首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Determining abrupt changes in runoff and sediment load may not only enhance identification of the principal driving factors for such changes but also help establish effective countermeasures for serious water deficit by managers in the Yellow River basin. We used the Mann-Kendall trend test and linear regression to determine trends and abrupt changes of runoff and sediment load during the period between 1950 and 2005, based on monthly hydrological data. Results show that runoff and sediment load decreased from 1950 to 2005, on annual or monthly time scales. Their changes are divided into three stages: fluctuating stage (1950–1970), slowly decreasing stage (1970–1980) and accelerated decreasing stage (1980–2005). The relationship between runoff and sediment load was most significant, and it can be expressed as a linear regression function. Precipitation was one of the most important climate factors affecting runoff before 1985, and the impact of human activities on runoff decrease grew strongly after 1985. Water balance analysis of the Yellow River basin indicates that natural climate change contributed about 55.3% and human activities about 44.7% to the runoff decrease after 1986.  相似文献   

2.
Haiyun Shi  Guangqian Wang 《水文研究》2015,29(14):3236-3246
Due to climate change and its aggravation by human activities (e.g. hydraulic structures) over the past several decades, the hydrological conditions in the middle Yellow River have markedly changed, leading to a sharp decrease in runoff and sediment discharge. This paper focused on the impacts of climate change and hydraulic structures on runoff and sediment discharge, and the study area was located in the 3246 km2 Huangfuchuan (HFC) River basin. Changes in annual runoff and sediment discharge were initially analysed by using the Mann–Kendall trend test and Pettitt change point test methods. Subsequently, periods of natural and disturbed states were defined. The results showed that both the annual runoff and sediment discharge presented statistically significant decreasing trends. However, compared with the less remarkable decline in annual rainfall, it was inferred that hydraulic structures might be another important cause for the sharp decrease in runoff and sediment discharge in this region. Consequently, sediment‐trapping dams (STDs, a type of large‐sized check dam used to prevent sediment from entering the Yellow River main stem) were considered in this study. Through evaluating the impacts of the variation in rainfall patterns (i.e. amount and intensity) and the STD construction, a positive correlation between rainfall intensity and current STD construction was found. This paper revealed that future soil and water conservation measures should focus on areas with higher average annual rainfall and more rainstorm hours. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
Investigation of the variations in runoff, sediment load, and their dynamic relation is conducive to understanding hydrological regime changes and supporting channel regulation and fluvial management. This study is undertaken in the Xihanshui catchment, which is known for its high sediment-laden in the Jialing River of the Yangtze River basin, southern China, to evaluate the change characteristics of runoff, sediment load, and their relationship at multi-temporal scales from 1966 to 2016. The results showed that runoff changed significantly for more months, whereas the significant changes in monthly sediment load occurred from April to September. The contributions of runoff in summer and autumn and sediment load in summer to their annual value changes were greater. Annual runoff and sediment load in the Xihanshui catchment both exhibited significant decreasing trends (p < 0.05) with a significant mutation in 1993 (p < 0.05). The average annual runoff in the change period (1994–2016) decreased by 49.58% and annual sediment load displayed a substantial decline with a reduction of 77.77% in comparison with the reference period (1966–1993) due to climate change and intensive human activity. The power functions were satisfactory to describe annual and extreme monthly runoff–sediment relationships, whereas the monthly runoff–sediment relationship and extreme monthly sediment-runoff relationship were changeable. Spatially, annual runoff–sediment relationship alteration could be partly attributed to sediment load changes in the upstream area and runoff variations in the downstream region. Three quantitative methods revealed that the main driver for significant reductions of annual runoff and sediment load is the human activity dominated by soil and water conservation measures, while climate change only contributed 22.73%–38.99% (mean 32.07%) to the total runoff reduction and 3.39%–35.56% (mean 17.32%) to the total decrease in sediment load.  相似文献   

