing the results from the same model with and without the storm‐coverage effect consideration, we could quantify the storm‐coverage effect on the flood‐frequency analysis. As a result of that, we found the storm‐coverage effect was so significant that overestimation of the design flood was unavoidable without its consideration. This also becomes more serious for larger basins where the probability of complete storm coverage is quite low. However, for smaller basins, the limited number of rain gauges is found to hamper the proper quantification of the storm‐coverage characteristics. Provided with a relationship curve between the basin size and the storm coverage (as in this study), this problem could be overcome with an acceptable accuracy level. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

2.
A refined substructure technique in the frequency domain is developed, which permits consideration of the interaction effects among adjacent containers through the supporting deformable soil medium. The tank‐liquid systems are represented by means of mechanical models, whereas discrete springs and dashpots stand for the soil beneath the foundations. The proposed model is employed to assess the responses of adjacent circular, cylindrical tanks for harmonic and seismic excitations over wide range of tank proportions and soil conditions. The influence of the number, spatial arrangement of the containers and their distance on the overall system's behavior is addressed. The results indicate that the cross‐interaction effects can substantially alter the impulsive components of response of each individual element in a tank farm. The degree of this impact is primarily controlled by the tank proportions and the proximity of the predominant natural frequencies of the shell‐liquid‐soil systems and the input seismic motion. The group effects should be not a priori disregarded, unless the tanks are founded on shallow soil deposit overlying very stiff material or bedrock. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
Urban stormwater is a major cause of urban flooding and natural water pollution. It is therefore important to assess any hydrologic trends in urban catchments for stormwater management and planning. This study addresses urban hydrological trend analysis by examining trends in variables that characterize hydrological processes. The original and modified Mann‐Kendall methods are applied to trend detection in two French catchments, that is, Chassieu and La Lechere, based on approximately 1 decade of data from local monitoring programs. In both catchments, no trend is found in the major hydrological process driver (i.e., rainfall variables), whereas increasing trends are detected in runoff flow rates. As a consequence, the runoff coefficients tend to increase during the study period, probably due to growing imperviousness with the local urbanization process. In addition, conceptual urban rainfall‐runoff model parameters, which are identified via model calibration with an event based approach, are examined. Trend detection results indicate that there is no trend in the time of concentration in Chassieu, whereas a decreasing trend is present in La Lechere, which, however, needs to be validated with additional data. Sensitivity analysis indicates that the original Mann‐Kendall method is not sensitive to a few noisy values in the data series.  相似文献   

4.
The back‐to‐back application of mainshock records as aftershock is often considered in conducting aftershock incremental dynamic analysis. In such an approach, the characteristics of mainshock records are considered to be similar to those of major aftershock records within the same mainshock–aftershock sequences. The underlying assumption is that the characteristics of selected mainshocks, other than those used for record selection, are not significant in the assessment of structural responses. A case study is set up to investigate the effects of aftershock record selection on the collapse vulnerability assessment. The numerical results for a specific wood‐frame structure indicate that the aftershock fragility can be affected by the aftershock record characteristics, particularly response spectral shape. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
