首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Partitioning of Ni2+, Co2+, Fe2+, Mn2+ and Mg2+ between olivine and silicate melts has been determined near the join (Mg0.5·-Fe0.5)2SiO4-K2O 4SiO2 and for seven different basaltic compositions. The experiments were made at 1 atm total pressure, 1500-1100°C, and under moderate to reducing oxygen fugacities. The concentration factor, defined as KMO = (MO)ol/(MO)liq (molar ratio), increases markedly for all the cations studied as the olivine component of the liquid decreases. Much of the increase in KMO is considered as due to the compositional effect of the coexisting liquid: the temperature effect on KMO is probably opposite to the compositional effect (KMO decreases as temperature decreases).The partition coefficient KMO-MgO = (MO/MgO)ol/(MO/MgO)liq for the reaction, Mol2+ + Mgliq2+ = Mliq2+ + Mgol2+. is relatively constant over a wide range of SiO2 content of the liquid, except in the case of Ni2+. The partition coefficients have similar ranges both in synthetic and natural rock systems: KNiO-MgO = 1.8–3.0, KCoO-MgO = 0.6–0.8, KFeO-MgO = 0.27–0.38, and KMnO-MgO = 0.23–0.32. There is a systematic variation in the partition coefficient KMO-MgO with the composition of liquid; KMO-MgO increases with increasing SiO2 content of melt. The partition coefficients for Co2+, Fe2+ and Mn2+ are useful to test the equilibration of olivine with magma of a wide compositional range.  相似文献   

2.
Two chemical processes can remove Mg2+ from suspensions containing amorphous silica (am-SiO2) at low temperatures: adsorption and precipitation of a Mg-hydroxysilicate resembling sepiolite. Mg2+ removal from am-SiO2 suspensions was investigated, and the relative role of the two removal processes evaluated, as a function of: pH, ionic strength, Mg2+ concentration, and temperature.The extent of Mg2+ adsorption onto am-SiO2 decreases with increasing NaCl concentration due to displacement of Mg2+ by Na+. At NaCl concentrations of 0.05 M and above, adsorption occurs only at pH values above 8.5, where rapid dissolution of am-SiO2 gives rise to high concentrations of dissolved silica, resulting in supersaturation with respect to sepiolite. Removal of Mg2+, at concentrations of 40 to 650 μM, from am-SiO2 suspensions in 0.70 M NaCl at 25 °C occurs at pH 9.0 and above. Experiments show that under these conditions adsorption and Mg-hydroxysilicate precipitation remove Mg2+ at similar rates. For 0.05 M Mg2+, at 0.70 M ionic strength and 25 °C, measurable Mg2+ removal occurs down to ca. pH 7.5 but is primarily due to Mg-hydroxysilicate precipitation. For the same solution conditions at 5°C, Mg2+ removal occurs above pH 8.0 and is primarily due to adsorption.Assuming that increasing pressure does not greatly enhance adsorption, Mg2+ adsorption onto am-SiO2 is an insignificant process in sea water. The surface charge of pristine am-SiO2 in sea water is primarily controlled by interactions with Na+. The principal reaction between Mg2+ and am-SiO2 in marine sediments is sepiolite precipitation.The age distribution of sepiolite in siliceous pelagic sediments is influenced by temperatures of bottom waters and by geothermal gradients.  相似文献   

3.
研究了ZH型重金属螯合纤维对水溶液中Sr~(2+)的吸附行为,考察了pH值、纤维加入量、Sr~(2+)初始浓度、作用时间等对吸附行为的影响,并采用SEM、EDS和FTIR等现代分析测试手段探讨了ZH型重金属螯合纤维对Sr~(2+)的吸附机制。结果表明,在pH值为7.0、纤维加入量为2.0 g/L、Sr~(2+)初始质量浓度为50 mg/L的条件下,纤维对Sr~(2+)的吸附在4 h左右基本达到平衡。实验条件下ZH型重金属螯合纤维对Sr~(2+)的最大吸附量可达26.22 mg/g。等温吸附拟合结果表明,ZH型重金属螯合纤维对Sr~(2+)的吸附可能是以单分子层为主的单分子层和多分子层吸附共同作用的结果。纤维对Sr~(2+)的动力学吸附过程符合准二级动力学模型。红外光谱分析表明Sr~(2+)与纤维上—NH_2和—COOH等基团进行配位络合从而吸附在纤维表面,—CH_2—和C=CH_2等基团参与此吸附过程。能谱分析表明Sr~(2+)与纤维上Na~+和Ca~(2+)还存在着离子交换作用。  相似文献   