4.
由于受人类活动及气候变化影响,黄河上游干流水沙特征发生显著变化。为探究黄河上游水沙变化情况,基于黄河上游5个水文站1964-2019年水沙、遥感影像等数据,利用Mann-Kendall检验法、滑动t检验法、累积距平曲线和双累积曲线等突变检验方法和小波分析法,对黄河上游水沙变化特征进行研究。利用水沙关系曲线及线性回归法等方法估算人类活动和气候对水沙变化的贡献率,并着重讨论梯级水库建设及土地利用变化对水沙的影响。结果表明:1)黄河上游玛曲-小川段流域内降雨量和径流量变化幅度不明显,贵德站、循化站、小川站1986-2019年年均输沙量分别减至1964-1985年的9.8%、24.6%、38.8%,输沙量大大减少。黄河上游玛曲-小川段径流量突变多在1986年,输沙量突变多在1969、1986、2004年,径流量存在8、16、22 a周期,输沙量存在4~8、18~21、27 a周期。2)1969年后,河流输沙能力增强,水沙关系显著改变。在不同时段内,人类活动对径流量变化在1987-2019年贡献率为66.3%,对输沙量变化在1970-1986、1987-2004、2005-2019年的贡献率为72.96%、70.73%、69.7%。人类活动对黄河上游干流水沙影响占据主导因素。3)刘家峡水库淤积最为严重,单库运行期水库淤积量为2.39亿t,排沙比变化范围为1.39%~10.7%。梯级水库联调使得径流量在1964-2004年间减少47.8%,1964-2019年间梯级水库减沙94.8%,梯级水库对输沙量影响远大于对径流量的影响。4)1980-2020年间,草地面积增加了1880.03 km2,增幅3.1%,有利于减少输沙量,草地拦沙效益大于截流效益。  相似文献   

5.
The Yiluo River is the largest tributary for the middle and lower reaches of the Yellow River below Sanmenxia Dam. Changes of the hydrological processes in the Yiluo River basin, influenced by the climatic variability and human activities, can directly affect ecological integrity in the lower reach of the Yellow River. Understanding the impact of the climatic variability and human activities on the hydrological processes in the Yiluo River basin is especially important to maintain the ecosystem integrity and sustain the society development in the lower reach of the Yellow River basin. In this study, the temporal trends of annual precipitation, air temperature, reference evapotranspiration (ET0) and runoff during 1961–2000 in the Yiluo River basin were explored by the Mann‐Kendall method (M‐K method), Yamamoto method and linear fitted model. The impacts of the climatic variability and vegetation changes on the annual runoff were discussed by the empirical model and simple water balance model and their contribution to change of annual runoff have been estimated. Results indicated that (i) significant upwards trend for air temperature and significant downwards trend both for precipitation and ET0 were detected by the M‐K method at 95% confidence level. And the consistent trends were obtained by the linear fitted model; (ii) the abrupt change started from 1987 detected by the M‐K method and Yamamoto method, and so the annual runoff during 1961–2000 was divided into two periods: baseline period (1961–1986) and changeable period (1987–2000); and (iii) the vegetation changes were the main cause for change of annual runoff from baseline period to changeable period, and climatic variability contributed a little to the change of annual runoff of the Yiluo River. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
It is important to identify the non-stationarity in the relation between runoff and sediment load under the backdrop of the changing environment. This relation helps to further understand the mechanisms of runoff and sediment yield. A copula-based method was used to detect possible change points in the relation between runoff and sediment load in the Wei River Basin (WRB), China, where soil erosion is a very severe issue. The modified Mann-Kendall trend test method was applied to obtain the trends of runoff and sediment load spanning 1960–2010 at monthly and annual timescales. Finally, the causes of the identified non-stationarity of the relation between runoff and sediment load were roughly analyzed from the perspective of climate change and human activities. Results indicated that:(1) the runoff and sediment load in the Jinghe and Wei rivers were generally characterized by noticeably decreasing trends at both monthly and annual timescales;(2) both the Jinghe and Wei rivers had a common change point (2002), implying that the stationarity of the relation between runoff and sediment load in the Jinghe and Wei River was invalid; (3) human activities including increasing water consumption and growing application of soil conservation practices are dominant factors resulting in non-stationarity in the rela-tion between runoff and sediment load in the WRB. This study provides a new idea for identifying the non-stationarity of multivariate relation in the hydro-meteorological field under the background of the changing environment.  相似文献   

