首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fate of riverine nitrate entering a well defined turbid estuary receiving discharges from the Atchafalaya River, a distributary of the Mississippi River, was determined. Seasonal distribution of NO3 and its transformations were measured in Four League Bay (9,300 ha). Denitrification was estimated by incubating wet samples in the presence of acetylene and monitoring N2O production. The annual sediment accumulation of N was also determined within the bay and within the adjacent marshes. Nitrogen accumulation ranged from 6.0 to 23 gN per m2 per yr on the marsh and 6.1 to 11.2 gN per m2 per yr in the bay. Denitrification in this system was controlled by the availability of NO3 ? with fluxes ranging from 2 to 70 ngN per g per hr. The annual (N2O +N2)-N emission was equivalent to 142 and 120 μg per g or 2.1 and 1.7 gN per m2 from the 5 bay and 5 marsh stations, respectively. Approximately 1.95×105 kgN, predominantly as N2, is being returned to the atmosphere via denitrification. We estimate this to be equivalent to 50% of the riverine NO3 ? entering this estuary. A significant amount was also assimilated within the estuary.  相似文献   

2.
Much uncertainty exists in spatial and temporal variations of nitrous oxide (N2O) emissions from coastal marshes in temperate regions. To investigate the spatial and temporal variations of N2O fluxes and determine the environmental factors influencing N2O fluxes across the coastal marsh dominated by Suaeda salsa in the Yellow River estuary, China, in situ measurements were conducted in high marsh (HM), middle marsh (MM), low marsh (LM), and mudflat (MF) in autumn and winter during 2011–2012. Results showed that mean N2O fluxes and cumulative N2O emission indicated intertidal zone of the examined marshes as N2O sources over all sampling seasons with range of 0.0051 to 0.0152 mg N2O m?2 h?1 and 7.58 to 22.02 mg N2O m?2, respectively. During all times of day and the seasons measured, N2O fluxes from the intertidal zone ranged from ?0.0004 to 0.0644 mg N2O m?2 h?1. The freeze/thaw cycles in sediments during early winter (frequent short-term cycle) and midwinter (long-term cycle) were one of main factors affecting the temporal variations of N2O emission. The spatial variations of N2O fluxes in autumn were mainly dependent on tidal fluctuation and plant composition. The ammonia-nitrogen (NH4 +–N) in sediments of MF significantly affected N2O emissions (p < 0.05), and the high concentrations of Fe in sediments might affect the spatial variation of N2O fluxes. This study highlighted the large spatial variation of N2O fluxes across the coastal marsh (coefficient of variation (CV) = 127.86 %) and the temporal variation of N2O fluxes during 2011–2012 (CV = 137.29 %). Presently, the exogenous C and N loadings of the Yellow River estuary are increasing due to human activities; thus, the potential effects of exogenous C and N loadings on N2O emissions during early winter should be paid more attention as the N2O inventory is assessed precisely.  相似文献   

3.
N2 fixation associated with the epiphytic community on standing dead Spartina alterniflora shoots was examined in both a natural and transplanted salt marsh in North Carolina. Acetylene reduction (AR) assays were conducted over a 24-mo period to estimate N2 fixation rates on standing dead stems and leaves. In the natural salt marsh, mean AR rates ranged from 0.5 nmol C2H4 cm?2 h?1 to 14 nmol C2H4 cm?2 h?1, while in the transplanted marsh mean AR rates ranged from 1 nmol C2H4 cm?2 h?1 to 33 nmol C2H4 cm?2 h?1. Diel AR activity of epiphytic communities in both marshes varied seasonally. Midday incubations yielded higher AR rates than nighttime incubations in the spring, while midday incubations in late summer and fall generally yielded AR rates equal to or lower than nighttime incubations. Desiccation during low tides occasionally repressed AR activity, although AR rates quickly rebounded with wetting. AR activity was localized in the epiphytic community, rather than in the underlying Spartina stem material. Based on the measured AR rates and the density of standing dead stems, the annual input of new N to the natural salt marsh via epiphytic N2 fixation is estimated to be 2.6 g N m?2 yr?1. The estimate of annual input of new N to the transplanted marsh is 3.8 g N m?2 yr?1. These estimates should be added to previous estimates of N2 fixation in marsh sediments to estimate the total contribution of new nitrogen to salt marsh nitrogen budgets.  相似文献   

