首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Bridge scour is recognized as one of the key factors that causes structure failures, which in turn leads to economic and life loss. In this study, flume tests of four typical arrangements of pier groups embedded in sand under steady clear water conditions were carried out to observe the process and maximum depth around piles of scour. The investigation included single pile, tandem piles, side-by-side piles, and 3 × 3 pile groups. Different conditions including different pile spacing, flow velocity, and water depth are considered. Moreover, the evaluation of design methods from the United States, New Zealand, and China was analyzed and compared through experimental and mathematical methods. The experimental results show that shielding and jetting effects are obvious in pile groups, which become less obvious with the increase of pile spacing. The dynamic process of scour around single pile and pile groups are quite different. Meanwhile, most of the predicted scour depths by these equations tend to be much larger than those from field data, which may lead to overdesign and consequently high construction cost. In addition, data from this study and some laboratory experiment data from previous work were used to derive the correction factors of a new scour prediction equation, which can be used to estimate the scour in a sand bed and agree well with the observations.  相似文献   

2.
郭健  汪涛  王金权  吴继熠 《海洋工程》2020,38(6):96-106
综合国内外现有研究成果,分析了桩周流场结构及局部冲刷坑的分布形态,通过三维数值模拟,验证了局部冲刷最大值点出现在桩前,且冲坑坡度近似等于泥沙水下休止角的结论。从国内外规范内局部冲深计算公式中筛选出跨海桥梁钢管桩局部冲刷深度的主要影响因素。基于能量平衡理论,通过来流水流搬运冲刷坑内泥沙过程中的能量守恒,推导了概念清晰、形式简单的局部冲刷深度预测公式。区别于现有多数公式主体结构,该公式为关于局部冲深的一元三次方程,通过水下泥沙休止角来考虑泥沙对冲刷的影响以及冲刷过程中冲刷坑自身深度及范围变化对冲刷产生的影响。利用最小二乘法,结合环杭州湾区域三座跨海大桥的试验及实测数据拟合确定了公式相关参数,并与国内外规范内的公式对比验证,结果表明,该公式精度较高,可为实际工程计算分析提供参考。  相似文献   

3.
针对水下桩墩的局部冲刷问题,提出一种适用范围广、防冲促淤效果显著的防护措施。该防护措施把一种相对密度略大于水、几何特征特殊的中性网格结构完全覆盖在冲刷坑或可能出现冲刷坑的床面上,以减弱冲刷坑内水动力,促进泥沙落淤,达到减轻局部冲刷的目的。通过数值模拟和水槽试验探讨了中性网格结构对圆桩周围冲刷坑内水动力及床面形态的影响,并研究了网孔尺寸对防冲促淤效果的影响规律。结果表明:该中性网格结构能显著减小局部冲刷坑内的流速,有效抑制局部冲刷,且对桩前来流来沙的影响微弱。孔径比7.7的网格防护结构可以使无黏性沙床上圆桩的局部冲刷深度减少92%,已存在的冲刷坑则可被修复73%。这些研究成果为桩墩局部冲刷防护提供一种新的思路。  相似文献   

4.
The flow-structure interaction in an ocean environment, for a pile placed in an erodible bed where currents and waves are of prime concern, changes the bed elevation due to scour in the vicinity of the obstruction. There are certain difficulties in predicting the scour depth, as the particulate movement of sediments due to scour is time-dependent. Considering the complexity of the problem, an instrumentation system has been developed for measuring scour depth with time. This paper outlines the experimental laboratory techniques used to measure scour around pile foundations in silty-clay sediments. Detailed laboratory testing on model piles having a diameter of 50-110 mm was carried out in a wave flume having a length of 30 m and a width of 2.0 m. The motivation of these studies is to obtain observational experience of scour rate in silty-clay soil. Scour depths were monitored continuously for different combinations of wave characteristics and current velocities, and scour-time history is measured. Based on the measurements, a relationship for the scour depth in terms of duration of flow, soil properties, model characteristics, and fluid parameters is presented.  相似文献   

