首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
自21世纪以来,对地球上最大、最高的高原——青藏高原上持久性有机污染物的含量、传输途径和归宿的了解已逐步深入,回顾了关于青藏高原持久性有机污染物研究的主要成果。高海拔山区的观测技术和多尺度模型是产出这些成果的关键突破口,而第三极持久性有机污染物观测网填补了青藏高原地区持久性有机污染物数据的空白,为系统阐明南亚持久性有机污染物的排放特征,明确印度季风驱动下持久性有机污染物输入青藏高原的过程与范围以及揭示青藏高原高寒生态系统对部分持久性有机污染物的富集程度提供了基础。植被、土壤和冰川是持久性有机污染物的重要汇。由于青藏高原临近国家是持久性有机污染物的排放源地,使得持久性有机污染物可通过远距离大气传输和“冷捕集”作用在青藏高原环境中富集。因此未来需要开展长期监测,准确量化新型污染物对青藏高原生态环境的影响,阐明气候变化和人类活动共同影响下青藏高原环境变化的趋向。最后,考虑到跨境传输是青藏高原持久性有机污染物污染的主要原因,因此还应在持久性有机污染物排放法规方面积极开展全球/区域合作,以减少持久性有机污染物的迁移及其对青藏高原的不利影响。  相似文献   

2.
第三纪青藏高原面高程与古植被变迁   总被引:18,自引:0,他引:18  
魏明建  王成善 《现代地质》1998,12(3):318-326
收集了近半个世纪以来、几乎全部有关青藏高原第三纪古植被的研究资料,从整体角度对青藏高原的古植被演化史与高原面高程变化史进行了初步研究。认为青藏高原第三纪古植被经历了由古老、湿热环境下的热带低地森林,脉动式地渐变为热带、亚热带山地森林及灌丛草原。反映高原是阶段性、持续上升的,其间不存在大幅的降低过程。冈底斯山、念青唐古拉山、唐古拉山、昆仑山所围限的藏北高原比喜马拉雅山系隆升早,且在整个第三纪都比喜马拉雅山高,到上新世的中、晚期其高度已达海拔3000m以上。喜马拉雅山系成为世界屋脊是第四纪以来的事。  相似文献   

3.
位于青藏高原南部的米林地区在晚更新世晚期沉积了一套湖相沉积体系,为了探讨当时米林地区的古植被、古环境信息,在米林机场实测了一条晚更新世晚期剖面。根据样品14C测年结果初步认定该剖面湖积物的底部年龄约40kaBP,顶部年龄约12kaBP。根据孢粉分析研究把该剖面自下而上划分为4个孢粉组合带以及对应的4个植被发展演替阶段:①第一阶段(对应孢粉组合带Ⅰ;36~28kaBP)为森林草甸植被类型;②第二阶段(对应孢粉组合带Ⅱ;28~23kaBP)为高山草原植被类型;③第三阶段(对应孢粉组合带Ⅲ;23~18kaBP)为蒿草草原植被类型;④第四阶段(对应孢粉组合带Ⅳ;16~13kaBP)为荒漠草原植被类型。在此基础上,初步推论青藏高原南部晚更新世晚期气候环境演化为:从40kaBP至全新世高原南部气候类型总体寒冷偏干旱出现小型波动,与全球的冰期和间冰期吻合较好。  相似文献   

4.
以青藏高原多年冻土区北界的西大滩为研究基点, 选取多年冻土不同退化阶段的两个样地, 对植被分布特征、 冻土活动层和土壤特性等进行调查监测, 同时分析不同活动层状态下土壤水热、 养分和地表植被特征变化及相互间的作用关系. 结果表明: 西大滩地区的植被以浅根系植物为主, 0~10 cm的表层土壤中地下生物量约占地下生物总量的63%和62.2%之多. 在气候条件基本一致的情况下, 多年冻土的存在情况及活动层土壤水热状况对植被生态系统的演变起决定性作用. 高地表植被覆盖下的冻土土壤水热调节能力强, 有助于延缓冻土退化过程. 西大滩土壤全氮、 碱解氮、 速效钾与有机质含量密切相关, 含量随冻土退化明显减少, 且随土层深度的变化曲线表现为相同的趋势. 土壤表层养分和速效养分受冻土退化程度的影响较大.  相似文献   

5.
青藏高原多年冻土地区公路边坡植被生长的观测与研究   总被引:1,自引:0,他引:1  
青藏高原多年冻土地区, 具有海拔高、气温低等特点. 2000年和2001年分别在青藏公路两道河和头二九附近的公路边坡, 开展了植被恢复试验. 采用垂穗披碱草、老芒麦等植物种类混播的方式, 喷播法种植, 播种当年就可以建立良好的植被. 8 a的跟踪观测结果表明, 植被一旦建立, 能够正常越冬、返青. 在牛羊啃食、践踏的情况下, 植被能保持良好的生长状态, 地下生物量积累不断增多. 假设植被能一直保持良好生长状态, 人工植被生物量要恢复到自然群落水平, 在两道河至少需要几十年, 在头二九约需十几年. 但由于野生植物种类入侵速度较慢, 人工植被要真正恢复到自然植被状态则需要更加漫长的时间.  相似文献   