4.
Gaseous methane loss from a brackish, intertidal salt marsh sediment was measured in April, June, August, and October 1977. Twenty-four sediment cores were taken on each date. Annual loss of methane carbon from the mud flats was 10.7 g CH4?C per m2 per year, a value closer to freshwater values than marine systems. Loss of methane fromSpartina peat was low.  相似文献   

5.
We studied organic matter cycling in two Gulf Coast tidal, nonsaline marsh sites where subsidence causes marine intrusion and rapid submergence, which mimics increased sea-level rise. The sites experienced equally rapid submergence but different degrees of marine intrusion. Vegetation was hummocked and much of the marsh lacked rooted vegetation. Aboveground standing crop and production, as measured by sequential harvesting, were low relative to other Gulf CoastSpartina patens marshes. Soil bulk density was lower than reported for healthyS. alterniflora growth but that may be unimportant at the current, moderate sulfate levels. Belowground production, as measured by sequential harvesting, was extremely fast within hummocks, but much of the marsh received little or no belowground inputs. Aboveground production was slower at the more saline site (681 g m?2 yr?1) than at the less saline site (1,252 g m?2 yr?1). Belowground production over the entire marsh surface averaged 1,401 g m?2 yr?1 at the less saline site and 585 g m?2 yr?1 at the more saline site. Respiration, as measured by CO2 emissions in the field and corrected for CH4 emissions, was slower at the less saline site (956 g m?2 yr?1) than at the more saline site (1,438 g m?2 yr?1), reflecting greater contributions byS. alterniflora at the more saline site which is known to decompose more rapidly thanS. patens. Burial of organic matter was faster at the less saline site (796 g m?2 yr?1) than at the more saline site (434 g m?2, yr?1), likely in response to faster production and slower decomposition at the less saline site. Thus vertical accretion was faster at the less saline site (1.3 cm yr?1) than at the more saline site (0.85 cm yr?1); slower vertical accretion increased flooding at the more saline site. More organic matter was available for export at the less saline site (1,377 g m?2 yr?1) than at the more saline site (98 g m?2 yr?1). These data indicated that organic matter production decreased and burial increased in response to greenhouse-like conditions brought on by subsidence. *** DIRECT SUPPORT *** A01BY069 00016  相似文献   

6.
Fluxes of nitrous oxide (N2O) from different land use patterns (matured forest, secondary forest, grassland and cropland) in a subtropical karst region of Guizhou Province, Southwest China, were measured for one year with a closed static chamber technique and by gas chromatography. The results showed that soil under different land uses was a source of atmospheric N2O. The cropland was a source with relatively high N2O as compared to forest and grassland, but no significant differences were observed. N2O emissions from soils varied with land use change and fertilizer application. There were two peaks of N2O flux occurred following the combination of two obvious precipitation and fertilizer events in the cultivated land. Converting from the matured forest to secondary forest tended to increase annual emissions of N2O (from 1.40 to 1.65 kg N ha -1 a -1 ), while changing land use from secondary forest to scattered grassland tended to decrease annual emissions of N2O slightly (from 1.65 to 1.45 kg N ha -1 a -1 ). Our range of cumulative annual N2O emission across different land uses (1.40-1.91 kg N ha -1 a -1 ) in a karst region is in general agreement with previously published data in a non-karst region. However, in the maize field, N2O emission factor (EF) was 0.34% for fertilizer application, which is about 71.2% lower than the IPCC default value. It is suggested that current IPCC (Intergovernmental Panel on Climate Change) EF methodology could overestimate N2O emission from the karstic cropland. Anyway, the N2O emission from cropland in the karst region would contribute significantly to the global N2O budget, so reducing fertilization frequency during the crop growing season could lead to a decrease in N2O emission in the whole year.  相似文献   

7.
Annual acetylene reduction rates associated with interidal communities in a chronically oil polluted Virginia salt marsh were compared to rates measured in an undisturbed marsh. Chronic oil treatment resulted in visible damage to the higher plants of theSpartina alterniflora zones; however, vegetation-associated acetylene, reduction was not different from the untreated control. Sediment rates generally were affected little by oil application, except during the summer when rates in the median tidal elevation zones were considerably higher than those of the control. Acetylene reduction occurred in all transects, each of which extended from upper mudflat to theSpartina patens zone. Intertidal sediment acetylene reduction was patchy, both spatially and seasonally. Estimated rates were greatest near the surface; free-living bacterial N2 fixation activity averaged 2.23 mg N per m2 per d (range=undetectable to 365 mg N per m2 per d) in the untreated and 3.17 mg N per m2 per d (range=undetectable to 564 mg N per m2 per d) in the oil-treated marsh during the year. Vegetation-associated N2 fixation activity yielded highest overall mean rates (156 mg N per m2 per d). The seasonal pattern of sediment and vegetation-associated fixation may be controlled by temperature and availability of oxidizable substrates.  相似文献   