Incremental dynamic analysis (IDA)—a procedure developed for accurate estimation of seismic demand and capacity of structures—requires non‐linear response history analysis of the structure for an ensemble of ground motions, each scaled to many intensity levels, selected to cover the entire range of structural response—all the way from elastic behaviour to global dynamic instability. Recognizing that IDA of practical structures is computationally extremely demanding, an approximate procedure based on the modal pushover analysis procedure is developed. Presented are the IDA curves and limit state capacities for the SAC‐Los Angeles 3‐, 9‐, and 20‐storey buildings computed by the exact and approximate procedures for an ensemble of 20 ground motions. These results demonstrate that the MPA‐based approximate procedure reduces the computational effort by a factor of 30 (for the 9‐storey building), at the same time providing results to a useful degree of accuracy over the entire range of responses—all the way from elastic behaviour to global dynamic instability—provided a proper hysteretic model is selected for modal SDF systems. The accuracy of the approximate procedure does not deteriorate for 9‐ and 20‐storey buildings, although their dynamics is more complex, involving several ‘modes’ of vibration. For all three buildings, the accuracy of the MPA‐based approximate procedure is also satisfactory for estimating the structural capacities for the limit states of immediate occupancy, collapse prevention, and global dynamic instability. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
As a basic form of pattern analysis, the parameters of dune spacing, defect density, crest orientation and crest length are measured from remote images and treated statistically for dunes at White Sands in New Mexico, the Algodones in California, the Agneitir in Mauritania, and the Namib in Namibia. Statistical populations are identified from frequency plots of dune spacing and crest length, field‐scale calculations of defect density, and rose diagrams of crest orientation. Single populations characterize simple dune fields (White Sands), whereas multiple populations characterize compound/complex dunes (Algodones, Namib), and complex dune fields (Agneitir). As time increases, dune fields show an increase in dune spacing and crest length, a decrease in defect density, more tightly clustered crest orientation, and a reduction in the variance associated with measurements of these parameters. The results are consistent with models of dune fields as self‐organizing complex systems in which a characteristic pattern emerges as a function of constructional time. Because pattern evolution is a function of time, it may be possible to use pattern analysis to augment current methods of age determination. Statistically defined populations can be used in geomorphic backstripping to unstack generations of simple patterns that give rise to complex patterns, and to reconstruct each generation in terms of construction time and palaeo‐wind regime. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
A three‐dimensional model for approximate inelastic analysis of buildings is presented herein. The model is based on a single macro‐element per building storey. The inelastic properties of the model are characterized by the so‐called ultimate storey shear and torque (USST) surfaces. Different algorithms for the construction of these surfaces, as well as their applications in building modelling, are presented and discussed. Two alternative procedures are developed to integrate the force‐deformation constitutive relationship of the macro‐elements. The first one follows the exact trajectory of the load path of the structure on the USST, and the second uses linear programming without ever forming the USST surface. The accuracy of the model and integration procedure is evaluated by means of the earthquake response of single‐storey systems. The model and integration procedure developed is finally used to compute the inelastic response of a seven‐storey R/C building. The results of this investigation show that the model proposed, although approximate, can be effective in estimating the inelastic deformation demand of a building. It also enables the engineer to capture and interpret important features of the three‐dimensional inelastic response of a structure even before performing any inelastic dynamic analysis. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

8.
A method concerning the evaluation, in a very compact form, of the non‐stationary modal cross‐correlation coefficients of MDOF structural systems subjected to seismic excitations is presented. It is available both in the case when the excitation is considered as a white‐noise process and when it is considered as a filtered process. The evaluation of these coefficients is required when a transient seismic analysis is performed by the use of the modal response spectrum approach. This is necessary when the strong‐motion phase of the earthquake is significantly short with respect to the fundamental period of the structure. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

9.