5.
单向流条件下单桩桩周冲刷过程特征试验研究   总被引:1,自引:1,他引:1  
水流引起桩基周围地基冲刷是海洋工程中的经典课题,由于问题涉及流体动力学和土力学的交叉内容,加之试验技术和计算能力的限制,这一冲刷过程仍有很多方面尚待进一步厘清。开展10组室内水槽试验,研究了不同水深情况下定床和动床冲刷时单桩桩周局部冲刷深度的发展过程。在试验过程中,通过模型桩内放置摄像机实时监测桩周冲刷深度变化,得到桩周冲深边界及最大和最小冲深方位随时间的变化曲线。试验研究发现这一冲刷过程主要特征为:局部冲刷首先发生在桩(侧)前方并逐渐向桩周扩展,而桩后则先发生淤积后再冲刷;水深越大,流速越大,桩后淤积现象持续时间越短,桩周冲刷发展迅速、均匀,但达到稳定所需时间越久;桩周最大、最小冲深点首先分别位于桩的侧前方、桩后区域,随着试验进行会发生转变或波动。  相似文献   

6.
Stability of many ocean structures is affected by seabed scour induced by under-currents. The depth of scour is an important parameter for determining the minimum depth of foundations as it reduces the lateral capacity of the foundations. A review of the literature reveals that there is not much information available in the field of scour in cohesive soils. Hence, a detailed laboratory testing programme on model piles of diameters 50 mm to 110 mm embedded in soft silty clay soil was carried out in a wave flume of 30 m long, 2.0 m wide and 1.7 m deep, which has the capability of simulating steady currents. Scour around the pile due to steady streaming is monitored by using special instrumentation. A procedure has been suggested to predict the ultimate scour depths based on the observed variation in scour depth over a limited time period. The study indicates that the ultimate scour depth is controlled by diameter of obstruction, current velocity, model Reynolds number, flow Froude number, shear stress, and soil characteristics. Based on these results, a few functional relationships are suggested between scour depth and other parameters like Reynolds number, Froude number, and strength of the soil bed.  相似文献   

7.
海上风电基础局部冲刷会影响风电结构的稳定,对海上风电的安全运行至关重要。以四腿群桩导管架基础为研究对象,对潮流条件下基础局部冲刷开展试验研究。试验结果表明:0°水流条件下,最大冲刷深度为1.05倍桩径;45°水流条件下,最大冲刷深度为0.97倍桩径。并探索了新型蜂巢结构在群桩基础防冲刷中的应用,设计了蜂巢格室防护方案,发现在蜂巢防护情况下,两个流向作用于四腿群桩基础时最大冲刷深度仅为无防护情况下的27.3%和25.9%,表明蜂巢格室在海上风电基础的冲刷防护方面具有良好效果,在实际工程中具有较大的应用潜力。  相似文献   

8.
A laboratory study of local scour at complex piers under steady clear-water conditions is presented. The term complex piers is used to define a bridge pier comprising of a column, pile cap, and pile group. Comprehensive data over the full range of possible pile cap elevations for complex piers with different geometries were obtained using five complex pier models, which were scaled down from existing bridges in Malaysia. The data are used to evaluate existing methodologies for characterizing the effective width of complex piers with varying pile cap location relative to the undisturbed streambed. The effect of pile cap location on scour depth is also addressed. To improve the predictions of local scour at complex piers, the new data and some previous data are used to propose a new method to predict local scour depth at complex piers.  相似文献   

9.
为减轻海上风电单桩基础周围局部冲刷对其结构安全的影响,提出了一种新型旋转减冲装置。在波流水槽中开展物理模型试验,改变波流条件、装置安装高度、安装距离,记录桩周冲刷发展历时,运用激光地形仪扫描冲刷坑形态,分析各工况下冲刷坑形态差异,验证装置不同安装距离、安装高度下的冲刷防护效果,提出了不同安装位置下的防护效率公式。结果表明:新型旋转减冲装置具有较好的冲刷防护效果,本试验工况下,桩周最大冲刷深度可减小44%左右。装置安装距离对冲刷防护效果影响较小,波流作用下的冲刷防护效果受装置安装高度影响显著,冲刷防护效果随装置安装高度的增加而减弱。  相似文献   

10.
Understanding the sediment transport and the resulting scour around coastal structures such as pile breakwaters under local extreme wave conditions is important for the foundation safety of various coastal structures. This study reports a wave-flume experiment investigating the scour induced by solitary waves at a pile breakwater, which consists of a row of closely spaced large piles. A wave blacking gate with a simple operation procedure in the experiment was designed to eliminate possible multiple reflections of the solitary wave inside the flume. An underwater laser scanner and a point probe were used in combination to provide high-resolution data of the bed profile around the pile breakwater. Effects of incident wave height and local water depth on the maximum scour depth, the maximum deposition height and the total scour and deposition volumes were examined. An existing empirical formula describing the evolution of the scour at a single pile in current or waves was extended to describe the scour at the pile breakwater under the action of multiple solitary waves, and new empirical coefficients were obtained by fitting the formula to the new experimental data to estimate the equilibrium scour depth. It appears that the maximum scour depth and the total scour volume are two reliable quantities for validation of numerical models developed for the scour around pile breakwaters under highly nonlinear wave conditions.  相似文献   

