首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 290 毫秒
1.
A study was made to present analytical solutions of pullout load capacity for a suction caisson subjected to inclined tension in clay. The inclined tension on the skirt of the suction caisson is transformed into an equivalent system comprised of the vertical, horizontal, and moment load applied on the center of the lid. The vertical and horizontal stiffness coefficients along the skirt of the suction caisson in clay are presented by three-dimensional elastic solutions considering the nonhomogeneous and nonlinear property of clay. The vertical, horizontal, and rocking stiffness coefficient of the suction caisson on the base are presented considering the solutions of a hollow rigid cylindrical punch acting on the surface of clay. The envelopes of the horizontal and vertical ultimate load capacity for clay are presented. The yield, pullout, and failure for clay are taken into consideration. The effects of load inclination, loading depth, and aspect ratio on the pullout load capacity are shown. Behavior of the suction caisson in clay up to failure is investigated using the relationship between tensile load and displacement and that between depth, vertical, and horizontal pressure.  相似文献   

2.
An investigation was conducted to obtain analytical solutions for the pullout behavior of a suction caisson undergoing inclined loads in sand. The inclined load is transformed into an equivalent load system in which the vertical, horizontal, and moment loads are applied on the center of the lid of the suction caisson. The vertical and lateral stiffness coefficients along the skirt of the suction caisson in sands are presented using the new three-dimensional elastic solutions taking into account the nonhomogeneous and nonlinear properties of the sand. The vertical, lateral, and rocking stiffness coefficients on the base of the suction caisson are presented considering the solutions of a hollow rigid cylindrical punch acting on the surface of a soil. The yield, pullout, and failure for sands with the nonhomogeneous and nonlinear characteristics are taken into consideration. The effects of the load inclination, the loading depth, and the aspect ratio on the pullout load capacity of the suction caisson are presented. Behaviour of the suction caisson in sand prior to failure is clarified from the relationship between tensile load, displacement, and rotation and that between depth, vertical pressure, and lateral pressure.  相似文献   

3.
The bearing behavior of suction caissons supporting offshore wind turbines under two-way cyclic lateral loading and dead load in clay was investigated with consideration of soil strength degradation and adhesive interface friction between caisson walls and heterogeneous clay using the finite-element package ABAQUS.An ABAQUS built-in user subroutine was programmed to calculate the adhesive interface friction between clay and caisson walls.The results of parametric studies showed that the degradation of bearing capacity could be aggravated by the decrease of the aspect ratio.The offset between the rotation point of the soil inside the caisson and the central axis of the caisson increased with the increasing vertical load and number of cycles.The linearly increasing strength profile and adhesive interface led to the formation of an inverted spoon failure zone inside the caisson.The settlement-rotation curves in each cycle moved downwards with increasing number of cycles due to the soil strength degradation.  相似文献   

4.
桶形基础越来越广泛应用于海洋油气平台、海上风机、输电塔、防波堤等构筑物,研究其循环承载特性对以上构筑物服役安全性具有重要意义。通过在软黏土中开展单桶循环上拔以及小间距群桶循环上拔和循环下压超重力离心模型试验,发现循环上拔地基破坏模式为整体破坏,裂隙均呈现圆弧形,循环下压呈现渐进式整体破坏模式,下压过程的挤压作用可明显减小桶周泥面高度,导致其承载力降低。模拟双向受荷工况的循环上拔试验在5次加载后荷载弱化系数开始趋于稳定,远早于单向受荷工况;单向和双向受荷工况循环上拔荷载弱化系数残余稳定值分别为0.31和0.32,循环下压荷载弱化系数最小值为0.35,表明不同加载方式竖向循环荷载作用下,此三者大小均可用软黏土地基灵敏度倒数预估。  相似文献   