4.
通过改变固液比、摇床转速、珊瑚砂粒径、温度、溶液pH值及溶液含盐量等参数,对珊瑚砂在水溶液中溶出Ca~(2+)、Mg~(2+)进行了实验,以探讨溶出过程中的动力学规律和影响因素。实验结果表明,珊瑚砂中Ca~(2+)、Mg~(2+)溶出量随反应时间逐渐增大;摇床转速越快、固液比越大、温度越高、溶液pH值越低,Ca~(2+)、Mg~(2+)溶出量越大;当珊瑚砂粒径为2.36~4.75 mm、溶液含盐量为100 mg/L时,Ca~(2+)、Mg~(2+)溶出量最大。统计分析表明,摇床转速、温度及溶液p H值均对珊瑚砂溶出有显著影响,但溶液p H值影响最大。珊瑚砂在水中的溶出过程符合收缩核内扩散模型,表明控制整个溶出过程反应速率的决定因素是内扩散速率;在15~40℃时,珊瑚砂在纯水中溶出Ca~(2+)、Mg~(2+)的活化能分别为78.07和74.91 k J/mol。  相似文献   

5.
The effect of the group IA and VIIA ions, as well as Mg2+, and the molecules H2O, CO2, H3O+ and OH? on the energy of the Si-O bond in a H6Si2O7 cluster has been calculated using semiempirical molecular orbital calculations (CNDO/2). Three types of elementary processes, i.e. substitution, addition, and polymerization reactions have been used to interpret data on the dynamic viscosity, surface tension and surface charge, hydrolytic weakening, diffusivity, conductivity, freezing point depression, and degree of polymerization of silicates in melts, glasses, and aqueous solutions. As a test of our calculational procedure, observed X-ray emission spectra of binary alkali silicate glasses were compared with calculated electronic spectra. The well known bondlength variations between the bridging bond [Si-O(br)] and the non-bridging bond [Si-O(nbr)] in alkali silicates are shown to be due to the propagation of oscillating bond-energy patterns through the silica framework. A kinetic interpretation of some results of our calculations is given in terms of the Bell-Evans-Polanyi reaction principle.  相似文献   

6.
在4℃的低温条件下,通过模拟纳木错湖水中主要离子种类,控制反应体系中的Mg/Ca摩尔比,探究纳木错单水方解石(MHC)的无机成因,并利用X-射线衍射(XRD)、傅里叶变换红外光谱(FTIR)和电感耦合等离子体发射光谱(ICP-OES)对实验沉淀产物进行了分析。结果表明,单水方解石是通过无定形碳酸钙(ACC)转化而来的,且单水方解石的形成和稳定受溶液中的Mg2+调控。当反应溶液中Mg/Ca 2时,生成方解石和镁方解石;当反应溶液中Mg/Ca 2时,单水方解石生成,并且在溶液中的存在时间随着Mg/Ca摩尔比的增加而增加。Mg/Ca=2时,单水方解石在溶液中仅存在48 h,随后转化为文石和少量镁方解石。单水方解石形成过程中Mg2+的作用主要是抑制方解石成核和生长,使单水方解石能够在溶液中形成并稳定存在。此结果为纳木错单水方解石无机成因提供一定的研究基础。  相似文献   

7.
This paper reports the calculations of parameters for the Pitzer equation and thermodynamic potentials of solid phases crystallizing in water-salt systems modeling chloride brines taking into account the presence of bromide ions in them. Solubility diagrams were calculated for corresponding ternary and quaternary systems containing chlorides and bromides of sodium, potassium, and magnesium at 25°C. The results of calculations are in adequate agreement with the available published experimental data on solubility and can be used to model salt crystallization during the concentration of seawater and brines. Original Russian Text ? M.V. Charykova, N.A. Charykov, 2007, published in Geokhimiya, 2007, No. 10, pp. 1129–1138.  相似文献   