6.
由于青藏高原的特殊大气环流形势,夏半年受印度洋热带海洋季风──西南季风控制,向高原内部、尤其西北部,水份逐渐减弱;冬半年高原面受干冷西风环流影响,致使气候寒冷干燥。从而使高原植被由东南向西北发生递交。上新世早、中期在冈底斯山和念青唐古拉山以南地区发育常绿硬叶林,而北部则生长山地常绿针叶林,到更新世早期藏南以亚热带针阀混交林为主,北部出现灌丛和草原植被。自更新世晚期以来,青藏高原除东南部及喜马拉雅山以南的一部分地区保留部分亚热带针阔混交林外,大部分地区为高山草甸、灌丛草原或荒漠草原。   相似文献   

7.
李林  王振宇  徐维新  汪青春 《冰川冻土》2011,33(5):1006-1013
利用青藏高原河南县典型高寒草甸生态系统群落结构、地上生物量、发育期及其气候、冻土环境观测资料,系统研究了高寒草甸植被生长发育特征及其对气候变化和冻土退化的响应机理.研究表明:20世纪80年代后期以来,随年代进程高寒草甸植被出现了牧草返青初期无明显变化,而黄枯初期显著延迟,致使生长期延长,覆盖度总体下降,但自2004后开...  相似文献   

8.
近21年青藏高原植被覆盖变化规律   总被引:30,自引:0,他引:30  
利用GIMMS NDVI遥感数据和GIS技术,结合多种统计、计算方法,定量分析了1982—2002年青藏高原植被覆盖随时间和空间的变化规律,评定了植被变化的自然和人类的影响。结果表明,21年来,青藏高原植被覆盖呈总体增加的变化趋势,平均增长率为3 961.9 km2/年,仅局部出现退化现象,人类对高原植被覆盖未造成破坏性影响。1982—1991年,高原植被呈现良好增加趋势,增加幅度从东部南部向西部北部逐渐减弱,表明由东南向西北逐步减弱的有利气候条件具有经向和纬向的变化规律。1992—2002年,高原中部和西北地区植被呈现退化趋势,强烈退化的地区集中在长江、黄河、澜沧江和怒江的源头地区,显示了高原中部和西北地区的气候条件向不利于植被生长方向转变,高原中部和西北地区植被是响应气候变化的最敏感区。高原植被变化具有7年、3.5年两个显著周期,均为温度所致,表现对温度的变化敏感性。21年期间,高原的8种主要植被类型中有7种类型表现为波动上升的趋势,且寒区旱区植被表现出脆弱性和难恢复性。  相似文献   

9.
青藏高原新仙女木事件的气候与环境   总被引:4,自引:1,他引:4  
沈永平  张平中 《冰川冻土》1996,18(3):219-226
近年来的研究结果表明,发生于11-10kaBP的新仙女木降温事件呈全球性变化,青藏高原在这一事件中气候与环境也发生了急剧变化,由于青藏高原巨大的高度和脆弱的冰冻圈结构,使新仙女木事件的敏感性和作用被放大了,这对同纬度地区和全球产生极大的影响。  相似文献   

10.
针对青藏高原植被稀疏、土壤颗粒较粗糙的特征,基于Noah陆面过程模型(LSM),模拟了植被和土壤对整个高原多年冻土分布和关键属性特征(包括活动层厚度和年平均地温)的影响,并通过野外调查数据对模拟结果进行了评估。结果表明:在考虑稀疏植被和粗糙土壤后,改进的Noah LSM对青藏高原多年冻土分布和属性的模拟性能都有所改善;多年冻土面积由原始Noah模型模拟的1.216×106 km2减少到1.113×106 km2,模拟的空间差异主要出现在多年冻土与季节冻土的过渡区及高原南部的岛状多年冻土区;模拟的高原平均活动层厚度由原始Noah模型模拟的2.55 m增加到2.92 m,年平均地温也由-2.17℃增加到-1.65℃。总之,青藏高原稀疏植被和粗糙土壤对多年冻土有重要影响。  相似文献   