5.
Dai  Guo-liang  Zhu  Wen-bo  Zhai  Qian  Gong  Wei-ming  Zhao  Xue-liang 《中国海洋工程》2020,34(2):267-278
Suction caisson foundations are often subjected to vertical uplift loads, but there are still no wide and spread engineering specifications on design and calculation method for uplift bearing capacity of suction caisson foundation.So it is important to establish an uplift failure criterion. In order to study the uplift bearing mechanism and failure mode of suction caisson foundation, a series of model tests were carried out considering the effects of aspect ratio,soil permeability and loading mode. Test results indicate that the residual negative pressure at the top of caisson is beneficial to enhance uplift bearing capacity. The smaller the permeability coefficient is, the higher the residual negative pressure will be. And the residual negative pressure is approximately equal to the water head that causes seepage in the caisson. When the load reaches the ultimate bearing capacity, both the top and bottom negative pressures are smaller than Su and both the top and bottom reverse bearing capacity factors are smaller than 1.0 in soft clay. Combined the uplift bearing characteristics of caisson in sandy soil and soft clay, the bearing capacity composition and the calculation method are proposed. It can provide a reference for the engineering design of suction caisson foundation under vertical load.  相似文献   

6.
Upper bound plastic limit analyses (PLA) can provide a useful framework for estimating the load capacity of suction caisson anchors in purely cohesive soils. Since arbitrary assumptions regarding the soil stress state are not required in the PLA formulation, it may be used with greater consistency compared to other simplified approaches such as limit equilibrium methods. While PLA methods do not attempt to include all of the complexities of anchor behavior, they can provide a relatively simple framework for visualizing anchor kinematics leading to an understanding of the relative importance of various parameters on suction anchor load capacity. The most rigorous PLA formulations involve postulating a three-dimensional anchor-soil failure mechanism and deriving expressions for internal energy dissipation throughout the mechanism. This approach can involve extensive numerical integrations and a relatively complex scheme for optimizing the failure mechanism to obtain a least upper bound collapse load. Considerable simplification is possible if the problem is formulated in terms of ultimate unit resistances (lateral, axial, and their interaction) that can be exerted by the soil on the caisson. In this case, the caisson failure mechanism can be characterized in terms of one or two optimization variables. Simple expressions for the ultimate unit resistances acting on the caisson can be obtained from several sources including rigorous PLA solutions, finite element techniques, or experimental measurements. General expressions are possible by limiting consideration to common, idealized strength profiles such as uniform or constant gradient. Such simplified formulations are particularly valuable for providing an analysis tool accessible to practicing engineers. Suction caisson anchors can be subjected to a variety of load orientations including nearly vertical uplift forces imposed by the vertical tendons of tension leg platforms, horizontal loads imposed by catenary mooring systems, and inclined loads imposed by taut moorings. Recently, PLA methods have been applied to the analysis of suction caissons subjected to this range of loading conditions. This paper reviews the formulation of these analyses and summarizes the most significant findings.  相似文献   

7.
Abstract

Mono-pile foundations have been widely used for offshore wind turbines principally due to their convenient construction and cost-effective nature. So far, little attention has been paid to large diameter “semi-rigid” piles that have distinct behaviours from flexible or ideally rigid piles. This paper presents a series of centrifuge model tests to study the deforming and bearing characteristics of a 5.9 dia. semi-rigid pile under lateral loadings in kaolin clay. For monotonic loading, a modified p–y curve analysis model considering rotational soil flow near the rotation centre of pile was proposed, highlighting the limitation of classic plane-strain based plasticity models to evaluate the ultimate lateral pile-soil resistance. For cyclic loading, a strong correlation between the degree of soil degradation and cyclic load amplitude was identified. Besides, a degradation factor model, accounting for various cyclic stress levels and soil depths, was proposed, which can be used to assess the accumulative displacement of semi-rigid piles under cyclic loadings in soft clay.  相似文献   

8.
ABSTRACT

An investigation is made to present analytical solutions provided by a three-dimensional displacement approach for analysis of bucket foundations subjected to vertical and lateral loads in cohesive soils. The nonlinear vertical and lateral stiffness coefficients along the skirt of the bucket foundation in nonhomogeneous soil are presented using three-dimensional solutions for vertical and lateral loads and taking into account the dependence of stiffness coefficients on the shear strain. The vertical, lateral, and rocking stiffness coefficients on the base of the skirt of a bucket foundation are obtained from the solutions of hollow rigid cylindrical punch acting on the surface of a soil. The ultimate vertical stress of a soil under the base of a bucket foundation subjected to vertical and moment loads is presented analytically by considering only compression and ignoring tension on the base. The vertical and lateral yields along the skirt and the compression and shear failures on the base are taken into account in analysis of ultimate load capacities. Envelopes of the combined ultimate horizontal and moment load capacities of a bucket foundation in clay are shown. Relationships between ultimate lateral and moment load capacities and the embedment ratio (skirt length to diameter) are presented.  相似文献   

