首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
While the hydrological balance of forest ecosystems has often been studied at the annual level, quantitative studies on the factors determining rainfall partitioning of individual rain events are less frequently reported. Therefore, the effect of the seasonal variation in canopy cover on rainfall partitioning was studied for a mature deciduous beech (Fagus sylvatica L.) tree over a 2‐year period. At the annual level, throughfall amounted to 71% of precipitation, stemflow 8%, and interception 21%. Rainfall partitioning at the event level depended strongly on the amount of rainfall and differed significantly (p < 0·001) between the leafed and the leafless period of the year. Therefore, water fluxes of individual events were described using a multiple regression analysis (ra2 > 0·85, n = 205) with foliation, rainfall characteristics and meteorological variables as predictor variables. For a given amount of rainfall, foliation significantly increased interception and decreased throughfall and stemflow amounts. In addition, rainfall duration, maximum rainfall rate, vapour pressure deficit, and wind speed significantly affected rainfall partitioning at the event level. Increasing maximum hourly rainfall rate increased throughfall and decreased stemflow generation, while higher hourly vapour pressure deficit decreased event throughfall and stemflow amounts. Wind speed decreased throughfall in the growing period only. Since foliation and the event rainfall amount largely determined interception loss, the observed net water input under the deciduous canopy was sensitive to the temporal distribution of rainfall. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
Tim P. Duval 《水文研究》2019,33(11):1510-1524
Partitioning of rainfall through a forest canopy into throughfall, stemflow, and canopy interception is a critical process in the water cycle, and the contact of precipitation with vegetated surfaces leads to increased delivery of solutes to the forest floor. This study investigates the rainfall partitioning over a growing season through a temperate, riparian, mixed coniferous‐deciduous cedar swamp, an ecosystem not well studied with respect to this process. Seasonal throughfall, stemflow, and interception were 69.2%, 1.5%, and 29.3% of recorded above‐canopy precipitation, respectively. Event throughfall ranged from a low of 31.5 ± 6.8% for a small 0.8‐mm event to a high of 82.9 ± 2.4% for a large 42.7‐mm event. Rain fluxes of at least 8 mm were needed to generate stemflow from all instrumented trees. Most trees had funnelling ratios <1.0, with an exponential decrease in funnelling ratio with increasing tree size. Despite this, stand‐scale funnelling ratios averaged 2.81 ± 1.73, indicating equivalent depth of water delivered across the swamp floor by stemflow was greater than incident precipitation. Throughfall dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) averaged 26.60 ± 2.96 and 2.02 ± 0.16 mg L?1, respectively, which were ~11 and three times above‐canopy rain levels. Stemflow DOC averaged 73.33 ± 7.43 mg L?1, 35 times higher than precipitation, and TDN was 4.45 ± 0.56 mg L?1, 7.5 times higher than rain. Stemflow DOC concentration was highest from Populus balsamifera and TDN greatest from Thuja occidentalis trees. Although total below‐canopy flux of TDN increased with increasing event size, DOC flux was greatest for events 20–30 mm, suggesting a canopy storage threshold of DOC was readily diluted. In addition to documenting rainfall partitioning in a novel ecosystem, this study demonstrates the excess carbon and nitrogen delivered to riparian swamps, suggesting the assimilative capacity of these zones may be underestimated.  相似文献   

3.
A rainfall interception measuring system was developed and tested for open‐grown trees. The system includes direct measurements of gross precipitation, throughfall and stemflow, as well as continuous collection of micrometeorological data. The data were sampled every second and collected at 30‐s time steps using pressure transducers monitoring water depth in collection containers coupled to Campbell CR10 dataloggers. The system was tested on a 9‐year‐old broadleaf deciduous tree (pear, Pyrus calleryana ‘Bradford’) and an 8‐year‐old broadleaf evergreen tree (cork oak, Quercus suber) representing trees having divergent canopy distributions of foliage and stems. Partitioning of gross precipitation into throughfall, stemflow and canopy interception is presented for these two mature open‐grown trees during the 1996–1998 rainy seasons. Interception losses accounted for about 15% of gross precipitation for the pear tree and 27% for the oak tree. The fraction of gross precipitation reaching the ground included 8% by stemflow and 77% by throughfall for the pear tree, as compared with 15% and 58%, respectively, for the oak tree. The analysis of temporal patterns in interception indicates that it was greatest at the beginning of each rainfall event. Rainfall frequency is more significant than rainfall rate and duration in determining interception losses. Both stemflow and throughfall varied with rainfall intensity and wind speed. Increasing precipitation rates and wind speed increased stemflow but reduced throughfall. Analysis of rainfall interception processes at different time‐scales indicates that canopy interception varied from 100% at the beginning of the rain event to about 3% at the maximum rain intensity for the oak tree. These values reflected the canopy surface water storage changes during the rain event. The winter domain precipitation at our study site in the Central Valley of California limited our opportunities to collect interception data during non‐winter seasons. This precipitation pattern makes the results more specific to the Mediterranean climate region. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