11.
青藏高原地质研究的回顾与展望   总被引:7,自引:4,他引:7       下载免费PDF全文
莫宣学 《中国地质》2010,37(4):841-853
青藏高原是世界上最高最大最年青的高原,被国际地学界公认为世界上研究大陆动力学最理想的天然实验室。特提斯的形成演化及高原的隆起是青藏高原地学研究的两大主题,包含了众多引人入胜的重要科学问题。笔者对其中8个科学问题进行了回顾与展望,它们是:青藏高原的前身——特提斯的形成演化;印度-亚洲大陆碰撞;青藏高原壳幔结构与物质组成;青藏巨厚地壳的成因;青藏高原深部物质的横向流动;地幔柱;高原隆升与生长;成矿作用。  相似文献   

12.
青藏高原多年冻土活动层厚度对气候变化的响应   总被引:4,自引:8,他引:4  
活动层厚度变化将会对多年冻土区生态系统、地气间能水平衡和碳循环等产生重要影响。利用Stefan公式模拟了1981-2010年青藏高原多年冻土区活动层厚度的分布和空间变化特征。结果表明:多年冻土区活动层厚度平均为2.39 m,活动层厚度在羌塘盆地最小,在多年冻土区边缘、祁连山、西昆仑山、念青唐古拉山活动层厚度较大。在气候变化条件下,青藏高原多年冻土区活动层厚度呈整体增大趋势,在1981-2010年,活动层厚度的变化量为-1.54~2.24 m,变化率为-5.90~10.13 cm·a-1,平均每年变化1.29 cm。活动层增厚趋势与年平均气温增大的趋势基本一致,这说明气候变化对活动层厚度变化有很大的影响。  相似文献   

13.
青藏高原生态环境变化趋势的初步探索   总被引:13,自引:2,他引:13  
陈江  万力  梁四海  金晓媚  陈立 《地球学报》2007,28(6):555-560
青藏高原是世界上环境最为脆弱的区域之一.本文在总结国内外文献的基础上详细介绍了高原气候、植被的年际变化,对气象数据做了不同角度的统计,采用遥感反演的方法对植被分布进行了计算.从计算的结果看近20年来高原植被变化并不十分明显,在全球性变暖的大背景下局部地区有增长的趋势,高原温度、降水、蒸发都在上升,这些因素对植被的生长都产生着重要的影响.  相似文献   

14.
气候变化情景下青藏高原多年冻土活动层厚度变化预测   总被引:8,自引:11,他引:8  
张中琼  吴青柏 《冰川冻土》2012,34(3):505-511
在人类活动和气候变暖的共同影响下, 浅层多年冻土近地表和活动层的热状况会发生显著的变化, 从而对生态环境、 水文、 工程等产生较大的影响. 以A1B, A2, B1气候变化情景模式为基础, 运用Stefan公式计算和预测了青藏高原多年冻土区活动层厚度的变化特征. 结果表明: 以羌塘盆地为中心, 青藏高原多年冻土活动层厚度向其四周不断增加, 多年冻土活动层厚度随着气温升高而增加. A1B 、 A2模式下活动层厚度变化大, 相对人类活动强度较小的B1模式活动层厚度变化较小. 到2050年时, A1B情景活动层厚度平均约为3.07 m, 相对于2010年活动层厚度约增加0.3~0.8 m; B1情景活动层厚度增加0.2~0.5 m; A2情景增加0.2~0.55 m. 到2099年, A1B情景活动层的平均厚度将约为3.42 m; A2情景将可达3.53 m; B1情景将可达2.93 m. 气候变暖将可能加深活动层, 百年后将大范围改变多年冻土的空间分布.  相似文献   

15.
《China Geology》2021,4(1):17-31
The Qinghai-Tibet Plateau (also referred to as the Plateau) is the largest area bearing alpine permafrost region in the world and thus is endowed with great formation conditions and prospecting potential of natural gas hydrates (NGH). Up to now, one NGH accumulation, two inferred NGH accumulations, and a series of NGH-related anomalous indicators have been discovered in the Plateau, with NGH resources predicted to be up to 8.88×1012 m3. The NGH in the Qinghai-Tibet Plateau have complex gas components and are dominated by deep thermogenic gas. They occur in the Permian-Jurassic strata and are subject to thin permafrost and sensitive to environment. Furthermore, they are distinctly different from the NGH in the high-latitude permafrost in the arctic regions and are more different from marine NGH. The formation of the NGH in the Plateau obviously couples with the uplift and permafrost evolution of the Plateau in spatial-temporal terms. The permafrost and NGH in the Qilian Mountains and the main body of the Qinghai-Tibet Plateau possibly formed during 2.0–1.28 Ma BP and about 0.8 Ma BP, respectively. Under the context of global warming, the permafrost in the Qinghai-Tibet Plateau is continually degrading, which will lead to the changes in the stability of NGH. Therefore, The NGH of the Qinghai-Tibet Plateau can not be ignored in the study of the global climate change and ecological environment.©2021 China Geology Editorial Office.  相似文献   