7.
Characteristics of annual runoff variation in major rivers of China   总被引:1,自引:0,他引:1  
The statistical properties of annual runoff in major rivers of China are studied based on the theory of stochastic process and technology of time series analysis. These properties include the characteristics of intra‐annual and inter‐annual variations of runoff, trends, abrupt changes and periodicities. The new findings from the intensive calculations and appropriate analysis of data in longer period are as follows: (i) compared with the nonuniformity of intra‐annual runoff before 1980, the nonuniformity of intra‐annual runoff in China generally decreased after 1980, except for Huaihe River and Songhua River; (ii) compared with the annual runoff before 1980, the annual runoff in China generally decreased after 1980 except for WangJiaba station in Huaihe River and Ha‐Erbin station in Songhua River; the frequency of continuous low flow and continuous high flow in Haihe River and the downstream of Yellow River is higher than those in other rivers in China; (iii) annual runoff shows a downward trend in major rivers of China especially in Haihe River, Liao River and the midstream and downstream of Yellow River; (iv) there exist certain abrupt changes of annual runoff in major rivers of China; the abrupt change‐points are different among different river basins; and (v) almost periodicities of annual runoff sequences in major rivers of China are generally 20 years below, that is, 3~7 and 12~20 years. The reasons for these changes are mainly caused by climate change and human activities. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
《国际泥沙研究》2021,36(6):747-755
The magnitude and variation of the sediment loads transported by rivers have important implications for the functioning of river systems and changes in the sediment loads of rivers are driven by numerous factors. In this paper, the key drivers of changes in the sediment loads of the major rivers of China are identified by reviewing recent studies of changes in their sediment loads. Except for the Songhua River, which presents no clear tendency of change in runoff or sediment load, nearly all the major rivers of China are characterized by an apparent decline in annual sediment load. The total annual sediment load of major Chinese rivers transported to the coast decreased from 2.03 billion t/yr during the period 1955–1968 to 0.50 billion t/yr during the period 1997–2010. The primary drivers of changes in the sediment loads of the rivers are dam construction, implementation of soil and water conservation measures, catchment disturbance, agricultural practices, sand mining and climate change. Examples drawn from Chinese rivers are used to demonstrate the importance of these drivers. Construction of a large number of reservoirs in the Yangtze River basin represents the primary driver for the reduced sediment load of the Yangtze River. The implementation of soil and water conservation programmes is one of the key drivers for the sharp decline in the sediment load of the Yellow River. Catchment disturbance explains why the reduction of the sediment load of the Lancang-Mekong River at the Chiang Saen gauging station was much less than that at the Gajiu gauging station upstream. A reduction in sediment load resulting from the expansion of agricultural production may be the main driver for the reduced sediment load of the Huaihe River. The decrease in the sediment load of the Pearl River has been influenced by sand mining activities. Climate change is one of the key drivers responsible for the greatly reduced sediment load of the rivers in the Haihe River Basin.  相似文献   

9.
Changes in runoff and sediment loads to the Pacific Ocean from 10 major Chinese rivers are presented in this paper To quantitatively assess trends in runoff and sediment loads, a parameter called the "Trend Ratio T" has been defined in this paper. To summarize total runoff and sediment load from these rivers, data from 17 gauging stations for the duration 1955 to 2010 has been standardized, and the missing data have been interpolated by different approaches according to specific conditions. Over the observed 56-year study period, there is a quite stable change in total runoff. Results show that the mean annual runoff flux entering the Pacific Ocean from these rivers is approximately 1,425 billion cubic meters. It is found that all northern rivers within semi-arid and transitional zones including the Songhua, Liaohe, Haihe, Yellow and Huaihe rivers present declining trends in water discharge. Annual runoff in all southern rivers within humid zones including the Yangtze, Qiantang, Minjiang, Pearl and Lancang rivers does not change much, except for the Qiantang River whose annual runoff slightly increases. The annual sediment loads of all rivers show significant declining trends; the exceptions are the Songhua and Lancang rivers whose annual sediment loads have increasing trends. However, the mean annual sediment flux carried into the Pacific Ocean decreased from 2,026 million tonnes to 499 million tonnes over the 56-year period. During this time there were 4 distinct decreasing phases. The decrease in annual sediment flux is due to the integrated effects of human activity and climate change. The reduction in sediment flux makes it easy for reservoir operation; however, the decrease in sediment flux also creates problems, such as channel erosion, river bank collapse and the retreat of the delta area.  相似文献   

