首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the results of speckle-interferometric observations of 109 high proper-motion metalpoor stars made with the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences. We resolve eight objects—G102-20, G191-55, BD+19° 1185A, G89-14, G87-45, G87-47, G111-38, and G114-25—into individual components and we are the first to astrometrically resolve seven of these stars. New resolved systems included two triple (G111-38, G87-47) and one quadruple (G89-14) star. The ratio of single-to-binary-to-triple-to-quadruple systems among the stars of our sample is equal to 71:28:6:1.  相似文献   

2.
The results of speckle interferometric observations of 104 binary and 6 triple stars performed at the BTA 6 m telescope in 2004 October are presented. Nearby low-mass stars are mostly observed for the program, among which 59 there are new binaries recently discovered by the Hipparcos astrometric satellite. Concurrently with the diffraction-limited position measurements we obtained 154 brightness ratio measurements of binary and multiple star components in different bands of the visible spectrum. New, first-resolved binaries are the symbiotic star CH Cyg with a weak companion at 0.043″ separation and the pair of red dwarfs, GJ 913 = HIP 118212. In addition, we derived the orbital parameters for two interferometric systems: the CN-giant pair HD 210211 = HIP 109281 (P = 10.7 yr) and the G2V-K2V G2V-K2V binary GJ 9830 = HIP 116259 (P = 15.7 yr).  相似文献   

3.
We present the results of magnetic field measurements of four chemically peculiar (CP) stars, the members of the Orion stellar association OB1. Observations were carried out with the circular polarization analyzer at the Main Stellar Spectrograph of the 6-m telescope. All the studied stars refer to the subtype of Bp stars with weak helium lines. Canadian astronomer E. F. Borra detected a magnetic field in three of them (HD35456, HD36313, and HD36526) from the Balmer line magnetometer observations. HD35881 was observed for the first time for the purpose to search for a magnetic field. We obtained the following results: HD35456 is a magnetic star with longitudinal field variation range from +300 to +650 G and a period of 4.9506 days; HD35881 is possible a new magnetic star, the longitudinal component of which varies from?1 to +1 kGwith a period of 0.6998 days, however, a small number of lines broadened by rotation does not allow us to conduct measurements more accurately; HD36313 is a binary star with the components similar in brightness, the primary component is a magnetic star with broad lines, the magnetic field of the secondary component (the star with narrow lines) was not detected. Measurements in the Hβ hydrogen line showed the variations of the longitudinal component from ?1.5 to +2 kG with a period of 1.17862 days; a strong longitudinal field was detected in HD36526 (from 0 to +3000 G) varying with a rotation period of the star of 3.081 days. In all the cases, we observe considerable discrepancies with the data on magnetic fields of these objects obtained earlier.  相似文献   

4.
We present BVIc photometry of the brightest stars andcompact star clusters in NGC 2976, a dwarf galaxy in the interacting M81/M82 group. Deep CCD images of the galaxy were obtained with the 6m‐Telescope of the Special Astrophysical Observatory (Russia) at arcsec resolution. About 290 young stars and concentrated young clusters were measured. Supplementary data in the ultraviolet are taken from the literature. The extinction to the measured objects is comparatively low, E(BV) ∼ 0.15 .. 0.20 mag. We estimate the ages of youngest resolved stars and concentrated star clusters to be ∼5 · 106 years. This population is concentrated in a broad stripe facing M81. In the central disk the population is a bit older, about 8 · 106 years, this may be a hint to an outward spreading star formation process. The metallicity of the disk population is estimatedas solar (z ∼ 0.02) from a fitting to Padova theoretical stellar isochrones.  相似文献   

5.
o And is one of the most frequently observed Be stars, both in photometry and spectroscopy. It is a multiple system of at least four stars (a Be star, a close binary of spectral types B7 and B8, and an A star). For over a century, numerous observers report a highly variable spectrum, photometric changes, and a substantial range of radial velocity. The star has changed back and forth between a shell-type and a normal B-type star. The last emission phase started in 1992 and ended in 2000. Analysis of the dynamical spectra at spectral lines Mg II 4481 Å and He I 6678 Å and radial velocity curves shows that the two binary components can be resolved. We decomposed the triple star spectra and computed orbital parameters of the binary companion using the KOREL code for spectrum disentangling.  相似文献   