4.
Rainfall interception in forests is influenced by properties of the canopy that tend to vary over small distances. Our objectives were: (i) to determine the variables needed to model the interception loss of the canopy of a lower montane forest in south Ecuador, i.e. the storage capacity of the leaves S and of the trunks and branches St, and the fractions of direct throughfall p and stemflow pt; (ii) to assess the influence of canopy density and epiphyte coverage of trees on the interception of rainfall and subsequent evaporation losses. The study site was located on the eastern slope of the eastern cordillera in the south Ecuadorian Andes at 1900–2000 m above sea level. We monitored incident rainfall, throughfall, and stemflow between April 1998 and April 2001. In 2001, the leaf area index (LAI), inferred from light transmission, and epiphyte coverage was determined. The mean annual incident rainfall at three gauging stations ranged between 2319 and 2561 mm. The mean annual interception loss at five study transects in the forest varied between 591 and 1321 mm, i.e. between 25 and 52% of the incident rainfall. Mean S was estimated at 1·91 mm for relatively dry weeks with a regression model and at 2·46 mm for all weeks with the analytical Gash model; the respective estimates of mean St were 0·04 mm and 0·09 mm, of mean p were 0·42 and 0·63, and of mean pt were 0·003 and 0·012. The LAI ranged from 5·19 to 9·32. Epiphytes, mostly bryophytes, covered up to 80% of the trunk and branch surfaces. The fraction of direct throughfall p and the LAI correlated significantly with interception loss (Pearson's correlation coefficient r = −0·77 and 0·35 respectively, n = 40). Bryophyte and lichen coverage tended to decrease St and vascular epiphytes tended to increase it, although there was no significant correlation between epiphyte coverage and interception loss. Our results demonstrate that canopy density influences interception loss but only explains part of the total variation in interception loss. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

5.
A study of partitioning of rainfall into throughfall, stemflow, and interception was conducted in a dry sclerophyll eucalypt forest and an adjacent pine plantation over a period of seven years, on a rainfall event basis. The following three issues are discussed: (1) the relationship between canopy storage capacity and interception of continuous events, (2) interception, throughfall, and stemflow, and (3) the effect on interception of thinning the pine plantation.
  • 1 The canopy storage capacity/interception interaction for the eucalypt forest was assessed by comparing a gravimetric estimate of canopy storage capacity with interception. The maximum possible value for canopy storage capacity was found to be a small proportion of interception for events of all sizes. This suggests that evaporation of intercepted water during the continuous events was responsible for most of the interception. This ‘within event’ evaporation appears to be responsible also for the net rainfall/gross rainfall estimate of canopy storage capacity being four times the gravimetric value. For the pines the regression estimate was more closely related to interception.
  • 2 Interception, throughfall, and stemflow of these forests were measured for four years. Data are presented for each year with overall average interception being 11-4 per cent of precipitation for the eucalypt forest and 18-3 per cent for the pine plantation. Topography and rainfall event type are considered in the comparison.
Species composition and tree type are considered when comparing these results with published studies from similar forest types in southeastern Australia. The periodic (annual) variations of interception in this and the other studies makes comparison difficult.
  • 3 The effect of thinning on the throughfall, stemflow, and interception in a Pinus radiata plantation is examined. Throughfall increased, interception decreased but not in proportion to the removed biomass; stemflow decreased on an area basis, but increased on a per tree basis. A positive relationshiip is established between interception and stemflow on the thinned plantation but not in the unthinned. Reasons for this are suggested. The results are compared to those reported from similar experiments in other forests.
  • 4 The periodic variations in interception and errors inherent in its estimation suggest that caution should be exercised when using average interception figures in water balance studies.
  相似文献   