8.
Cyclic voltammetry has been done for Ni2+, Co2+, and Zn2+ in melts of diopside composition in the temperature range 1425 to 1575°C. Voltammetric curves for all three ions excellently match theoretical curves for uncomplicated, reversible charge transfer at the Pt electrode. This implies that the neutral metal atoms remain dissolved in the melt. The reference electrode is a form of oxygen electrode. Relative to that reference assigned a reduction potential of 0.00 volt, the values of standard reduction potential for the ions are E1 (Ni2+Ni0, diopside, 1500°C) = ?0.32 ± .01 V, E1 (Co2+Co0, diopside, 1500°C) = ?0.45 ± .02 V, and E1 (Zn2+Zn0, diopside, 1500°C) = ?0.53 ± .01 V. The electrode reactions are rapid, with first order rate constants of the order of 10?2 cm/sec. Diffusion coefficients were found to be 2.6 × 10?6 cm2/sec for Ni2+, 3.4 × 10?6 cm2/sec for Co2+, and 3.8 × 10?6 cm2/sec for Zn2+ at 1500°C. The value of E1 (Ni2+Ni0, diopside) is a linear function of temperature over the range studied, with values of ?0.35 V at 1425°C and ?0.29 V at 1575°C. At constant temperature the value of E1 (Ni2+Ni0, 1525°C) was not observed to vary with composition over the range CaO · MgO · 2SiO2 to CaO·MgO·3SiO2 or from 1.67 CaO·0.33MgO·2SiO2 to 0.5 CaO·1.5MgO·2SiO2. The value for the diffusion coefficient for Ni2+ decreased by an order of magnitude at 1525°C over the compositional range CaO · MgO · 1.25SiO2 to CaO · MgO · 3SiO2. This is consistent with a mechanism by which Ni2+ ions diffuse by moving from one octahedral coordination site to another in the melt, with the same Ni2+ species discharging at the cathode regardless of the SiO2 concentration in the melt.  相似文献   

9.
The isotopic composition of carbon and oxygen in a calcite precipitating CO2-H2O-CaCO3 solution is preserved in the calcite precipitated. For the interpretation of isotopic proxies from stalagmites knowledge of the evolution of δ13C and δ18O in the solution during precipitation is required. A system of differential equations is presented from which this evolution can be derived. Both, irreversible loss of carbon and oxygen from the solution with precipitation time τ and exchange of oxygen in the carbonates with the oxygen in the water with exchange time T are considered. For carbon, where no exchange is active, a modified equation of Rayleigh-distillation is found, which takes into account that precipitation stops at ceq, the saturation concentration of DIC with respect to calcite, and that ceq as well as the precipitation time τ is slightly different for the heavy and the light isotope. This, however, requires introducing a new parameter γ = (Aeq/Beq)/(A0/B0), which has to be determined experimentally. (Aeq/Beq) is the isotopic ratio for the heavy (A) and the light isotope (B) at both chemical and isotopic equilibrium and (A0/B0) is the initial isotopic ratio of the solution. In the case of oxygen, where exchange is present, the isotopic shifts are reduced with increasing values of the precipitation time τ. For τ ? T the solution stays in isotopic equilibrium with the oxygen in the water during the entire time in which precipitation is active. The isotopic ratios in a calcite precipitating solution R(t)/R0 = (1 + δ(t)/1000) for carbon are plotted versus those of oxygen. R0 is the isotopic ratio at time t = 0, when precipitation starts and δ(t) the isotopic shift in the solution after time t. These show positive correlations for the first 50% of calcite, which can precipitate. Their slopes increase with increasing values of τ and they closely resemble Hendy-tests performed along growth layers of stalagmites. Our results show that stalagmites, which grow by high supply of water with drip times less than 50 s, exhibit positive correlations between δ13C and δ18O along a growth layer. But in spite of this the isotopic composition of oxygen in the solution at the apex is in isotopic equilibrium with the oxygen in the water, and therefore also that of calcite deposited at the apex.  相似文献   