9.
This article presents a procedure to calculate the bearing capacity of suction anchors subjected to inclined average and cyclic loads at the optimal load attachment point using the undrained cyclic shear strength of soft clays based on the failure model of anchors proposed by Andersen et al. The constant average shear stress of each failure zone around an anchor is assumed and determined based on the static equilibrium condition for the procedure. The cyclic shear strength of each failure zone is determined based on the average shear stress. The cyclic bearing capacity is finally determined by limiting equilibrium analyses. Thirty-six model tests of suction anchors subjected to inclined average and cyclic loads were conducted, which include vertical and lateral failure modes. Model test results were predicted using the procedure to verify its feasibility. The average relative error between predicted and test results is 1.7%, which shows that the procedure can be used to calculate the cyclic bearing capacity of anchors with optimal loading. Test results also showed that the anchor was still in vertical failure mode under combined average and cyclic loads if an anchor was in vertical failure mode under static loads. The anchor failure would depend on the vertical resistance degradation under cyclic loads if an anchor was in lateral failure mode under static loads. Cyclic bearing capacities associated with the number of load cycles to failure of 1000 were about 75% and 80% of the static bearing capacity for vertical failure anchors and lateral failure anchors, respectively.  相似文献   

10.
吸力基础具有施工速度快、安装过程中受海况天气影响小且易于回收重复利用等优点,被广泛应用于海洋工程。当吸力基础作为海上风电塔架的基础时,常常承受较大的水平荷载,因此其水平承载力是设计的主控因素。介绍了海上风机基础的设计要求,分析了影响基础水平承载性状的因素,总结了吸力基础受水平单调荷载、水平循环荷载和不同荷载组合三个方面的研究现状。讨论了水平荷载的大小、水平加载的高度(偏心率)、循环荷载的频率、循环荷载的次数、循环荷载的幅值、循环荷载的方向性、竖向荷载对吸力基础水平承载性状的影响,考虑了水平荷载的非共线性,指出了目前研究的不足,明确了吸力基础水平承载性状进一步研究的方向,提出了供工程实践参考的建议。  相似文献   

11.
This paper presents an incremental elastoplastic finite element method (FEM) to simulate the undrained deformation process of suction caisson foundations subjected to cyclic loads in soft clays. The method is developed by encoding the total-stress-based bounding surface model proposed by the authors in the ABAQUS software package. According to the model characteristics, elastoplastic stress states associated with the incremental strains of each iteration are determined using the sub-incremental explicit Euler algorithm, and the state parameters describing the cyclic accumulative rates of strains are updated by setting state variables during the calculations. The radial fallback method is also proposed to modify the stress states outside the bounding surface to the surface during determination of the elastoplastic stress states. The stress reversals of soil elements are judged by the angle between the incremental deviatoric stress and the exterior normal vector at the image stress point on the bounding surface to update the mapping centre and state variables during cyclic loading. To assess the general validity of the method, the reduced scale model tests and centrifuge tests of suction caissons subjected to cyclic loads are simulated using the method. Predictions are in relative good agreement with test results. Compared with the limit equilibrium and quasi-static methods, the method can not only determine the cyclic bearing capacity, but can also analyse the deformation process and the failure mechanisms of suction caisson under cyclic loads in soft clays.  相似文献   

12.
A series of model tests were performed on steel- and Perspex-made suction caissons in saturated dense marine sand to explore installation and extraction behaviors. The extractions of the caisson were conducted by applying monotonic loading or by pumping water into the caisson. Responses of suction caissons to pullout rates, aspect ratios, and extraction manners were examined. Test results show that a cone-shaped subsidence region occurs around the suction caisson during the suction-assisted installation. The pullout bearing capacity of the suction caisson in sand is dominated by the loading rate and the loading manner. For the suction caisson subjected to monotonic loading, the maximum bearing capacity is reached at the pullout rate of about 20.0?mm/s. The mobilized vertical displacement corresponding to the pullout capacity increases with increasing the pullout rate. The passive suction beneath the suction caisson lid reaches the maximum value when the pullout bearing capacity is mobilized. In addition, during the suction caisson extracted by pumping water into the caisson, the maximum pore water pressure in the caisson is obtained under the displacement of approximately 0.04 times the caisson diameter. The absolute values of the maximum pore water pressures for the suction caissons approximately equal those of the maximum vertical resistances at the monotonic pullout rate of 5 mm/s. When the vertical displacements of the suction caissons with the aspect ratio of 1.0 and 2.0 reach 0.92 and 1.77 times the caisson diameter, respectively, the seepage failure occurs around the caissons. Using a scaling method, the test results can be used to predict the time length required for the prototype suction caisson to be extracted from the seabed.  相似文献   