6.
To investigate the impacts of the invasion by bamboo on fluxes of nutrients and pollutants, the nutrient/pollutant fluxes and canopy interactions, including neutralization of acidity, leaching and uptake of nitrogen (N), were characterized in conjunction with rainfall partitioning in a Moso‐bamboo (Phyllostachys pubescens) forest. Measurements of precipitation volume, pH, major ions, and silicate (SiO2) in rainfall, throughfall and stemflow were collected weekly in a Moso‐bamboo forest located in Munakata City, Western Japan for 1 year. Results showed that rainfall partitioning into stemflow was larger than that for other types of forest, which may be due to the properties of Moso‐bamboo forest structure, such as a straight and smooth culm. Inorganic N (NO3 + NH4+) and S (SO42−) fluxes of throughfall and stemflow were approximately 1·6 and 1·3 times higher than that of rainfall, respectively. Contribution of stemflow flux to inorganic N and S fluxes to the forest floor was high. This could be due to lower uptake of inorganic N through culm and a higher rainfall partitioning into stemflow than that for other types of forest. The Moso‐bamboo canopy neutralized rainfall acidity, reducing the fluxes of potentially acidifying compounds via throughfall and stemflow. Canopy leaching of K+ was distinctly higher than that of Mg2+ and Ca2+ and could be related to the high mobility of K+ in plant tissues. Cl and SiO2 were readily leached as for K+. The impact of the invasion by bamboo on nutrient cycling was discussed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
Rainfall, throughfall, and stemflow were monitored at 5-min intervals for 3 years in a 120-year-old forest dominated by redwood (Sequoia sempervirens) and Douglas-fir (Pseudotsuga menziesii) at the Caspar Creek Experimental Watersheds, located in northwest California, USA. About 2.5% of annual rainfall reaches the ground as stemflow at the site, while 22.4% is stored on foliage and stems and evaporates before reaching the ground. Comparison of the timing of rainfall and throughfall indicates that about 46% of the interception loss occurs through post-storm evaporation from foliage and 54% is either evaporated during the storm or enters long-term storage in bark. Until bark storage capacity is saturated, the proportion of rainfall diverted to bark storage would be relatively constant across the range of rainfall intensities encountered, reflecting primarily the proportional incidence of rainfall on surfaces contributing to bark storage. In any case, loss rates remain high—over 15%—even during the highest-intensity storms monitored. Clearcut logging in the area would increase effective annual rainfall by 20–30% due to reduction of interception loss, and most of the increase would occur during large storms, thus potentially influencing peakflows and hillslope pore-pressures during geomorphically significant events.  相似文献   

8.
In this paper a simple technique for field measurement of rain water loss arising from interception and water flows associated with species of small Mediterranean shrub is described: the ‘interception flow collection box’. This technique solves the problem of installing devices to control stemflow in species with a multiple trunk and demonstrates its efficiency through the results obtained from the data observed for three species of semi-arid Mediterranean shrub: Juniperus oxycedrus, Rosmarinus officinalis and Thymus vulgaris. Finally, the empirical equations for the prediction of throughfall, stemflow and rain water loss through interception are presented for the three selected species and the validity of the technique employed is established. © 1998 John Wiley & Sons, Ltd.  相似文献   