16.
基于BP神经网络的青藏高原土壤养分评价   总被引:5,自引:1,他引:4  
杨文静  王一博  刘鑫  孙哲 《冰川冻土》2019,41(1):215-226
土壤养分在养分循环和土壤-植物关系中起着重要作用,在高海拔生态系统中,由于缺乏系统的实地观测,土壤养分在高山草原中仍然知之甚少。为了了解青藏高原多年冻土区高寒草地土壤养分的基本情况以及土壤养分的等级划分,利用青藏高原腹地西大滩至安多地区采集的154个土壤样品数据,基于BP神经网络模型建立具有3层网络,10个中间层节点的土壤养分评价模型。在MATLAB软件中进行BP神经网络的训练和验证后,对青藏高原多年冻土区高寒草地土壤养分进行综合评价。结果表明:2009年青藏高原高寒草地的土壤养分综合评价等级为4级,属于较低水平。综合评价结果与基于主成分分析方法的土壤质量指数(SQI)基本一致,说明BP神经网络模型对青藏高原土壤养分的评价结果是合理的。对评价结果与海拔、植被盖度和植被类型的关系分析表明,海拔越高或植被盖度越高,土壤养分的评价等级越高;不同植被类型的评价等级表现出高寒沼泽草甸(2级)>高寒草甸(4级)>高寒草原(5级)的趋势。BP网络作为一种简单又准确的识别方法,不仅可以评估土壤养分等级,还可以比较不同地区的土壤养分高低状况,希望为青藏高原的土地资源管理与保护提供基本的科学依据。  相似文献   

17.
青藏高原不仅是中国重要的生态安全屏障,在全球自然地理环境中也扮演着重要的角色.然而,受限于严酷的自然环境,青藏高原的自然资源要素观测数据较为缺乏.在青藏高原组建自然资源要素综合观测网络,建立一支长期稳定的综合观测专业队伍,开展全要素、多尺度、持续性的系统观测,是一项十分必要且紧迫的工作.从站网布设思路、观测指标体系、重...  相似文献   

18.
青藏高原地质科学研究的新进展   总被引:39,自引:5,他引:34  
李廷栋 《地质通报》2002,21(7):370-376
《青藏高原隆升的地质记录及机制》科研项目实施4年取得一些新进展:证实西昆仑存在两种基底和4期构造变形;大幅度提高了可可西里盆地研究程度,重塑了滇西高原隆升史;厘定了冈底斯构造-岩浆岩带时空结构和地壳生长方式;进一步查明羌塘地区新生代火山岩存在3个亚带和4个活动高峰期;确定南迦巴瓦构造结为一楔入构造,由3个构造单元组成,南迦巴瓦群为元古宇;GPS监测获得高原北部地壳运动速率,发现两个涡旋构造;把高原岩石圈划分为3种类型,识别出3种地球化学端元;获得一批有关高原隆升、盆地沉积、地质年代等的新数据,对高原隆升及对气候影响等提出一些新认识。  相似文献   

19.
在气候变化背景下,青藏高原多年冻土区生态环境发生着一系列变化并进一步影响土壤氮循环过程,但目前冻融循环及植被生长周期中土壤氮的动态变化还不清楚。以青藏高原腹地的风火山和特大桥地区的两种典型草地生态系统为研究对象,分析了土壤可利用氮(NH4+-N、NO3--N、DON)及微生物量氮(MBN)的季节变化。结果表明:土壤铵态氮(NH4+-N)及可溶性有机氮(DON)含量在非生长季高于生长季,土壤硝态氮(NO3--N)在生长季高于非生长季;风火山地区高寒草甸生态系统中土壤NH4+-N在融化期含量较高;土壤MBN在植被生长旺盛期降低,在植被生长后期升高;风火山地区高寒草甸生态系统中土壤MBN含量、特大桥地区高寒草原生态系统中土壤可利用氮总量与土壤全氮(TN)含量显著正相关。这表明,土壤全氮含量、植被吸收以及冻融作用均可引起土壤可利用氮及MBN的季节变化。  相似文献   

20.
宋怡  金龙  陈建兵 《冰川冻土》2014,36(4):1017-1025
利用2000-2012年的MODIS 增强植被指数(Enhanced Vegetation Index,EVI)数据,结合研究区3个气象台站长期的气象数据,分析了青藏公路沿线植被变化总体趋势,以及不同整修措施对周边植被覆盖带来的不同影响.通过实地考察,选取了16个受工程活动影响的典型路边样方,3个铁路边样方和8个远离公路铁路的自然样方,对比路边和自然样方,分析植被的自我恢复能力以及4个主要影响因子.结果表明:青藏公路沿线植被覆盖变化是在整个气候变化的背景下,叠加了工程活动的影响.植被的恢复能力与其所在路段的地形、植被覆盖度、气候条件、以及工程活动的强度均有关系,抑制植被生长的因素越多,植被恢复越慢.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号