11.
大型涉水群桩桥基局部冲刷特性试验研究   总被引:2,自引:0,他引:2  
利用正态宽水槽研究梅花形大型涉水群桩基础的局部冲刷特性,得到最大冲深、最深点位置以及桩群内垂向和顺水向的冲刷形态,并与常规形群桩布置引起的冲刷进行了试验对比.其中梅花形群桩局部冲刷的特性和试验结果在苏通长江大桥建设中得到较好地验证.  相似文献   

12.
The obstruction to flow around a pile placed in an erodible seabed causes scour leading to changes in the bed elevation in the vicinity of the pile. In the present investigation, scour around piles induced by the seabed current has been studied in a wave flume using model piles of diameters 50, 90 and 110 mm embedded in a silty clay soil bed. The particulate movement due to scour is time dependent and in case of sediments with particle sizes ranging upto clay fractions, the measurement of scour becomes extremely difficult. This paper presents a simplified experimental technique for the measurement of scour depth with time around a pile foundation in a silty clay soil.  相似文献   

13.
The scour hole around a pile will reduce the capacity of a laterally loaded pile. The strain wedge model is capable to derive a py curve for the analysis of a lateral loaded pile on a nonlinear Winkler foundation. To improve and extend the ability of the strain wedge method, a modified strain wedge (MSW) method is developed, in which a nonlinear lateral deflection of the pile is assumed to describe the varied soil strain distribution in the passive wedge. And then by treating the soil weight involved in the strain wedge as a vertical load at the bottom of the scour hole, an equivalent wedge depth is obtained to consider the effect of scour hole dimensions on the response of laterally loaded piles in sand. The validity of the MSW model is proved by comparisons with a centrifuge test without scour. And its applicability in the problem of a pile with scour is performed by a comparison with a model test and a FE analysis. The analysis shows the pile displacement at the pile head with scour can be obtained by multiplying the corresponding deflection without scour with an amplification factor related to scour depth at large load level.  相似文献   

14.
针对我国南海某岛礁珊瑚砂地基上的圆形桩基础,采用N-S方程k-ε模型、双向耦合方式跟踪流场中颗粒运动轨迹的方法,对桩周珊瑚砂的冲刷规律进行了求解,分析了桩体周围流体的速度场以及桩体表面剪应力场的分布规律,同时对桩周珊瑚砂冲刷坑的形成过程进行了模拟。计算结果表明,在桩体周围形成的马蹄形漩涡和桩柱后方的尾涡作用下,桩周土体出现了较为明显的冲刷现象,涡旋的释放显著地影响着珊瑚砂地基上桩基的冲刷坑形状;而且,由于珊瑚砂颗粒密度较石英砂小,水动力作用下桩周冲刷坑更容易形成,所以实际工程中需要考虑有效的防护措施。  相似文献   

15.
The local scour around a new pile-group foundation of offshore wind turbine subjected to a bi-directional current was physically modeled with a bi-directional flow flume. In a series of experiments, the flow velocity and topography of the seabed were measured based on a system composed of plane positioning equipment and an ADV. Experimental results indicate that the development of the scour hole was fast at the beginning, but then the scour rate decreased until reaching equilibrium. Erosion would occur around each pile of the foundation. In most cases, the scour pits were connected in pairs and the outside widths of the scour holes were larger than the inner widths. The maximum scour depth occurred at the side pile of the foundation for each test. In addition, a preliminary investigation shows that the larger the flow velocity, the larger the scour hole dimensions but the shorter equilibrium time. The field maximum scour depth around the foundation was obtained based on the physical experiments with the geometric length scales of 1:27.0, 1:42.5 and 1:68.0, and it agrees with the scour depth estimated by the HEC-18 equation.  相似文献   

16.
Model tree approach for prediction of pile groups scour due to waves   总被引:1,自引:0,他引:1  
Scour around piles could endanger the stability of the structures placed on them. Hence, an accurate estimation of the scour depth around piles is very important in coastal and marine engineering. Due to the complex interaction between the wave, seabed and pile group; prediction of the scour depth is not an easy task and the available empirical formulas have limited accuracy. Recently, soft computing methods such as Artificial Neural Networks (ANNs) and Support Vector Machines (SVMs) have been used for the prediction of the scour depth. However, these methods do not give enough insight about the process and are not as easy to use as the empirical equations. In this study, new formulas are given that are easy to use, accurate and physically sound. Available empirical equations for estimating the pile group scour depth such as those of Sumer et al. (1992) and Bayram and Larson (2000), are less accurate compared to the given equations. These equations are as accurate as other soft computing methods such as ANN and SVM. Moreover, in this study, safety factors are given for different levels of acceptable risks, which can be so useful for engineers.  相似文献   