9.
The characteristics of stemflow were observed in a tall stewartia (Stewartia monadelpha) deciduous forest on a hillslope in central Japan, revealing new findings for a previously unreported type of deciduous forest. Using 2-year observations of 250 rainfall events, we analyzed seasonal and spatial variations in stemflow for several trees, and applied additional data sets of throughfall and plant area index (PAI) to produce a rough estimate of seasonal variations in rainfall redistribution processes and canopy architecture for a single tree. Compared to previous findings for other deciduous tree species, the ratios of throughfall, stemflow, and interception to open-area rainfall obviously varied with PAI changes for tall stewartia. Meteorological conditions of rainfall amount, rainfall intensity, wind speed, and wind direction had little effect on stemflow generation, which was mainly affected by variation in canopy architecture. Three novel characteristics of stemflow were identified for several tall stewartia trees. First, the yearly stemflow ratio at the forest-stand level for tall stewartia (12%) was high compared to previous findings on beech and oak stands, indicating tall stewartia has considerably high potential to generate a great amount of stemflow. Second, stemflow tended to be 1.3–2.0 times greater in the leafed period than in the leafless period. Third, the amount of stemflow was 12–132 times greater on the downslope side of the stem than on the upslope side. It likely caused by the uneven area between the upslope and downslope sides of the canopy and by asymmetrical stemflow pathways between the upslope and downslope sides of the trunk due to downslope tilting of the tree trunk.  相似文献   

10.
Abstract

More than 40 years of re-vegetation using mainly xerophytic shrubs Artemisia ordosica Krasch. and Caragana korshinskii Kom. at Shapotou Desert Experimental Research Station near Lanzhou, China has resulted in established dwarf-shrub and herbaceous cover on sand dunes. Precipitation, as the sole source of water replenishment in the semiarid area, plays a pertinent role in sustaining the desert ecosystem. A field study was conducted to (a) measure interception loss on shrub canopies during individual rainfall events, (b) determine the canopy storage capacity of individual plants, and (c) explore the relationship between interception and rainfall parameters. The total rainfall and its respective partitions as throughfall were determined and the interception losses in the studied ecosystem were quantified. Interception loss was shown to differ among the xerophyte taxa studied. During the growing seasons, the average shrub community interception loss is 6.9% and 11.7% of the simultaneous overall precipitation, for A. ordosica and C. korshinskii, respectively. Taking into account the observed rainfall conditions and vegetation cover characteristics, it was concluded that the interception loss was 2.7% of the total annual precipitation verified in the period for the A. ordosica community with an average cover of 30%, canopy projection area of 0.8 m2 and canopy storage capacity of 0.75 mm. In contrast, interception loss for the C. korshinskii community was 3.8% with an average cover of 46%, canopy projection area of 3.8 m2 and canopy storage capacity of 0.71 mm. For individual plants of both shrubs, the proportion of interception loss to gross rainfall decreased notably as the rainfall intensity increased between 0 and 2 mm h?1, while it tended to remain constant at about 0.1–0.2 for A. ordosica and 0.1–0.3 for C. korshinskii when the rainfall intensity was >2 mm h?1.  相似文献   

11.
The partitioning of gross rainfall into throughfall, stemflow, and interception loss and their relationships with forest structure was studied for a period of four years (October 2002–September 2006) and two years (October 2005–September 2007) in seven experimental catchments of temperate rainforest ecosystems located in the Andes of south‐central Chile (39°37′S, 600–925 m a.s.l.). The amount of throughfall, stemflow, and interception loss was correlated with forest structure characteristics such as basal area, canopy cover, mean quadratic diameter (MQD), and tree species characteristics in evergreen and deciduous forests. Annual rainfall ranged from 4061 to 5308 mm at 815 m a.s.l. and from 3453 to 4660 mm at 714 m a.s.l. Throughfall ranged from 64 to 89% of gross rainfall. Stemflow contributed 0·3–3·4% of net precipitation. Interception losses ranged from 11 to 36% of gross rainfall and depended on the amount of rainfall and characteristics as well as on forest structure, particularly the MQD. For evergreen forests, strong correlations were found between stemflow per tree and tree characteristics such as diameter at breast height (R2 = 0·92, P < 0·01) and crown projection area (R2 = 0·65, P < 0·01). Stemflow per tree was also significantly correlated with epiphyte cover of trunks in the old‐growth evergreen forests (R2 = 0·29, P < 0·05). The difference in the proportion of throughfall and interception loss among stands was significant only during winter. The reported relationships between rainfall partitioning and forest structure and composition provide valuable information for management practices, which aimed at producing other ecosystem services in addition to timber in native rainforests of southern Chile. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
Di Wang  Li Wang 《水文研究》2019,33(3):372-382
Canopy interception is one of the most important processes in an ecosystem, but it is still neglected when assessing evapotranspiration (ET) partitioning in apple orchards on the Loess Plateau in China. To explore the importance of canopy interception, we monitored two neighbouring apple orchards on the Loess Plateau in China, one 8‐year‐old and the other 18‐years old at the start of the study, from May to September for four consecutive years (2013–2016). We measured parameters of canopy interception (I) including precipitation, throughfall, stemflow, leaf area index, transpiration (T), and soil evaporation (S) to quantify ET. The importance of canopy interception was then assessed by comparing the relationship between water supply (precipitation) and water demand (ET), calculated with and without considering canopy interception (T + S and T + S + I, respectively). Tree age clearly influenced canopy interception, as estimates of annual canopy interception during the study years in the younger and older orchards amounted to 22.2–29.4 mm and 26.8–39.9 mm, respectively. Daily incident rainfall and rainfall intensity in both orchards were significantly positively correlated with daily canopy interception in each year. The relationship between annual precipitation and annual ET (calculated with and without consideration of canopy interception) in the younger orchard differed during 2015 and 2016. Ignoring canopy interception would result in underestimation of annual ET in both apple orchards and hence incorrect evaluation of the relationship between water supply and water demand, particularly for the younger orchard during 2015 and 2016. Thus, for a complete understanding of water consumption in apple orchards in this and similar regions, canopy interception should not be ignored when assessing ET partitioning.  相似文献   