A summary of the development of a new coupled shear‐bending model for analysis of stacked wood shear walls and multi‐story wood‐frame buildings is presented in this paper. The model focuses on dynamic response of light‐frame wood structures under seismic excitation. The formulation is intended to provide a more versatile option than present pure shear models in that the new model is capable of accurately capturing the overall lateral response of each story diaphragm and separates the inter‐story shear deformation and the deformation associated with rotation of the diaphragm due to rod elongation, which is an analogue to the bending deformation in an Euler–Bernoulli beam model. Modeling the coupling of bending and shear deformation is shown to provide more accurate representation of stacked shear wall system behavior than a pure shear model, particularly for the upper stories in the assembly. The formulation is coupled with the newly developed evolutionary parameter hysteretic model for wood shear walls. Existing data from a shake table test of an isolated three‐story wood shear wall were used to verify the accuracy of the model prediction. The numerical results agreed very well with shake table test measurements. The influence of a continuous rod hold‐down system on the dynamic behavior of the three‐story stacked wood shear wall was also successfully simulated. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Incremental dynamic analysis (IDA) is presented as a powerful tool to evaluate the variability in the seismic demand and capacity of non‐deterministic structural models, building upon existing methodologies of Monte Carlo simulation and approximate moment‐estimation. A nine‐story steel moment‐resisting frame is used as a testbed, employing parameterized moment‐rotation relationships with non‐deterministic quadrilinear backbones for the beam plastic‐hinges. The uncertain properties of the backbones include the yield moment, the post‐yield hardening ratio, the end‐of‐hardening rotation, the slope of the descending branch, the residual moment capacity and the ultimate rotation reached. IDA is employed to accurately assess the seismic performance of the model for any combination of the parameters by performing multiple nonlinear timehistory analyses for a suite of ground motion records. Sensitivity analyses on both the IDA and the static pushover level reveal the yield moment and the two rotational‐ductility parameters to be the most influential for the frame behavior. To propagate the parametric uncertainty to the actual seismic performance we employ (a) Monte Carlo simulation with latin hypercube sampling, (b) point‐estimate and (c) first‐order second‐moment techniques, thus offering competing methods that represent different compromises between speed and accuracy. The final results provide firm ground for challenging current assumptions in seismic guidelines on using a median‐parameter model to estimate the median seismic performance and employing the well‐known square‐root‐sum‐of‐squares rule to combine aleatory randomness and epistemic uncertainty. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
This paper proposes a non‐iterative time integration (NITI) scheme for non‐linear dynamic FEM analysis. The NITI scheme is constructed by combining explicit and implicit schemes, taking advantage of their merits, and enables stable computation without an iteration process for convergence even when used for non‐linear dynamic problems. Formulation of the NITI scheme is presented and its stability is studied. Although the NITI scheme is not unconditionally stable when applied to non‐linear problems, it is stable in most cases unless stiffness hardening occurs or the problem has a large velocity‐dependent term. The NITI scheme is applied to dynamic analysis of the non‐linear soil–structure system and computation results are compared with those by the central difference method (CDM). Comparison shows that the stability of the NITI scheme is superior to that of the CDM. Accuracy of the NITI scheme is verified because its results are identical with those by the CDM in which the time step is set as 1/10 of that for the NITI scheme. The application of the NITI scheme to the mesh‐partitioned FEM is also proposed. It is applied to dynamic analysis of the linear soil–structure system. It yields the same results as a conventional single‐domain FEM analysis using the Newmark β method. This result verifies the usability of mesh‐partitioned FEM analysis using the NITI scheme. Copyright © 2003 John Wiley& Sons, Ltd.  相似文献   

12.
The last decade of performance‐based earthquake engineering (PBEE) research has seen a rapidly increasing emphasis placed on the explicit quantification of uncertainties. This paper examines uncertainty consideration in input ground‐motion and numerical seismic response analyses as part of PBEE, with particular attention given to the physical consistency and completeness of uncertainty consideration. It is argued that the use of the commonly adopted incremental dynamic analysis leads to a biased representation of the seismic intensity and that when considering the number of ground motions to be used in seismic response analyses, attention should be given to both reducing parameter estimation uncertainty and also limiting ground‐motion selection bias. Research into uncertainties in system‐specific numerical seismic response analysis models to date has been largely restricted to the consideration of ‘low‐level’ constitutive model parameter uncertainties. However, ‘high‐level’ constitutive model and model methodology uncertainties are likely significant and therefore represent a key research area in the coming years. It is also argued that the common omission of high‐level seismic response analysis modelling uncertainties leads to a fallacy that ground‐motion uncertainty is more significant than numerical modelling uncertainty. The author's opinion of the role of uncertainty analysis in PBEE is also presented. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