17.
Most offshore and coastal structures are supported by pile foundations, which are subjected to large lateral loads due to wind, wave, and water currents. Water currents can induce scouring around piles that reduces lateral capacity and increases lateral deflection of a pile. Current design methods mostly consider the complete removal of soil layers around piles by scouring. In reality, however, scouring creates scour holes at different shapes, sizes, and depths. Their effects on the behavior of laterally loaded piles are not well investigated. A numerical model of a single pile in soft marine clay was first calibrated against field test data without scour. Then several key factors of scour were analyzed, such as the depth, width, and slope of the scour hole and the diameter and head fixity of the pile. The relationships of the ultimate lateral capacity of the single pile with the depth, width, and slope angle of the scour hole were obtained. The numerical results show that the scour depth had more significant influence on the pile lateral capacity than the scour width. In addition, the pile with a free head was more sensitive to scour than the pile with a fixed head.  相似文献   

18.
为研究钻井船插桩对邻近平台群桩相互作用的影响,采用耦合欧拉拉格朗日(CEL)方法对桩靴贯入黏土层时邻近群桩中各桩荷载分担比、桩头附加位移及两桩相互作用系数进行了分析。首先通过对缩尺模型试验的数值分析,验证了CEL方法的可行性;然后进一步分析了桩靴贯入黏土层时对邻近群桩相互作用的影响;最后探讨了净间距、桩间距对群桩相互作用的影响。结果表明,在桩靴贯入中,前桩的荷载分担比大于后桩,且桩靴贯入至一定深度后,当净间距越小或桩间距越大时,前桩的荷载分担比越大、后桩的荷载分担比越小,但各桩的荷载分担比随桩靴贯入深度增加时的变化规律不变;净间距越大,桩头附加位移及相互作用系数越小;在桩靴贯入时,由于受群桩遮拦效应的影响,桩头附加位移及相互作用系数随桩间距的变化规律同插桩前有所不同,当桩间距大于3倍桩径时,随桩间距的增加而减小,当桩间距小于3倍桩径时,随桩间距的增加而增大。  相似文献   

19.
Transport of bed sediment inside and beneath the scour protection may cause deformation and sinking of the scour protection for pile foundations. This may reduce the stability of the mono pile and change the natural frequency of the dynamic response of an offshore wind turbine installed on it in an unfavourable manner. Using physical models and 3D computational fluid dynamic (CFD) numerical simulations, the velocity and bed shear stresses are investigated in complex scour protections around mono piles in steady current. In the physical model the scour protections consisted of an upper cover layer with uniformly distributed coarse stones and a lower filter layer with finer stones. For the numerical simulations, the Flow-3D software was used. The scour protection layers were simulated with different numerical approaches, namely regularly arranged spheres, porous media, or their combinations (hybrid models). Numerical simulations with one or four layers of cover stones without filter layer were first computed. Three additional simulations were then made for a scour protection with a cover layer and a single filter layer. Finally, a simulation of a full scale foundation and scour protection was made with porous media approach.Based on the physical and numerical results, a method to determine the critical stones size to prevent motion of the base sediment is established and compared to a full scale case with sinking of scour protection (Horns Rev I Offshore Wind Farm, Denmark). It is also found that the CFD simulations are capable of calculating the flow velocities when the scour protection is represented by regular arranged spheres, while the turbulence in general is underestimated. The velocity can also be calculated using porous media flow approach, but the accuracy is not as good as for spheres. The deviation is more severe for more complex scour protections. In general, computational models provide valuable information for the prediction and design of scour protections for offshore wind farms.  相似文献   

20.
为研究水流作用下斜桩周围局部冲刷特性及流场变化并掌握斜桩同垂直桩的差异,本研究在不同流速条件下开展了包含反斜桩、垂直桩、正斜桩等多种工况的水槽试验,测量分析了斜桩的冲刷历时曲线、床面形态、沿程流速分布、最大冲刷深度等数据.结果表明:清水条件下斜桩周围局部冲刷坑及桩后沙丘尺度明显减小;斜桩桩前最大冲刷深度随倾角的增加而逐...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号