13.
Suction caissons are widely used to support offshore fixed platforms in coastal areas. The loadings transferred to suction caissons include the eccentric lateral force induced by waves and self weight of the platform structure. However, under this kind of combined loading conditions, the failure mechanism of caissons with shallow embedment depths is quite different from conventional deep foundations or onshore shallow footings. The behaviour of caissons subjected to combined loadings may be described with the "failure locus" in force resultant spaces. Here the failure loci of smooth caissons are studied by use of finite element approach, with the embedment ratio of caissons varying in the range of 0.25~1.0 and eccentricity ratio of horizontal loadings in 0~10. The platform settlement and tilt limits are involved into determination of failure loci, thus the platforms can avoid significant displacements for the combined loadings located inside the failure locus. Three families of loading paths are used to map out the locus. It is found that the shape of failure loci depends on 3 non-dimensional parameters, and the failure locus of a given caisson changes gradually from the elliptical curve to hooked curve with increasing shear strength of soil. The lateral capacity of short caissons may be enhanced by vertical forces, compared with the maximum lateral capacity of long caissons occurring at the vertical force being zero. The critical embedment ratios partitioning elliptical and hooked loci are proposed.  相似文献   

14.
ABSTRACT

The suction caisson is commonly a top-closed cylindrical steel structure with large diameter, short length and much thinner skirt wall thickness. The resistance to penetrating is calculated as the sum of the tip bearing capacity and the adhesion on the both sides of the skirt wall. Since the thickness of the skirt wall is very small, the downward adhesion produced by the skirt wall will cause the additional vertical stress and shear stress in the soil at the skirt tip level, increasing the skirt tip resistance. However, the increase in skirt tip resistance caused by the additional vertical stress rather than shear stress in soil at the skirt tip level was only considered, this may lead to an inaccurate estimation for the tip bearing capacity and the suction required. Thus, a modified slip-line field is put forward in this study to estimate the tip resistance. The expression of obtaining the minimum suction to install the suction caisson in clay is derived in terms of the force equilibrium. Results from calculations of the minimum suction have been proved to be in a good agreement with the measured data.  相似文献   

15.
Monopod caisson foundation is a viable alternative for supporting offshore wind turbines located at shallow water depths. This foundation system has to resist overturning moment generated due to resultant lateral load, arising from wind and water wave action, that can act at any loading height above the seabed. This paper presents results of a numerical investigation performed to determine the influence of loading height, caisson geometry and superstructure load on the ultimate lateral capacity, initial stiffness, and soil failure zone of the foundation, when installed in very dense sand. Both the ultimate and serviceable states of the caisson foundation obtained from the analyses are represented in terms of envelopes plotted between lateral load and overturning moment. Simplified expressions, which take into account the influence of caisson geometry, loading height, and soil properties, are also presented to serve as a preliminary base for design of the monopod caisson foundation.  相似文献   

16.
Coastal protection is proposed to be made out of a contiguous caisson type of wall. These caissons can be designed to resist both lateral static and cyclic loading. With adequate depth of embedment, the walls can be designed to offer significant lateral passive resistance to counteract the lateral static and cyclic loading arising out of wave action. This article describes a set of laboratory tests on model caissons embedded into soft marine clay with different embedment depths. Specially designed earth pressure cells are embedded into the caisson at different depths. A pneumatic system was used to apply lateral static and cyclic loading. Test beds were prepared conforming to soft clay conditions in a test tank of appropriate size. The test results reveal that with this type of arrangement the variation in earth pressure with depth can be conveniently established. The earth pressure developed is related to the lateral load applied. The depth at which the maximum earth pressure occurs is same for both static and cyclic loading. Further, under cyclic loading there is no failure encountered even under cyclic loading level corresponding to 0.9 times the ultimate static lateral capacity.  相似文献   