8.
Aquatic ecosystems have been identified as a globally significant source of nitrous oxide (N2O) due to continuous active nitrogen involvement, but the processes and influencing factors that control N2O production are still poorly understood, especially in reservoirs. For that, monthly N2O variations were monitored in Dongfeng reservoir (DFR) with a mesotrophic condition. The dissolved N2O concentration in DFR displayed a distinct spatial–temporal pattern but lower than that in the eutrophic reservoirs. During the whole sampling year, N2O saturation ranging from 144% to 640%, indicating that reservoir acted as source of atmospheric N2O. N2O production is induced by the introduction of nitrogen (NO3 ?, NH4 +) in mesotrophic reservoirs, and is also affected by oxygen level and water temperature. Nitrification was the predominate process for N2O production in DFR due to well-oxygenated longitudinal water layers. Mean values of estimated N2O flux from the air–water interface averaged 0.19 µmol m?2 h?1 with a range of 0.01–0.61 µmol m?2 h?1. DFR exhibited less N2O emission flux than that reported in a nearby eutrophic reservoir, but still acted as a moderate N2O source compared with other reservoirs and lakes worldwide. Annual emissions from the water–air interface of DFR were estimated to be 0.32 × 105 mol N–N2O, while N2O degassing from releasing water behind the dam during power generation was nearly five times greater. Hence, N2O degassing behind the dam should be taken into account for estimation of N2O emissions from artificial reservoirs, an omission that historically has probably resulted in underestimates. IPCC methodology should consider more specifically N2O emission estimation in aquatic ecosystems, especially in reservoirs, the default EF5 model will lead to an overestimation.  相似文献   

9.
The potential for marsh plants to be vectors in the transport of mercury species was studied in the natural, mature, tidal China Camp salt marsh on San Pablo Bay. The fluxes of organic matter, mercury (THg), and monomethylmercury (MeHg) were studied in natural stands of Spartina foliosa and Salicornia virginica. Seasonal fluxes from the sediment into aboveground biomass of live plants and subsequent transfer into the dead plant community by mortality were measured. Loss of THg and MeHg from the dead plant community through fragmentation, leaching, and excretion were calculated and were similar to net uptake. Seasonal data were added up to calculate annual mass balances. In S. foliosa, annual net production was 1,757 g DW m?2, and the annual net uptakes in the aboveground biomass were 305 μg THg m?2 and 5.720 μg MeHg m?2. In S. virginica, annual net production was 2,117 g DW m?2, and the annual net uptakes in aboveground biomass were 99.120 μg THg m?2 and 1.990 μg MeHg m?2. Of both plant species studied, S. foliosa had a slightly lower production rate but greater mercury species uptake and loss rates than S. virginica, and, consequently, it is to be expected that S. foliosa matter may affect the local and possibly the regional food web relatively more than S. virginica. However, the actual effects of the input of mercury-species-containing plant-derived particulate matter into the food webs would depend on trophic level, food preference, seasonal cycle of the consumer, total sediment surface area vegetated, location of the vegetation in the marsh landscape, and estuary bay landscape. Since the levels of mercury species in dead plant material greatly exceed those in live plant material (on a dry weight basis), detritivores would ingest greater mercury species concentrations than herbivores, and consumers of S. foliosa would ingest more than consumers of S. virginica. The greatest THg and MeHg losses of both plant species due to mortality and to fragmentation–leaching–excretion occurred in late spring and early autumn, which corresponds to peak MeHg levels observed in sediments of coastal systems of previous studies, suggesting enhanced THg–MeHg export from the marsh to the nearshore sediment.  相似文献   