Random variable simulation has been applied to many applications in hydrological modelling, flood risk analysis, environmental impact assessment, etc. However, computer codes for simulation of distributions commonly used in hydrological frequency analysis are not available in most software libraries. This paper presents a frequency‐factor‐based method for random number generation of five distributions (normal, log–normal, extreme‐value type I, Pearson type III and log‐Pearson type III) commonly used in hydrological frequency analysis. The proposed method is shown to produce random numbers of desired distributions through three means of validation: (1) graphical comparison of cumulative distribution functions (CDFs) and empirical CDFs derived from generated data; (2) properties of estimated parameters; (3) type I error of goodness‐of‐fit test. An advantage of the method is that it does not require CDF inversion, and frequency factors of the five commonly used distributions involves only the standard normal deviate. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
The data‐driven technique, evolutionary polynomial regression, has been tested and used for the study of water temperature behaviour in the River Barle (south‐west England). The study aimed to produce multiple models for forecasting water temperature, using air temperature as input. In addition, river discharge data were used to describe the hydrological regime of the study stream, even if they are not involved in the modelling phase. The availability of data sampled at hourly intervals allowed behaviour to be studied at several time scales, including short‐term lags between air temperature and water temperature. The approach to model building differs from previous studies in that the relationship between air temperature and water temperature is not evaluated on the basis of a multi‐parameter regression, nor does it identify particular structures; rather the evolutionary technique identifies the model by itself. In fact, the non‐linear relationship between air temperature and water temperature is investigated by an evolutionary search in the space of particular pseudo‐polynomials structures. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
When a seismic source is placed in the water at a height less than a wavelength from the water–solid interface, a prominent S‐wave arrival can be observed. It travels kinematically as if it was excited at the projection point of the source on the interface. This non‐geometric S‐wave has been investigated before, mainly for a free‐surface configuration. However, as was shown in a field experiment, the non‐geometric S‐wave can also be excited at a fluid–solid configuration if the S‐wave speed in the solid is less than the sound speed in the water. The amplitude of this wave exponentially decreases when the source is moved away from the interface revealing its evanescent character in the fluid. In the solid, this particular converted mode is propagating as an ordinary S‐wave and can be transmitted and reflected as such. There is a specific region of horizontal slownesses where this non‐geometric wave exists, depending on the ratio of the S‐wave velocity and the sound speed of water. Only for ratios smaller than 1, this wave appears. Lower ratios result in a wider region of appearance. Due to this property, this particular P‐S converted mode can be identified and filtered from other events in the Radon domain.  相似文献   

16.
Performance‐based earthquake engineering often requires ground‐motion time‐history analyses to be performed, but very often, ground motions are not recorded at the location being analyzed. The present study is among the first attempt to stochastically simulate spatially distributed ground motions over a region using wavelet packets and cokriging analysis. First, we characterize the time and frequency properties of ground motions using the wavelet packet analysis. The spatial cross‐correlations of wavelet packet parameters are determined through geostatistical analysis of regionalized ground‐motion data from the Northridge and Chi‐Chi earthquakes. It is observed that the spatial cross‐correlations of wavelet packet parameters are closely related to regional site conditions. Furthermore, using the developed spatial cross‐correlation model and the cokriging technique, wavelet packet parameters at unmeasured locations can be best estimated, and regionalized ground‐motion time histories can be synthesized. Case studies and blind tests using data from the Northridge and Chi‐Chi earthquakes demonstrate that the simulated ground motions generally agree well with the actual recorded data. The proposed method can be used to stochastically simulate regionalized ground motions for time‐history analyses of distributed infrastructure and has important applications in regional‐scale hazard analysis and loss estimation. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
We extend the frequency‐ and angle‐dependent poroelastic reflectivity to systematically analyse the characteristic of seismic waveforms for highly attenuating reservoir rocks. It is found that the mesoscopic fluid pressure diffusion can significantly affect the root‐mean‐square amplitude, frequency content, and phase signatures of seismic waveforms. We loosely group the seismic amplitude‐versus‐angle and ‐frequency characteristics into three classes under different geological circumstances: (i) for Class‐I amplitude‐versus‐angle and ‐frequency, which corresponds to well‐compacted reservoirs having Class‐I amplitude‐versus‐offset characteristic, the root‐mean‐square amplitude at near offset is boosted at high frequency, whereas seismic energy at far offset is concentrated at low frequency; (ii) for Class‐II amplitude‐versus‐angle and ‐frequency, which corresponds to moderately compacted reservoirs having Class‐II amplitude‐versus‐offset characteristic, the weak seismic amplitude might exhibit a phase‐reversal trend, hence distorting both the seismic waveform and energy distribution; (iii) for Class‐III amplitude‐versus‐angle and ‐frequency, which corresponds to unconsolidated reservoir having Class‐III amplitude‐versus‐offset characteristic, the mesoscopic fluid flow does not exercise an appreciable effect on the seismic waveforms, but there exists a non‐negligible amplitude decay compared with the elastic seismic responses based on the Zoeppritz equation.  相似文献   

18.