10.
Small runoff, large sediment load, and incompatible relationship of flow and sediment load are very important characteristics of the Yellow River. They are also the crux of the most prominent problems of the Yellow River. To solve these problems, the regimes of flow and sediment load have to be improved by increasing water, reducing sediment load, and by using reservoirs to regulate flow and sediment load. The results of experiments for regulating the flow and sediment load in the last three years by the Xiaolangdi Reservoir have indicated that this measure is a realistic and effective way to mitigate the prominent problems in flood control of the Lower Yellow River at present and in the near future. However, the regulation system is still imperfect. It is advisable to speed up the pace of research and construction of the system for regulating flow and sediment load.  相似文献   

11.
Yonghui Yang  Fei Tian   《Journal of Hydrology》2009,374(3-4):373-383
Runoff in Haihe River Catchment of China is steadily declining due to climate change and human activity. Determining abrupt changes in runoff could enhance identification of the main driving factors for the sudden changes. In this study, the sequential Mann–Kendall test analysis is used to determine abrupt changes in runoff in eight sub-catchments of Haihe River Catchment, while trend analysis via the traditional Mann–Kendall test for the period 1960–1999 is used to identify the basic trend of precipitation and runoff. The results suggest an insignificant change in precipitation and a significant decline in runoff in five of the eight sub-catchments. For most of the sub-catchments, abrupt changes in runoff occurred in 1978–1985. Through correlation comparisons for precipitation and runoff for the periods prior to and after abrupt runoff changes, human activity, rather than climatic change, is identified as the main driving factor of runoff decline. It is also noted that abrupt decline in runoff was actually at the beginning of China’s 1978–1985 land reform. Given that the land reform motivated farmers to productively manage their reallocated lands, agricultural water use therefore increased. Hence percent agricultural land is analyzed in relation to land use/cover pattern for the late 1970s and early 1980s. The analysis shows that when cultivated farmland exceeds 25% of a sub-catchment area, an abrupt decline in runoff occurs. It is therefore concluded that high percent agricultural land and related agricultural water use are the most probable driving factors of runoff decline in the catchment.  相似文献   

12.
The runoff in Songhuajiang River catchment has experienced a decreasing trend during the second half of the 20th century. Serially complete daily rainfall data of 42 rainfall stations from 1959 to 2002 and daily runoff data of five meteorological stations from 1953 to 2005 were obtained. The Mann–Kendall trend test and the sequential version of Mann–Kendall test were employed in this study to test the monthly and annual trends for both rainfall and runoff, to determine the start point of abrupt runoff declining, and to identify the main driving factors of runoff decline. The results showed an insignificant increasing trend in rainfall but a significant decreasing trend in runoff in the catchment. For the five meteorological stations, abrupt runoff decline occurred during 1957–1963 and the middle 1990s. Through Mann–Kendall comparisons for the area‐rainfall and runoff for the two decreasing periods, human activity, rather than climatic change, is identified as the main driving factor of runoff decline. Analysis of land use/cover shows that farmland is most related with runoff decline among all the land use/cover change in Nenjiang catchment. From 1986 to 1995, the area of farmland increased rapidly from 6.99 to 7.61 million hm2. Hydraulic engineering has a significant influence on the runoff decline in the second Songhuajiang catchment. Many large‐scale reservoirs and hydropower stations have been built in the upstream of the Second Songhuajiang and lead to the runoff decline. Nenjiang and the Second Songhuajiang are the two sources of mainstream of Songhuajiang. Decreased runoff in these two sub‐catchments then results in runoff decrease in mainstream of Songhuajiang catchment. It is, therefore, concluded that high percent agricultural land and hydraulic engineering are the most probable driving factors of runoff decline in Songhuajiang River catchment, China.  相似文献   

13.
《水文科学杂志》2013,58(1):90-100
Abstract

In the past 50 years, influenced by global climate change, the East Asian summer monsoon intensity (SMI) changed significantly, leading to a response by the water cycle of the Yellow River basin. The variation in SMI has three stages: (1) 1951–1963, SMI increased; (2) 1963–1965, SMI declined sharply, a feature that may be regarded as an abrupt change; and (3) 1965–2000, SMI remained at low levels and showed a tendency to decline slowly. The decreased SMI led to a reduction in water vapour transfer from the ocean to the Yellow River basin, and thus precipitation decreased and the natural river runoff of the Yellow River also decreased. Due to the increase in population and therefore in irrigated land area, the ratio of net water diversion to natural river runoff increased continuously. Comparison of the ratio of net water diversion to natural river runoff before and after the abrupt change in SMI indicates some discontinuity in the response of the man-induced lateral branch of the water cycle to the abrupt change in SMI. The frequently occurring flow desiccation in the lower Yellow River can be regarded as a response of the water cycle system to the decreasing summer monsoon intensity and increasing population. When the ratio of net water diversion exceeded the ratio of natural runoff of the low-flow season to the annual total natural runoff, flow desiccation in the lower Yellow River would occur. When the ratio of net water diversion is 0.3 larger than the ratio of the natural runoff of the low-flow season to the annual total natural runoff, an abrupt increase in the number of flow desiccation events is likely to occur.  相似文献   