6.
A series of our and McAlisteret al.'s speckle observations of spectroscopic binaries show that certain fractions of them are triple systems. A typical configuration of those systems is that of two stars separated by about 0.1 AU with a third component in an orbit at a distance about 10 AU from the central stars. These results suggest that the third star was formed from the outer circumstellar envelope after forming the central double.  相似文献   

7.
G01 New evidence for a connection between massive black holes and ULX G02 Long‐Term Evolution of Massive Black Hole Binaries G03 NBODY Meets Stellar Population Synthesis G04 N‐body modelling of real globular star clusters G05 Fokker‐Planck rotating models of globular clusters with black hole G06 Observational Manifestation of chaos in spiral galaxies: quantitative analysis and qualitative explanation G07 GRAPE Clusters: Beyond the Million‐Body Problem G08 Orbital decay of star clusters and Massive Black Holes in cuspy galactic nuclei G09 An Edge‐on Disk Galaxy Catalog G10 Complexes of open clusters in the Solar neighborhood G11 Search for and investigation of new stellar clusters using the data from huge stellar catalogues G12 Computing 2D images of 3D galactic disk models G13 Outer Pseudoring in the Galaxy G14 Where are tidal‐dwarf galaxies? G15 Ultra compact dwarf galaxies in nearby clusters G16 Impact of an Accretion Disk on the Structure of a stellar cluster in active galactic nuclei G17 Order and Chaos in the edge‐on profiles of disk galaxies G18 On the stability of OB‐star configurations in the Orion Nebula cluster G19 Older stars captured in young star clusters by cloud collapse G20 General features of the population of open clusters within 1 kpc from the Sun G21 Unstable modes in thin stellar disks G22 From Newton to Einstein – Dynamics of N‐body systems G23 On the relation between the maximum stellar mass and the star cluster mass  相似文献   

8.
《New Astronomy》2003,8(7):719-725
We have found that six sources listed in the new carbon star catalog are not really carbon-rich objects but oxygen-rich stars, because they all have prominent silicate features in emission at 10 and 18 μm. Moreover, one of them has a typical oxygen-rich spectrum in the optical region, whereas others have SiO maser emission. Most of these objects were considered as carbon stars in the catalog based only on their locations in the near infrared—IRAS two color diagram. Therefore, to use this diagram to distinguish carbon-rich stars from oxygen-rich stars requires caution. For individual star the other methods should be also employed to verify the results from the infrared two color method.  相似文献   

9.
星流在星系形成与演化过程中扮演了重要的角色,对银河系中星流的研究将有助于进一步探究银河系的合并历史.将LAMOST(Large Sky Area Multi-Object Fiber Spectroscopic Telescope)DR6光谱数据以及SDSS(Sloan Digital Sky Survey)DR12光谱数据分别与Gaia(Global Astrometric Interferometer for Astrophysics)DR2天体测量数据交叉匹配,获得恒星自行等数据.对GD-1星流在速度空间、几何空间和金属丰度上进行限制,从LAMOST DR6和SDSS DR12数据中共获得了157颗星流成员星.GD-1星流的平均金属丰度为[Fe/H]=-2.16±0.10 dex,延伸长度超过80°.收集前人给出的GD-1星流高概率成员星,组成较大的成员星样本进行对比分析,发现GD-1星流的金属丰度分布呈现内低外高的特点,沿着星流方向径向速度分布特点是两端大、中间小,?1=-20°(?1为GD-1星流坐标系横坐标)和?1=-60°附近的间隙是因为成员星运动差异形成的.根据成员星分布及其速度分布特性,推测GD-1星流起源位置是在?1=-40°附近.  相似文献   