10.
The composition of carbonate minerals formed in past and present oceans is assumed to be significantly controlled by temperature and seawater composition. To determine if and how temperature is kinetically responsible for the amount of Mg incorporated in calcite, we quantified the influence of temperature and specific dissolved components on the complex mechanism of calcite precipitation in seawater. A kinetic study was carried out in artificial seawater and NaCl-CaCl2 solutions, each having a total ionic strength of 0.7 M. The constant addition technique was used to maintain [Ca2+] at 10.5 mmol kg−1 while [] was varied to isolate the role of this variable on the precipitation rate of calcite.Our results show that the overall reaction of calcite precipitation in both seawater and NaCl-CaCl2 solutions is dominated by the following reaction:
  相似文献   

11.
Consideration of experimental data on the distribution of Mg2+ between olivine and silicate liquid clearly demonstrates that the distribution coefficient (KMg) is dependent upon variations in temperature, pressure and melt composition, largely because these variables control the solubility of Mg2+ in the melt phase. Attempts to minimize composition dependence of KMg, utilizing various activity-composition models for silicate melts, have been partially successful. Composition-related effects do not appear to be large, however, for melts of restricted range in composition (e.g., tholeiitic or lunar basalts) as long as the contents of alkalis and the alkali/alumina ratio are relatively small (on a molar basis). For such melts, KMg may be used as a reliable geothermometer. By analogy, these conclusions can be extended to the distribution of other divalent cation such as Fe2+, Mn2+, Ni2+ and Co2+.  相似文献   

12.
Seeded calcite growth experiments were conducted at fixed pH (10.2) and two degrees of supersaturation (Ω = 5, 16), while varying the Ca2+ to solution ratio over several orders of magnitude. The calcite growth rate and the incorporation of Sr in the growing crystals strongly depended on the solution stoichiometry. At a constant degree of supersaturation, the growth rate was highest when the solution concentration ratio, r = [Ca2+]/[], equaled one, and decreased symmetrically with increasing or decreasing values of r. This behavior is consistent with the kink growth rate theory for non-Kossel crystals, assuming that the frequency factors for attachment to kink sites are the same for the cation and anion. Measured Sr partition coefficients, DSr, ranged from 0.02 to 0.12, and correlated positively with the calcite growth rate.  相似文献   

13.
14.
腐殖酸与铅锌相互作用的实验地球化学   总被引:6,自引:0,他引:6  
腐殖酸是沉积有机质的成分。实验证明,腐殖酸对铅锌离子具有强烈的富集能力。通过替代反应初步确定了腐殖酸与Pb,Zn之间几种结合方式及各种结合方式占数据和比例;证实富非酸和胡敏酸与Pb^2+,Zn^2+之间形成了两大类络合物:一类其稳定常数小于EDTA-Pb(Zn)络合物;另一类稳定常数大于EDTA-Pb(Zn)络合物。  相似文献   

15.
本文利用褐铁矿中针铁矿经热脱水相变获得以纳米晶赤铁矿为主要物相的纳米-微米多级孔结构材料,并用于模拟净化富Mn~(2+)地下水。同时考察了热处理温度、初始pH值、初始Mn~(2+)浓度、吸附反应时间等对材料去除溶液中Mn~(2+)的影响。XRD、TEM、BET表征结果表明,300℃热处理产物中赤铁矿孔径最小为2.7 nm,比表面积最大达到107.4 m~2/g。吸附实验结果表明,在pH值5~10的范围内,p H值对煅烧褐铁矿颗粒对Mn~(2+)去除效果影响较小;材料在贫氧条件下对水中低浓度Mn~(2+)的最大吸附量为6.45 mg/g;吸附动力学符合准二级动力学模型;褐铁矿热处理形成的纳米晶赤铁矿对Mn~(2+)具有吸附和催化氧化作用,其中的杂质锰氧化物对Mn~(2+)的吸附和催化氧化具有增强作用。  相似文献   