An envelope‐based pushover analysis procedure is presented that assumes that the seismic demand for each response parameter is controlled by a predominant system failure mode that may vary according to the ground motion. To be able to simulate the most important system failure modes, several pushover analyses need to be performed, as in a modal pushover analysis procedure, whereas the total seismic demand is determined by enveloping the results associated with each pushover analysis. The demand for the most common system failure mode resulting from the ‘first‐mode’ pushover analysis is obtained by response history analysis for the equivalent ‘modal‐based’ SDOF model, whereas demand for other failure modes is based on the ‘failure‐based’ SDOF models. This makes the envelope‐based pushover analysis procedure equivalent to the N2 method provided that it involves only ‘first‐mode’ pushover analysis and response history analysis of the corresponding ‘modal‐based’ SDOF model. It is shown that the accuracy of the approximate 16th, 50th and 84th percentile response expressed in terms of IDA curves does not decrease with the height of the building or with the intensity of ground motion. This is because the estimates of the roof displacement and the maximum storey drift due to individual ground motions were predicted with a sufficient degree of accuracy for almost all the ground motions from the analysed sets. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
We study the appraisal problem for the joint inversion of seismic and controlled source electro‐magnetic (CSEM) data and utilize rock‐physics models to integrate these two disparate data sets. The appraisal problem is solved by adopting a Bayesian model and we incorporate four representative sources of uncertainty. These are uncertainties in 1) seismic wave velocity, 2) electric conductivity, 3) seismic data and 4) CSEM data. The uncertainties in porosity and water saturation are quantified by a posterior random sampling in the model space of porosity and water saturation in a marine one‐dimensional structure. We study the relative contributions from the four individual sources of uncertainty by performing several statistical experiments. The uncertainties in the seismic wave velocity and electric conductivity play a more significant role on the variation of posterior uncertainty than do the seismic and CSEM data noise. The numerical simulations also show that the uncertainty in porosity is most affected by the uncertainty in the seismic wave velocity and that the uncertainty in water saturation is most influenced by the uncertainty in electric conductivity. The framework of the uncertainty analysis presented in this study can be utilized to effectively reduce the uncertainty of the porosity and water saturation derived from the integration of seismic and CSEM data.  相似文献   

20.
The accuracy of the three‐dimensional modal pushover analysis (MPA) procedure in estimating seismic demands for unsymmetric‐plan buildings due to two horizontal components of ground motion, simultaneously, is evaluated. Eight low‐and medium‐rise structures were considered. Four intended to represent older buildings were designed according to the 1985 Uniform Building Code, whereas four other designs intended to represent newer buildings were based on the 2006 International Building Code. The median seismic demands for these buildings to 39 two‐component ground motions, scaled to two intensity levels, were computed by MPA and nonlinear response history analysis (RHA), and then compared. Even for these ground motions that deform the buildings significantly into the inelastic range, MPA offers sufficient degree of accuracy. It is demonstrated that PMPA, a variant of the MPA procedure, for nonlinear systems is almost as accurate as the well‐known standard response spectrum analysis procedure is for linear systems. Thus, for practical applications, the PMPA procedure offers an attractive alternative to nonlinear RHA, whereby seismic demands can be estimated directly from the (elastic) design spectrum. In contrast, the nonlinear static procedure specified in the ASCE/SEI 41‐06 Standard is demonstrated to grossly underestimate seismic demands for some of the unsymmetric‐plan buildings considered. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号