10.
One of the most dramatic events in the life of a low-mass star is the He flash, which takes place at the tip of the red giant branch (RGB) and is followed by a series of secondary flashes before the star settles into the zero-age horizontal branch (ZAHB). Yet, no stars have been positively identified in this key evolutionary phase, mainly for two reasons: first, this pre-ZAHB phase is very short compared to other major evolutionary phases in the life of a star; and second, these pre-ZAHB stars are expected to overlap the loci occupied by asymptotic giant branch (AGB), HB, and RGB stars observed in the color-magnitude diagram (CMD). We investigate the possibility of detecting these stars through stellar pulsations, since some of them are expected to rapidly cross the Cepheid/RR Lyrae instability strip in their route from the RGB tip to the ZAHB, thus becoming pulsating stars along the way. As a consequence of their very high evolutionary speed, some of these stars may present anomalously large period change rates. We constructed an extensive grid of stellar models and produced pre-ZAHB Monte Carlo simulations appropriate for the case of the Galactic globular cluster M3 (NGC 5272), where a number of RR Lyrae stars with high period change rates are found. Our results suggest that some—but certainly not all—of the RR Lyrae stars in M3 with large period change rates are in fact pre-ZAHB pulsators.  相似文献   

11.
Most stars reside in binary/multiple star systems; however, previous models of planet formation have studied growth of bodies orbiting an isolated single star. Disk material has been observed around both components of some young close binary star systems. Additionally, it has been shown that if planets form at the right places within such disks, they can remain dynamically stable for very long times. Herein, we numerically simulate the late stages of terrestrial planet growth in circumbinary disks around ‘close’ binary star systems with stellar separations 0.05 AU?aB?0.4 AU and binary eccentricities 0?eB?0.8. In each simulation, the sum of the masses of the two stars is 1 M, and giant planets are included. The initial disk of planetary embryos is the same as that used for simulating the late stages of terrestrial planet formation within our Solar System by Chambers [Chambers, J.E., 2001. Icarus 152, 205-224], and around each individual component of the α Centauri AB binary star system by Quintana et al. [Quintana, E.V., Lissauer, J.J., Chambers, J.E., Duncan, M.J., 2002. Astrophys. J. 576, 982-996]. Multiple simulations are performed for each binary star system under study, and our results are statistically compared to a set of planet formation simulations in the Sun-Jupiter-Saturn system that begin with essentially the same initial disk of protoplanets. The planetary systems formed around binaries with apastron distances QB≡aB(1+eB)?0.2 AU are very similar to those around single stars, whereas those with larger maximum separations tend to be sparcer, with fewer planets, especially interior to 1 AU. We also provide formulae that can be used to scale results of planetary accretion simulations to various systems with different total stellar mass, disk sizes, and planetesimal masses and densities.  相似文献   

12.
Thorne–?ytkow objects (T?Os), originally proposed by Thorne and ?ytkow, may form as a result of unstable mass transfer in a massive X-ray binary after a neutron star (NS) is engulfed in the envelope of its companion star. Using a rapid binary evolution program and the Monte Carlo method, we simulated the formation of T?Os in close binary stars. The Galactic birth rate of T?Os is about \(1.5\times 10^{-4}~\hbox {yr}^{-1}\). Their progenitors may be composed of a NS and a main-sequence star, a star in the Hertzsprung gap or a core-helium burning, or a naked helium star. The birth rates of T?Os via the above different progenitors are \(1.7\times 10^{-5}\), \(1.2\times 10^{-4}\), \(0.7\times 10^{-5}\), \(0.6\times 10^{-5}~\hbox {yr}^{-1}\), respectively. These progenitors may be massive X-ray binaries. We found that the observational properties of three massive X-ray binaries (SMC X-1, Cen X-3 and LMC X-4) in which the companions of NSs may fill their Roche robes were consistent with those of their progenitors.  相似文献   