14.
Estuarine environments are influenced by both river flows and oceanic tidal movement of water, sediment, and nutrients, often forming ecosystems that are rich in resources and biodiversity. The Yellow River once carried the world’s largest sediment load, but artificial structures have transformed its hydrodynamic processes. An annual Water-Sediment Regulation Scheme(WSRS) was introduced to flush accumulated sediment from the Xiaolangdi Reservoir, which provides flood control and water storage.Ho...  相似文献   

15.
This paper uses monthly streamflow, suspended sediment concentration, and meteorological data to examine the impact of human activity and climate change on streamflow and sediment load in the Pearl River basin from the 1950s to the 2000s. The influences of climate change and human activities on hydrological processes were quantitatively evaluated using the Mann–Kendall abrupt change test and power rating curves. The results showed that:(1) abrupt changes and turning points in streamflow occurred in 1963, 1983, and 1991 which were found to be consistent with global ENSO events and volcanic eruptions. However, abrupt changes in sediment load showed significant spatial differences across the Pearl River basin. For the Xijiang River, an abrupt change in sediment load occurred in 2002, and after 2007 the change becomes significant at the 95% confidence level. At Beijiang and Dongjiang, abrupt changes in sediment load occurred in 1998 and 1988, respectively.(2) The time series of sediment load data was divided into four periods according to abrupt changes. The contribution of climate change and human activities is different in the different rivers. For the Xijiang River, compared with the first period, climate change and human activities contributed 83% and 17%, respectively, to the increasing sediment load during the second period. In the third period, the variation of sediment load followed a decreasing trend. The contribution from climate change and human activities also changed to t236% and -136%, respectively. In the fourth period, climate change and human activities contributed -32% and t132%, respectively. Meanwhile, For the Beijiang River, climate change and human activities contributed 90% and 10% in the second period, the contribution of climate change increased to t115% and human activities decreased to -15% in the third period. In the fourth period, the value for climate change decreased to t36% and human activities increased to t64%. For the Dongjiang River, the contribution of human activities was from 74.5% to 90%, and the values for climate change were from 11% to 25%. Therefore, the effect of human activity showed both spatial and temporal differences, and it seems likely that the decreased sediment load will continue to be controlled mainly by human activities in the future.  相似文献   

16.
Sediment load reduction in Chinese rivers   总被引:18,自引:9,他引:9  
In this paper, the changes in the annual runoff and sediment transport have been assessed by using the long term observation data from 10 gauging stations on 10 large rivers across China from far north to far south. It is found that the annual sediment yield has generally had a decreasing trend in the past half century. According to the changes in annual runoff and the sediment yield per area, rivers in China can be classified into the following three groups: 1) rivers with decreasing annual sediment transport and stable runoff; 2) rivers with both decreasing annual sediment transport and runoff and 3) rivers with greatly reduced annual sediment transport and decreasing annual runoff. The results indicate that, in all southern rivers (to the south of the Huaihe River including the Huaihe River), there has been little change in average annual runoff but a dramatic decrease in annual sediment transport. In the northern rivers, however, both the annual sediment yield and the runoff show significant evidence of reduction. To further investigate the recent changes in annual runoff and sediment transport, the short-term observation data from these 10 gauging stations in the recent 10 years have been assessed. Results show that both the annual sediment transport and the runoff have decreased" significantly in the northern rivers in the past 10 years. Using the Yellow River at the Lijin Station as an example, the average annual runoff for the last 10 years is only 1/3 of the long term average value and the average annual sediment yield of the last 10 years is only 1/4 of the long term average value. More unusually, in the Yongding River the annual sediment yield has approached zero and the runoff has decreased significantly. In addition, the impacts of human activities on the changes in both runoff and sediment transport have been discussed.  相似文献   