10.
The freshwater marshes in northern China are heavily impacted by anthropogenic disturbances such as cultivation and fertilization and increased levels of nutrients (especially N and P) through atmospheric deposition and agricultural surface runoff. These disturbances have affected the emission of N2O from these systems. This laboratory study was conducted to determine the effects of increased inputs of inorganic N and P on N2O emission from marsh soil in response to different soil moisture conditions. The results showed that the emission of N2O increased with the enhancement of N inputs when the soil was submerged, but that the highest N treatment suppressed the emission of N2O when the soil was at 60% water holding capacity (WHC), which may have occurred due to an inadequate amount of available C. Furthermore, the results of this study indicated that a small amount of N fertilizer induced much more N2O evolution from freshwater wetland soil, while P fertilizer inputs appeared to stimulate the emission of N2O only during the first few days of the experiment. Additionally, soil that was treated with P appeared to absorb N2O when it was at 60% WHC after around 6 weeks of the incubation, which indicates that the input of P fertilizer might serve as a shift of source or N2O sink in wetland soils under non-flooded conditions. When compared to soil at 60% WHC, submerged soil had significantly higher N2O emissions, except when subjected to the medial N treatment. These findings indicate that the soil moisture condition had a significant effect on N2O emissions when the same amount of N or P was applied. Therefore, the effects of N and P fertilization in the northern temperate wetlands cannot be neglected from regional or national emissions of N2O.  相似文献   

11.
In order to better understand the spatiotemporal variations and interrelationships of greenhouse gases (GHG), monthly surface fluxes and profile concentrations of GHG (CO2, N2O and CH4) in karst areas in the Guizhou Province, southwest China, were measured from June 2006 to May 2007. GHG fluxes showed high variability, with a range of 460.9?C1,281.2?mg?m?2?h?1 for CO2, ?25.4 to 81.5???g?m?2?h?1 for N2O and ?28.7 to ?274.9???g?m?2?h?1 for CH4, but no obvious seasonal change trends of the fluxes existed. Profile concentrations of CO2, N2O and CH4 varied between 0.5 and 31.5?mL?L?1, 0.273 and 0.734, and 0.1 and 3.5???L?L?1, respectively. In general, concentrations of CO2 and N2O increased with depth, while CH4 had an inverse trend. However, in October, November and January, the reversal of depth patterns of GHG concentrations took place below 15?cm, close to the soil?Crock interface. The spatiotemporal distribution of CO2 in soil profile was significantly positively correlated with that of N2O (p?<?0.05?C0.01) and negatively correlated with that of CH4 (p?<?0.01). The correlation analysis showed that soil temperature and moisture may be responsible for GHG dynamics in the soils, rather than the exchange of GHG between land and atmosphere.  相似文献   

12.
The conversion of undisturbed coastal regions to commercial and suburban developments may pose a threat to surface and groundwater quality by introducing nitrate-nitrogen (NO3 ?-N) from runoff of land-applied wastewater and fertilizers. Microbial denitrification is an important NO3 ?-N removal mechanism in coastal sediments. The objective of this study was to compare denitrification and nitrate conversion rates in coastal sediments from a golf course, suburban site, undeveloped marsh, and nonmarsh area near rapidly developing Hilton Head Island, South Carolina. Nitrous oxide was measured using gas chromatography and nitrate and ammonium concentrations were measured using a flow injection autoanalyzer in microcosms spiked, with 50 μg NO3 ?-N gdw?1. The two marsh sites had the greatest ammonium production, which was correlated with fine sediment particle size and higher background sediment nitrate and surface water sulfate concentrations. The golf course swale had greatest denitrification rates, which were correlated with higher total carbon and organic nitrogen in sediments. Nitrate was consumed in golf course sediments to a greater extent than in the undeveloped marsh and upland freshwater sites, suggesting that the undeveloped sites and receiving estuaries may be more susceptible to nitrate contamination than the golf course swale and marsh under nonstorm conditions. Construction of swales and vegetated buffers using sediments with high organic carbon content as best management practices may aid in removing nitrate and other contaminants from runoff prior to its transport to the receiving marsh and estuary.  相似文献   

13.
Fluxes of methane (CH4) and carbon dioxide (CO2) to the atmosphere at 52 sites within a salt marsh were measured by a dark static chamber technique from mid July to mid September. Mean CH4 fluxes ranged from 0.2 mg m?2 d?1 to 11.0 mg m?2 d?1, with an overall average of 1.6 mg m?2 d?1. Flux of CH4 was inversely correlated (r2=0.23, p = 0.001) with salinity of the upper porewater at the site, suggesting the dominant role of SO4 2? in inhibiting methanogenesis in salt-marsh sediments. The combination of salinity and water table position was able to explain only 29% of the variance in CH4 emission. Mean soil flux of CO2 ranged from 0.3 g m?2 d?1 to 3.7 g m?2 d?1, with an overall average of 2.5 g m?2 d?1; it was correlated with aboveground biomass (positive, r2=0.38, p = 0.001) and position of the water table (negative, r2 = 0.55, p = 0.001). The combination of biomass and water table position accounted for 63% of the variance in CO2 flux. There were high variations in gas flux within the six plant communities. The sequences were CH4: upland edge > panne > pool > middle marsh > low marsh > high marsh, and CO2: middle marsh > low marsh > upland edge > high marsh > panne > pool. Compared to other salt-marsh systems, this Bay of Fundy marsh emits small amounts of CH4 and CO2.  相似文献   