13.
We report the results of our search for magnetic fields in a sample of 16 field Be stars, the binary emission‐line B‐type star υ Sgr, and in a sample of fourteen members of the open young cluster NGC3766 in the Carina spiral arm. The sample of cluster members includes Be stars, normal B‐type stars and He‐strong/He‐weak stars. Nine Be stars have been studied with magnetic field time series obtained over ∼1 hour to get an insight into the temporal behaviour and the correlation of magnetic field properties with dynamical phenomena taking place in Be star atmospheres. The spectropolarimetric data were obtained at the European Southern Observatory with the multi‐mode instrument FORS1 installed at the 8m Kueyen telescope. We detect weak photospheric magnetic fields in four field Be stars, HD 62367, μ Cen, o Aqr, and ε Tuc. The strongest longitudinal magnetic field, 〈Bz〉 = 117 ± 38 G, was detected in the Be star HD 62367. Among the Be stars studied with time series, one Be star, λ Eri, displays cyclic variability of the magnetic field with a period of 21.12 min. The binary star υ Sgr, in the initial rapid phase of mass exchange between the two components with strong emission lines in the visible spectrum, is a magnetic variable star, probably on a timescale of a few months. The maximum longitudinal magnetic field 〈Bz〉 = –102 ± 10 G at MJD 54333.018 was measured using hydrogen lines. The cluster NGC3766 seems to be extremely interesting, where we find evidence for the presence of a magnetic field in seven early B‐type stars out of the observed fourteen cluster members (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
We report on the different results concerning the stability of the hierarchical triple systems where a close binary is accompanied by a third star. There are different possible approaches to answer the question of the stability limits for such triple stars: the most direct investigations can be undertaken in integrating numerically the respective equations of motion for many different initial conditions. It is then difficult to take into account all the important parameters like eccentricities, inclination, phases and masses. Analytical approaches and qualitative methods are more approriate to deal with this problem; the respective results confirm the numerically found results that: 1. for prograde orbits the ratio semimajor axis of the inner orbits to the periastron position of the outer orbit is approximately 3.2 2. for retrograde orbits this ratio is just some 10 percents smaller 3. the results are not sensitive in what concerns the masses involved 4. There is a tendency that the inclinations and eccentricities change slightly the stability limits mentioned above. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
We present the results of speckle interferometry of a sample of 117 chemically peculiar stars with global magnetic fields. The observations were made in December 2009 at the BTA with a spatial resolution of about 0.02″ in the visual spectral region. Twenty-nine stars were resolved into individual components, 14 of them for the first time (HD965, HD5797, HD8855, HD10783, HD16605, HD21699, HD35502, HD51418, HD64486, HD79158, HD103498, HD108651, HD213918, HD293764). In twelve cases a companion turned out to be 2–4 m fainter than the main component—a magnetic star. Young hot Bp stars HD35502 and HD213918 are exceptions, since their companions are fainter by about 1 m . In all cases, the linear distance from a star to its companion at the epoch of observations in the picture plane exceeded 109 km. Eighty-eight magnetic CP stars revealed no secondary components within our study. Thus, the fraction of speckle interferometric binaries in our sample amounts to 25%.  相似文献   

16.
Using polarimetric spectra obtained with the SOFIN spectrograph installed at the Nordic Optical Telescope, we detect a longitudinal magnetic field 〈Bz〉 = –168±35 G in the Of?p star HD 108. This result is in agreement with the longitudinal magnetic field measurement of the order of –150 G recently reported by the MiMeS team. The measurement of the longitudinal magnetic field in the Of?p star HD 191612 results in 〈Bz〉 = +450±153 G. The only previously published magnetic field measurement for this star showed a negative longitudinal magnetic field 〈Bz〉 = –220±38 G, indicating a change of polarity over ∼100 days. Further, we report the detection of distinct Zeeman features in the narrow Ca II and Na I doublet lines for both Of?p stars, hinting at the possible presence of material around these stars. The origin of these features is not yet clear and more work is needed to investigate how magnetic fields interact with stellar wind dynamics (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
We study the dependence of the coronal activity index on the stellar rotation velocity. This question has been considered previously for 824 late-type stars on the basis of a consolidated catalogue of soft X-ray fluxes. We carry out a more refined analysis separately for G, K, and M dwarfs. Two modes of activity are clearly identified in them. The first is the saturation mode, is characteristic of young stars, and is virtually independent of their rotation. The second refers to the solar-type activity whose level strongly depends on the rotation period. We show that the transition from one mode to the other occurs at rotation periods of 1.1, 3.3, and 7.2 days for stars of spectral types G2, K4, and M3, respectively. In light of the discovery of superflares on G and K stars from the Kepler spacecraft, the question arises as to what distinguishes these objects from the remaining active late-type stars. We analyze the positions of superflare stars relative to the remaining stars observed by Kepler on the “amplitude of rotational brightness modulation (ARM)—rotation period” diagram. The ARM reflects the relative spots area on a star and characterizes the activity level in the entire atmosphere. G and K superflare stars are shown to be basically rapidly rotating young objects, but some of them belong to the stars with the solar type of activity.  相似文献   