17.
The annual changes of sediment deposition-scour on the riverbed in the Sanhuhekou-Toudaoguai Reach of the upper Yellow River during the years 1952-2010 were investigated based on runoff and sediment transport observations from the Sanhuhekou and Toudaoguai hydrological stations. Multiple influencing factors such as reservoir operations, tributary inflows, as well as runoff and sediment loads from the Shidakongdui area were analyzed. The results show that even though the sediment loads from the major sources, the Shidakongdui area as well as the upstream tributaries such as the Qingshui River and the Zuli River have reduced especially since the 2000 s as a result of enhanced water-soil conservation measures and improvement of vegetation cover, the study reach was still generally in a status of cumulative aggradation. This is mainly due to the joint operations of the Liujiaxia Reservoir and the Longyangxia Reservoir, which significantly reduced the annual runoff and sediment loads at the Sanhuhekou Crosssection. The reservoirs also remarkably altered the summer flood characteristics of the study reach, inducing the shape of the annual flow curve changing from a 'single-peak' into a 'doublepeak'. These alternations sharply decreased the sediment transport capacity of flooding in the summer flood season which yields more than 90% of the sediment loads, leading to an unbalanced relation between the water and sediment. In addition, the estimated incoming sediment coefficient of the Sanhuhekou Crosssection ranged from 0.003 to 0.014 kg s/m~6, of which 0.004 kg s/m~6 was suggested as a rough critical value to determine the scour or deposition status of the study reach.  相似文献   

18.
The nonparametric Mann-Kendall test and the Pettitt test were employed to examine the change trends and shifts of runoff and sediment input to Poyang Lake between 1961 and 2013. Water balance and linear regression models were used to evaluate the impacts of climate variability and human activities on the runoff and sediment discharge changes. The results showed that runoff inputs to the lake had insignificant temporal trends and change points, while sediment inputs had significant decreasing trends, with an abrupt change in 1989. Quantitative assessment demonstrated that human activities led to a small decrease (5.5%) in runoff inputs to the lake, and a dramatic (121.4%) decrease in sediment inputs to the lake between the reference period (before the change point) and the human-influenced period (after the change point). This work provides a useful reference for future policy makers in water resource utilization and environmental safety of the Poyang Lake basin.  相似文献   

19.
Hydrological time series are generally subject to shift trends and abrupt changes. However, most of the methods used in the literature cannot detect both shift trends and abrupt changes simultaneously and have weak ability to detect multiple change points together. In this study, the segmented regression with constraints method, which can model both trend analysis and abrupt change detection, is introduced. The modified Akaike’s information criterion is used for model selection. As an application, the method is employed to analyse the mean annual temperature, precipitation, runoff and runoff coefficient time series in the Shiyang River Basin for the period from 1958 to 2003. The segmented regression model shows that the trends of the mean annual precipitation, temperature and runoff change over time, with different join (turning) points for different stations. The runoff pattern can potentially explained by the climate variables (precipitation and temperature). Runoff coefficients show slightly decreasing trends for Xiying, Huangyang, Gulang and Zamu catchments, slight increasing trends for Dongda and Dajing catchments and nearly no change for Xida catchment. No change points are found in runoff coefficient in all catchments.  相似文献   

20.
The dynamic changes in the sediment discharge over 90 years from 1919 to 2008 in the Yellow River in China were assessed on the basis of annual rainfall series and annual sediment series in Shan County hydrological station. The key factors affecting sediment discharge, such as rainfall, and human activities were studied. Anomaly accumulation method and double mass curve were employed to test the stage changes of sediment discharge, and to determine the main factors of sediment decline. Results showed that the annual average sediment discharge under natural conditions was about 16 × 108 t, but the measured annual average sediment during 1919–2008 was 12.71 × 108 t. The highest annual average during the study period was 39.10 × 108 t in 1933 while the lowest was 1.77 × 108 t in 2008. Sediment discharge in the Yellow River experienced two low sediment stages (1924–1931 and 1979–2008) and a high sediment stage (1932–1971), respectively. Since 1979, there was a significant decreasing trend in the sediment discharge, and the main influencing factor was fierce human activities. Annual average sediment discharge in the post‐development period (1979–2008) was 69.7% lower than that in the pre‐development period (1919–1978), with average reduction of 81 and 19% caused by human activities and rainfall, respectively. These results provide important evidence for making protecting policy for water resources quality and environmental safety of the Yellow River.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号