16.
海泡石改性及吸附Zn2+研究   总被引:1,自引:0,他引:1  
金属离子型无机抗菌剂具有安全性好、抗菌广谱、时效长和耐热等许多优良性能,在许多领域有广泛的应用价值。金属离子型无机抗菌剂由金属抗菌离子和无机载体材料组成,其抗菌性能与载体材料对抗菌金属离子的吸附量有关。本文初步研究了对海泡石进行酸改性及用海泡石载抗菌锌离子(Zn2+)的两种工艺方式对海泡石结构及载Zn2+量的影响。通过原子吸收发射光谱、X射线衍射、扫描能谱电子显微镜及傅立叶变换红外光谱等技术的分析表明,用体积浓度为5%的HCL,在70℃温度下对海泡石进行酸处理,在提高海泡石纯度,分散海泡石纤维束、使海泡石结构中孔隙扩大,进而达到更多载入Zn2+目的等方面都是十分必要和有效的方法;采用干湿循环方式将Zn2+载于海泡石能提高海泡石的载Zn2+量,但干湿循环方式操作更复杂,能耗更大,应视具体情况酌情选择使用。  相似文献   

17.
Between pH 3.5 and 7, humic acids form a water-soluble uranyl-humic acid complex with the uranyl ion, UO22+ (log β1 = 7.8 ± 0.4 at μ = 0.1). The stability constant of the complex is practically independent of the ionic strength (μ). Experimental results can be explained by the formation of a complex in which every uranyl ion is simultaneously bonded to one phenolic oxygen and one dissociated carboxyl group. The bonding through the phenolic group is considerably stronger than that through carboxylic groups.  相似文献   

18.
隧道作为铁路穿越青藏高原中东部水热活动区的重要工程形式,探讨其遭受水热灾害的影响因素在隧道热害研究方面是有必要的。隧道热害预测手段是综合性的,其中水文地球化学方法因易实施、性价比高而被广泛应用。热储温度是水热系统研究的重要参数,热储温度的推算因体系的复杂性很难全面考虑其地球化学作用过程而发生偏差。热储温度的Mg2+校正受热水作用的岩石类型、运移速率和热储构造条件的影响,因此采用Mg2+校正可以辅助分析多类型水热循环机制,据此可对隧道穿越水热体系遭遇的热害特征进行辨识。利用温标平衡理论,构建富Mg体系平衡判定的Na-K-Ca三角图,基于水热体系作用地质背景进行平衡点梳理,探讨青藏高原中东部典型水热体系中Mg2+校正特征与影响因素的关系,对多类型水热循环条件、水岩作用、传热传质机制进行分析、比较,辅助对工程中地热带来的高岩温、热水涌突、围岩裂化等危害的分析。此方法是水文地球化学对工程热害预测的方法性讨论,也能为青藏高原中东部及未来在该区域实施交通干线的热害防控提供理论分析基础。  相似文献   

19.
研究了羟基磷灰石(HAP)对水溶液中Fe3+的吸附动力学及热力学。研究表明,HAP对水溶液中Fe3+的吸附符合Langmiur等温吸附,ct/q=0.006 4 ct+0.018 3;该吸附反应符合一级反应动力学方程,ln CR=-0.043 5 t+4.324 4;吸附反应活化能为Ea=36.26 k J/mol;标准摩尔反应焓为正值表明反应过程吸热;当温度大于285.7 K时,吉布斯自由能小于0,反应可自发进行。  相似文献   

20.
作为表生土壤环境中易生成且分布广泛的氧化锰矿物,水锰矿(γ-MnOOH)能参与铁氧化物的生成过程,影响Fe_(2+)的迁移、转化和归趋。本文考察了pH值为3.0~7.0的模拟水溶液体系中水锰矿与Fe_(2+)的相互作用及其生成铁氧化物的过程,分析了Fe_(2+)浓度、pH值和空气(氧气)对Fe(Ⅲ)氧化物晶体结构类型、化学组成和反应速率的影响。研究结果表明,水锰矿氧化Fe_(2+)产物主要为针铁矿和纤铁矿;pH值为3.0~5.0时产物为针铁矿,而pH值为7.0时产物为针铁矿与纤铁矿的混合物,且高浓度Fe_(2+)会促使纤铁矿生成;引入空气利于针铁矿生成;反应速率随着pH值升高、氧气分压的增大而加快。本工作丰富了对铁氧化物在常见锰氧化物表面形成和转化过程的认识。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号