18.
The results of spectroscopic observations made with the NES echelle spectrograph of the 6-m BTA telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences in the wavelength interval of 3550–5100 Å with a spectral resolution of R≥50000 are used to determine the fundamental parameters and atmospheric abundances of more than 20 chemical elements including heavy s- and r-process elements from Sr to Dy for a total of 14 metal-poor G-K-type stars. The abundances of Mg, Al, Sr, and Ba were calculated with non-LTE line-formation effects accounted for. The inferred overabundance of europium with respect to iron agrees with the results obtained for the stars of similar metallicity. The chemical composition of the star BD+80°245 located far from the Galactic plane is typical of stars of the accreted halo: this star exhibits, in addition to the over-deficiency of α-process elements, also the over-deficiency of the γ-process element Ba: [Ba/Fe]= ?1.46. The kinematical parameters and chemical composition imply that the stars studied belong to different Galactic populations. The abundance of the long-living element Th relative to that of the r-process element Eu is determined for six stars using the synthetic-spectrum method.  相似文献   

19.
A possible scenario for the evolution of the universe following the big bang at t > 10-5 sec is considered. The necessary conditions that must be present for the formation of stars and stellar systems to be possible are formulated. As a condition for the formation of stars we take kTs≤ GMsmp(3R), and for stellar systems HR ? (GM/R)1/2, where Ts is the temperature of the cosmic plasma, mp is the mass of a proton, Ms is the mass of a star, M is the mass of a stellar cluster, R is the radius of these celestial bodies, and H is the bubble parameter for the corresponding time. In accordance with these criteria, we assume that in the course of cosmological expansion, neutron stars should have been formed first (times 2.10-4 ? t ? 1 sec, densities 0.07 ? ρB? 2.104 g/cm3) and then, in chronological order, appeared white dwarfs (t ≈ 102 sec, ρB ? 5.10-3 g/cm3), ordinary stars (t ≈ 4.106 sec, ?B ≈ 10-11 g/cm3), galactic nuclei (t ≈ 3.1011 sec, ?B ≈ 5.10-19 g/cm3, globular clusters (t ≈ 1013 sec, ?B ≈ 4.10-21 g/cm3), and galaxies (t ≈ 1015 sec, ?B ≈ 10-24 g/cm3), where ?B is the average density of ordinary (baryon) matter in the universe. It is shown that a galactic nucleus is a stellar system in statistical equilibrium and consists mainly of neutron stars and white dwarfs. The formation of some pulsars (neutron stars with angular rotation rates 1 < Ω < 200 sec-1) may occur in a galactic nucleus. Observed pulsars should therefore contain some fraction of neutron stars from the nucleus of the Galaxy that were able to escape it over the relaxation time (the tail of the Maxwell distribution, with star velocities v > v0, where v0 is the velocity corresponding to the work function 2GMMs/R, M being the mass and R the radius of the Galaxy’s nucleus.  相似文献   

20.
The state of supranuclear matter in compact stars remains puzzling, and it is argued that pulsars could be strangeon stars. What would happen if binary strangeon stars merge? This kind of merger could result in the formation of a hyper-massive strangeon star, accompanied by bursts of gravitational waves and electromagnetic radiation(and even a strangeon kilonova explained in the paper). The tidal polarizability of binary strangeon stars is different from that of binary neutron stars, because a strangeon star is self-bound on the surface by the fundamental strong force while a neutron star by the gravity, and their equations of state are different. Our calculation shows that the tidal polarizability of merging binary strangeon stars is favored by GW170817. Three kinds of kilonovae(i.e., of neutron, quark and strangeon) are discussed, and the light curve of the kilonova AT 2017 gfo following GW170817 could be explained by considering the decaying strangeon nuggets and remnant star spin-down. Additionally,the energy ejected to the fireball around the nascent remnant strangeon star, being manifested as a gamma-ray burst, is calculated. It is found that, after a prompt burst, an X-ray plateau could follow in a timescale of 10~2-10~3 s. Certainly, the results could be tested also by further observational synergies between gravitational wave detectors(e.g., Advanced LIGO) and X-ray telescopes(e.g., the Chinese HXMT satellite and e XTP mission), and especially if the detected gravitational wave form is checked by peculiar equations of state provided by the numerical relativistical simulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号