13.
Evaporation of intercepted rain by a canopy is an important component of evapotranspiration, particularly in the humid boreal forest, which is subject to frequent precipitation and where conifers have a large surface water storage capacity. Unfortunately, our knowledge of interception processes for this type of environment is limited by the many challenges associated with experimental monitoring of the canopy water balance. The objective of this study is to observe and estimate canopy storage capacity and wet canopy evaporation at the sub-daily and seasonal time scales in a humid boreal forest. This study relies on field-based estimates of rainfall interception and evapotranspiration partitioning at the Montmorency Forest, Québec, Canada (mean annual precipitation: 1600 mm, mean annual evapotranspiration: 550 mm), in two balsam fir-white birch forest stands. Evapotranspiration was monitored using eddy covariance sensors and sap flow systems, whereas rainfall interception was measured using 12 sets of throughfall and six stemflow collectors randomly placed inside six 400-m2 plots. Changes in the amount of water stored on the canopy were also directly monitored using the stem compression method. The amount of water intercepted by the forest canopy was 11 ± 5% of the total rainfall during the snow-free (5 July–18 October) measurement periods of 2017 and 2018. The maximum canopy storage estimated from rainfall interception measurements was on average 1.6 ± 0.7 mm, though a higher value was found using the stem compression method (2.2 ± 1.6 mm). Taking the average of the two forest stands studied, evaporation of intercepted water represented 21 ± 8% of evapotranspiration, while the contribution of transpiration and understory evapotranspiration was 36 ± 9% and 18 ± 8%. The observations of each of the evapotranspiration terms underestimated the total evapotranspiration observed, so that 26 ± 12% of it was not attributed. These results highlight the importance to account for the evaporation of rain intercepted by humid boreal forests in hydrological models.  相似文献   

14.
The forest canopy can play a significant role in modifying the amount and isotopic composition of water during its passage throughout the near-surface critical zone. Here, partitioning of gross rainfall into interception, throughfall, and stemflow and its implications for the amount and isotopic composition of soil water was studied for red oak, eastern white pine, and eastern hemlock trees in a northern hardwood-conifer forest in south central Ontario, Canada. Stemflow production was greatest for red oak as a result of its upward-projecting branches and least for eastern white pine due to its horizontal branches and rougher bark. These stemflow contributions to the near-bole soil surface failed to produce consistently wetter soils relative to distal locations from the bole for all tree species. There was also no consistent evidence of isotopic enrichment of throughfall and stemflow relative to gross rainfall or of stemflow relative to throughfall for red oak or eastern hemlock. However, there was isotopic enrichment of both throughfall and stemflow for eastern white pine with increasing maximum atmospheric vapour pressure deficit, which may reflect the potential for evaporative fractionation as a result of retention and detention of water moving through the canopy by the rougher bark of this species. Dry soil conditions limited sampling of mobile soil water during the study, and there was no consistent evidence that either throughfall or stemflow fluxes controlled temporal changes in the isotopic signature of soil water beneath the tree. Thus, the potential for throughfall and stemflow fluxes in northern hardwood-conifer forests to modify the isotopic composition of water taken up by the tree via transpiration remains an open question.  相似文献   