17.
周松望  王建华 《海洋工程》2014,32(1):106-111
在一个大型土池中进行了软土中组合四桶基础在竖向静荷载与水平循环荷载共同作用下的承载力模型试验,研究了竖向静荷载与水平循环荷载对组合桶形基础破坏形式与承载力的影响。试验结果表明,组合四桶基础的变形主要包括水平循环变形与竖向循环累积沉降。基础的破坏形式取决于水平循环荷载与竖向静荷载。若竖向静荷载较小,过大的水平循环位移将导致基础破坏;随竖向静荷载增加,竖向循环累积沉降将变为导致基础破坏的主要原因。试验结果还表明,在不同竖向静荷载与水平循环荷载共同作用下,基础的水平循环承载力大约为水平静承载力的70%左右。  相似文献   

18.
Suction buckets differ with their easy and cost-efficient installation technique from other foundation types for offshore wind turbines. For successful completion of their installation process, suction is essential, but the imposed seepage leads to the changes in states of the soil in and around the bucket. Especially, a loosening of soil inside the bucket affects the load carrying behaviour of bucket subjected to repetitive loading resulting from environmental conditions. In this study, the behaviour of buckets under cyclic axial compressive loads with considering a possible loosening and related changes in permeability of soil inside the bucket is investigated numerically. In the framework of finite element analysis, a fully coupled two-phase model and a hypoplastic constitutive model are used to describe the saturated sandy soil behaviour under repetitive loading. The porosity-permeability variation is taken into account by Kozeny–Carman relationship. Special attention is dedicated to load carrying behaviour of bucket top plate, inner and outer skirt as well as base and their changes resulting from a loosening of soil inside the bucket with variable aspect ratio. For this purpose, cyclic axial compressive loads which cause an attenuation and progressive failure of soil-bucket system response are considered. The main findings on the changes in load carrying behaviour of bucket are presented and discussed.  相似文献   

19.
This paper presents a three dimensional limit method based on the upper bound theory for the stability of suction bucket foundations of offshore platforms. The bucket embedded in soil is subjected to a lateral load applied above the mud line. In order to simulate the lateral load, a fictitious soil layer is assumed, having a thickness equals to the vertical distance from the load point to the surface of the foundation. The unit weight and shear strength of the fictitious soil are set to be zero. The soil–bucket failure mechanism is approximated by a series of prisms. The three dimensional limit method starts from establishing a compatible velocity field and obtains the factor of safety by the energy and work balance equation. Optimization is followed to approach the critical failure mechanism that offers the minimum factor of safety. Two different basal surfaces are incorporated, i.e. an arbitrarily defined failure surface and a partly elliptical failure surface. Results of centrifuge modeling of bucket foundations are used to verify the method. The arbitrary failure surface provides more reasonable prediction than the partly elliptical failure surface. Being a multi-variable dependent problem, further investigation is needed to search for the critical failure mechanism.  相似文献   

20.
Behaviour of rigid piles in marine clays under lateral cyclic loading   总被引:1,自引:0,他引:1  
In the field of ocean engineering, pile foundations are extensively used in supporting several structures. In many cases, piles are subjected to significant lateral loads. The environment prevalent in the ocean necessitates the piles to be designed for cyclic wave loading. In this investigation, the behaviour of rigid piles under cyclic lateral loading has been studied through an experimental programme carried out on model piles embedded in a soft marine clay. Static tests were also conducted on piles embedded in a clay bed prepared at different consistencies suitable to field situations. Cyclic load was applied by using a specially designed pneumatic controlled loading system. Tests were conducted on model piles made of mild steel (MS), aluminium and PVC with wide variation in pile soil relative stiffness. For cyclic load levels less than 50% of static lateral capacity, the deflections are observed to increase with number of cycles and cyclic load level and stabilise after a certain number of cycles. For cyclic load levels greater than 50% of static lateral capacity, the deflections are observed to increase enormously with number of cycles. The results of post-cyclic load tests indicate that the behaviour under static load can improve for cyclic load levels less than 40% of the static lateral capacity. The variations in the load capacity due to cyclic loading are explained in terms of the changes in strength behaviour of soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号