14.
Recent (6–12 month) marsh sediment accretion and accumulation rates were measured with feldspar marker horizons in the vicinity of natural waterways and man-made canals with spoil banks in the rapidly subsiding environment of coastal Louisiana. Annual accretion rates in aSpartina alterniflora salt marsh in the Mississippi deltaic plain averaged 6 mm in marsh adjacent to canals compared to 10 mm in marsh adjacent to natural waterways. The rates, however, were not statistically significantly different. The average rate of sediment accretion in the same salt marsh region for a transect perpendicular to a canal (13 mm yr?1) was significantly greater than the rate measured for a transect perpendicular to a natural waterway (7 mm yr?1). Measurements of soil bulk density and organic matter content from the two transects were also different. This spatial variability in accretion rates is probably related to (1) spoil bank influences on local hydrology; and (2) a locally high rate of sediment input from lateral erosion associated with pond enlargement. In a brackishSpartina patens marsh on Louisiana’s Chenier plain, vertical accretion rates were the same along natural and canal waterways (3–4 mm yr?1) in a hydrologically restricted marsh region. However, the accretion rates for both waterways were significantly lower than the rates along a nonhydrologically restricted natural waterway nearby (11 mm yr?1). The vertical accretion of matter displayed semi-annual differences in the brackish marsh environment.  相似文献   

15.
Constructed wetlands (CWs) are considered important sources of nitrous oxide (N2O). Various reports in the literature indicate that CWs have high N2O emission rates. The release of N2O from CWs treating wastewater emissions range from ?16.7 to 188 mg N2O m?2day?1. N2O in CWs is produced mainly by nitrification, denitrification, nitrifier denitrification, and nitrate-ammonification. Denitrification is considered the major source of N2O under most conditions. In recent years, two main methods of sampling N2O gas in CWs have been employed, including the headspace equilibration technique and the closed static chambers technique. N2O emission may be affected by various operating parameters and environmental conditions. One of the main environmental factors affecting the removal of nitrogen in CWs is dissolved oxygen, which affects nitrification and denitrification processes, thus greatly influencing N2O emission. CW gas dynamics is affected mainly by season and weather conditions, especially temperature and moisture. Aquatic plants, flow regime, oxidation–reduction potential, nitrate concentration, C/N ratio and other factors can affect N2O emission in CWs.  相似文献   

16.
A field control experiment was carried out to determine the influence of water table changes on soil CO2, CH4, and N2O emissions in Calamagrostis angustifolia freshwater marsh in Northeast of China. The results showed that the water depth of 5 cm below the ground surface increased soil CO2 emission, but there was no significant influence of deeper water table on gas emission. CH4 emission was accelerated by deep standing water and approached the peak in the plant booming time. This suggests that root activity has influence on CH4 production. The result also demonstrated that both low water table level and inundated environment would inhibit N2O emission. Comparing the total global warming potential of three gases under different conditions, it can be concluded that maintaining a comparatively steady water table near the soil surface can benefit soil carbon sequestration in the C. angustifolia marsh, and decrease of the greenhouse gases emissions to the atmosphere.  相似文献   