15.
Methods for measuring throughfall, stemflow and, hence, interception in the tropical rainforests of the Wet Tropics region of North Queensland, Australia, were tested at three sites for between 581 and 787 days. The throughfall system design was based on long troughs mounted beneath the canopy and worked successfully under a range of rainfall conditions. Comparison of replicated systems demonstrated that the methodology is capable of capturing the variability in throughfall exhibited beneath our tropical rainforest canopies. Similarly, the stemflow system design which used spiral collars attached to sample trees worked well under a range of rainfall conditions and also produced similar estimates of stemflow in replicated systems. Higher altitude rainforests (>1000 m) in North Queensland can receive significant extra inputs of water as the canopy intercepts passing cloud droplets. This additional source of water is referred to as ‘cloud interception’ and an instrument for detecting this is described. The results obtained from this gauge are compared with cloud interception estimates made using a canopy water balance method. This method is based on stemflow and throughfall measurements and provides an alternative means to fog or cloud interception gauge calibration techniques used in the literature. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
Alpine shrub Quercus aquifolioides was selected to study the effects of shrub canopy on throughfall and phreatic water by analyzing the isotopic time series of precipitation, canopy throughfall and phreatic water and examining correlations among these series in Wolong Nature Reserve, Western China. Based on analysis of precipitation data in 2003, the local meteoric water line during the rainy season was δD = 8.28 × δ18O + 8.93, and the primary precipitation moisture in this region originated from the Pacific Ocean in the summer. Stable isotope analysis showed that the main supply of throughfall and phreatic water was from precipitation, and the shrub canopy has an important effect on the processes of rainwater transmuted into throughfall and phreatic water. Moreover, the differences of δD and δ18O values between rainwater and throughfall were relevant to rainfall. Due to interception of the shrub canopy, there had a response hysteresis of phreatic water to the various rainfall events, which was mostly 2 days, except that this hysteresis was ≤1 day when rainfall was >15 mm/day.  相似文献   

17.
Stable isotopes of water can give clues to the physical processes of forest canopy interception. We examined whether fine‐scale canopy structure is related to throughfall amount and isotopic variation by intensively quantifying both throughfall and canopy structure in a broadleaf, deciduous forest in Louisiana, USA. Local throughfall amount was correlated with canopy structure quantified as distance to the nearest tree, local crown coverage, and local crown length; isotopic composition was also correlated with the same variables but weakly. Spatial patterns of throughfall amount showed some consistency across storms, but spatial patterns of stable isotopes were much weaker and inconsistent. Spatial autocorrelation was consistent in throughfall amount across events, which suggests fixed controls over patterning of throughfall to the forest floor by the canopy. In contrast, lower spatial and temporal autocorrelation in isotopic composition suggested temporally varying controls over patterning, and that routing through the canopy, intra‐storm isotopic variation of rainfall, isotopic exchange, and evaporation interacted to affect the stable isotopic composition. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
D. L. Dunkerley 《水文研究》2008,22(12):1985-1995
Interception losses from the canopies of dryland plant taxa remain poorly understood, especially the relative contributions of intra‐storm and post‐storm evaporative losses. Employing a new measuring apparatus, this study uses low‐intensity simulated rain, matched to the properties of local rain, to explore interception processes in bluebush shrubs at an Australian dryland site. Five shrub specimens were exposed to simulated rain for 60–90 min. Experiments were repeated at three rainfall intensities (10, 15, and 20 mm h?1). Canopy evaporation was found from the difference between the flux of water delivered to the shrub and the flux of throughfall, once equilibrium had been established. The results show that evaporation from the wet foliage during rain proceeds at an average rate of 3·6 mm h?1. This figure is for relatively cool spring‐season conditions; evaporation rates in hot summer conditions would be larger. Intra‐storm evaporation is shown to exceed post‐rain evaporation from interception storage on the shrubs, and this differentiates dryland shrub interception processes from those of the better‐studied wet forest environment. Implications of the high dryland shrub canopy evaporation rates for aspects of dryland ecology are highlighted. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
Interception losses in stands of non‐native trees in Hawaiian forests and their potential negative impacts on fresh water availability are poorly understood. In this study, a canopy water balance analysis was conducted to estimate interception losses using measurements of rainfall (RF), throughfall (TF), and stemflow (SF) at three locations, each dominated by one or more of the following non‐native tree species: Psidium cattleianum Sabine (Strawberry guava), Schinus terebinthifolius Raddi (Christmas berry), Syzygium cumini (L.) Skeels (Java plum), and Coffea arabica L. (Coffee). Mean TF expressed as percentage of total RF was the lowest (43.3%) under a monotypic stand of P. cattleianum and the highest (56.5%) under mixture of S. terebinthifolius, P. cattleianum, and S. cumini. Observed SF was highest (33.9%) under P. cattleianum and lowest (3.6%) under a mixture of S. terebinthifolius, P. cattleianum, and S. cumini. The relatively high SF under P. cattleianum can be attributed to its smooth bark, stem density, and steep branching. The mean observed canopy interception varied between 23% under P. cattleianum and 45% at the site dominated by C. arabica. Mean direct TF coefficients from individual events at each location ranged from a low of 0.36 under the canopy dominated by C. arabica to a high of 0.51 under the canopy dominated by S. terebinthifolius, P. cattleianum, and S. cumini. In contrast, the mean SF partitioning coefficients from individual storm events at each location ranged from a low of 0.05 under the canopy dominated by S. terebinthifolius, P. cattleianum, and S. cumini to a high of 0.37 under P. cattleianum. Mean canopy storage capacity was highest (1.90) at the site dominated by S. terebinthifolius, P. cattleianum, and S. cumini whereas trunk storage capacity was highest (0.54) under the P. cattleianum. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
A seven year event-based study partitioning of rainfall into throughfall, stemflow, and interception was conducted in a dry sclerophyll eucalypt forest and a Pinus radiata plantation. Resulting information will be of use for process modelling. Stemflow was influenced by event type, rain angle having a major effect; and the yields of the different species are compared. Tree characteristics that influenced stemflow yields are outlined and discussed. The canopy storage capacity of the eucalypt forest was determined and the influence of species composition is shown. The likely influence of climate variations is discussed. The canopy storage capacity is compared to the interception values estimated for continuous events of various sizes. The interception of the eucalypt forest and the pine plantation are compared on event basis for event size classes and on an annual basis. The comparative interceptions for continuous events are also discussed, while the effect of thinning the pine plantation on throughfall, stemflow, and interception is shown. The hydrological consequences of this study are: more informed judgment can be made about techniques for measurement of throughfall, tree structural characteristics (species related) can more adequately be considered when selecting trees for measurement of stemflow, and the stemflow yields can in some cases be better understood from the information about effect of event type. This paper deals with the influence of measurement method, species composition, and tree characteristics on the estimation of throughfall in the eucalypt forest. The site is near Canberra, lat. 35°S, 145°E, with annual rainfall about 650 mm. Two methods of measuring throughfall are compared: randomly placed, 200 mm cylindrical gauges (standard) and 50 mm square opening wedge type gauges (plastic), and randomly placed 5 × 0–22 m troughs. Despite the high placement density (150 to 225 ha?1), throughfall estimates from gauges has high variance and consistently underestimated those of the troughs, which had a total opening equivalent to 2325 raingauges (200 mm diameter) per hectare. Local concentration of stemflow into drip points provided by detaching bark pieces of one smooth barked species, Eucalyptus mannifera, is believed to be the principal cause of the lower collection and greater variance of the gauges. The low leaf area index (1–3) and large wood area of the forest together with a pendulous vertical habit of the leaves also contributed. The presence of E. mannifera is shown to substantially affect the relative values of throughfall as measured by troughs and gauges. The plastic receivers were found to underestimate rainfall or throughfall relative to the standard gauges, particularly for fine drop rainfall in multiperiod events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号