17.
太湖及其周围河流中N2O的空间分布与释放通量   总被引:1,自引:1,他引:1       下载免费PDF全文
本次研究选择中国东部一个生态和环境空间分异极大的浅水湖泊(太湖)以及周围河流,分别于2003年7月和9月两次采集湖水和河水样品,分析其中的N2O浓度,并利用扩散模型公式估算水-气界面N2O交换通量。结果显示N2O饱和度的空间变化从70%不饱和到2708%过饱和变化范围很大。N2O饱和度的空间分布,N2O与CH4、无机氮、TDS(总溶解固体物质)之间的相关性都表明:   太湖重度富营养区N2O的产生极大地受到人为N输入的影响。然而,初步的通量分析显示湖泊N2O的释放因子不超过0.63%,小于河流中的默认值,N2O产率也略低于水环境中的平均值,太湖以面积为权重的释放通量平均值并不高,在7月和9月分别为14.0μmol/m2·d和9.7μmol/m2·d。这些结果表明流域人为N输入对整个湖泊N2O的促进作用是有限的,预计未来湖泊N2O释放不会因为人为活动增加而出现大幅度增加的状况。流域内各生态景观N2O释放量的比较,也表明富营养湖泊总体上仍然是一个十分有限的大气N2O释放源。相反,太湖周围河流存在较大的N2O释放速率,在7月和9月估算的N2O释放通量分别为142.1μmol/m2·d和28.8μmol/m2·d。将这一释放速率推广到整个流域后,预计河网的N2O释放量将占到耕作土壤的10%~50%,显示了河流对区域N2O质量平衡具有较重要的影响。  相似文献   

18.
Coastal ocean primary productivity is often limited by nitrogen (N) availability, which is determined by the balance between N sources (e.g., N-fixation, groundwater, river inputs, etc.) and sinks (e.g., denitrification, sediment burial, etc.). Historically, heterotrophic N-fixation in sediments was excluded as a significant source of N in estuarine budgets, based on low, indirectly measured rates (e.g., acetylene reduction assay) and because it was unnecessary to achieve mass balance. Many recent studies using net N2 flux measurements have shown that sediment N-fixation can equal or exceed N2 loss. In an effort to quantify N2 production and consumption simultaneously, we measured N-fixation and denitrification directly in sediment cores from a temperate estuary (Waquoit Bay, MA). N-fixation, dissimilatory nitrate reduction to ammonium, and denitrification occurred simultaneously, and the net N2 flux shifted from uptake (N-fixation) to efflux (denitrification) over the 120-h incubation. Evidence for N-fixation included net 28N2 and 30N2 uptake, 15NH4 + production from 30N2 additions, 15Norganic matter production, and nifH expression. N-fixation from 30N2 was up to eight times higher than potential denitrification. However, N-fixation calculated from 15NO3 ? was one half of the measured fixation from 30N2, indicating that 15NO3-isotope labeling calculations may underestimate N-fixation. These results highlight the dynamic nature of sediment N cycling and suggest that quantifying individual processes allows a greater understanding of what net N2 fluxes signify and how that balance varies over time.  相似文献   

19.
Tidal freshwater marshes are critical buffers that exist at the interface between watersheds and estuaries. Little is known about the physical dynamics of tidal freshwater marsh evolution. Over a 21-mo period, July 1995 to March 1997, measurements were made of biweekly sediment deposition at 23 locations in a 3.8-ha tidal freshwater marsh in the Bush River subestuary of the upper Chesapeake Bay. Biweekly accumulation showed high spatial and temporal variability, ranging from ?0.28 g cm?2 to 1.15 g cm?2. Spatial variability is accounted for by habitat differences including plant associations, elevation, and hydrology. Temporal variability is accounted for by interannual climate variability, the growth cycles of marsh plants, stream-marsh interactions, forest-marsh interactions, and animal activity.  相似文献   

20.
Rates of CO2 emission from bare salt-marsh sediments in areas of short and tall formSpartina alterniflora were measured monthly for 1 yr. Maximum emission rates, as high as 325 ml CO2m?2h?1, were observed during summer months, while minimum rates, 10.2 ml CO2 m?2h?1, were observed during the winter. An exponential function of inverse soil temperature explained most of the seasonal variability, but other factors are involved in regulating CO2 emissions as demonstrated by rates that were higher in spring than in late summer at equivalent temperatures. Annual CO2 emissions from bare sediments were 27.3 and 18.6 mol C m?2 yr?1 in communities of short and tallS. alterniflora, respectively. It was estimated that losses of dissolved inorganic carbon from the turnover of pore water, up to 14.6 mol C m?2 yr?1 at the creek bank (tall,S. alterniflora) site, and diffusion of CO2 from the root system ofS. alterniflora through the culms, 12.3 to 16.2 mol C m?2 yr?1, could also be important pathways of carbon loss from marsh sediments. If the internal flux of CO2 from the root system through the culm is refixed within the leaves, then the observed rate of 9.8 μI CO2 min?1 cm?2 of culm cross sectional area appears to make a small but significant contribution to total photosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号