首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Twenty-three samples from the Ries crater, representing a wide range of shock metamorphism, were analyzed for seven siderophile elements (Au, Ge, Ir, Ni, Os, Pd, Re) and five volatile elements (Ag, Cd, Sb, Se, Zn). Taking Ir as an example, we found siderophile enrichments over the indigenous level of 0.015 ppb Ir occur in only eight samples. The excess is very modest; even the most enriched samples (a weakly shocked biotite gneiss and a metal-impregnated amphibolite) have Ir, Os corresponding to ~4 × 10?4 C1 chondrite abundances. Of five flädle glasses analyzed only one shows excess Ir. Suevite matrix and vesicular glass have slight enrichment, but homogenous glass from the same rock does not. In flädle glasses, Ni and Se are strongly correlated and apparently reside in Ir, Os-poor Sulfides [pyrrhotite, chalcopyrite, pentlandite(?)]of terrestrial, probably sedimentary, origin. The Ir, Os and Ni enrichments of the metal-bearing amphibolite are compatible with chondritic ratios, but these are ill-defined because of uncertainty in Ni. In the other samples enriched in siderophiles Ir(Os), Ni and Se are mutually correlated; NiIr and NiOs ~ 11 × C1 and are much higher than any chondritic ratios; SeNi ~ 2 × C1 and suggests a sulfide phase, rather than metal may be the host of the correlated elements. Lacking a plausible local source, this material is apparently meteoritic in origin. The unusual elemental ratios, coupled with the very low enrichments, tend to exclude chondrites and most irons as likely projectile material. Of the achondrites, aubrites seem slightly preferable. Ratios of excess siderophiles in Ries materiel match tolerably those of an aubrite (possibly atypical) occurring as an inclusion in the Bencubbin meteorite, Australia. The Hungaria group of Mars-crossing asteroids may be a source of aubritic projectiles.  相似文献   

2.
We have compared RNAA analyses of 18 trace elements in 25 low-Ti lunar and 10 terrestrial oceanic basalts. According to Ringwood and Kesson, the abundance ratio in basalts for most of these elements approximates the ratio in the two planets.Volatiles (Ag, Bi, Br, Cd, In, Sb, Sn, Tl, Zn) are depleted in lunar basalts by a nearly constant factor of 0.026 ± 0.013, relative to terrestrial basalts. Given the differences in volatility among these elements, this constancy is not consistent with models that derive the Moon's volatiles from partial recondensation of the Earth's mantle or from partial degassing of a captured body. It is consistent with models that derive planetary volatiles from a thin veneer (or a residuum) of C-chondrite material; apparently the Moon received only 2.6% of the Earth's endowment of such material per unit mass.Chalcogens (Se and Te) have virtually constant and identical abundances in lunar and terrestrial basalts, probably reflecting saturation with Fe(S, Se, Te) in the source regions.Siderophiles show diverse trends. Ni is relatively abundant in lunar basalts (4 × 10?3 × Cl-chondrites), whereas Ir, Re, Ge, Au are depleted to 10?4?10?5× Cl. Except for Ir, these elements are consistently enriched in terrestrial basalts: Ni 3 × , Re 370 ×, Ge 330 × , Au 9 × . This difference apparently reflects the presence of nickel-iron phase in the lunar mantle, which sequesters these metals. On Earth, where such metal is absent, these elements partition into the crust to a greater degree. Though no lunar mantle rock is known, an analogue is provided by the siderophile-rich dunite 72417 (~0.1% metal) and the complementary, siderophile-poor troctolite 76535. The implied metal-siderophile distribution coefficients range from 104 to 106, and are consistent with available laboratory data.The evidence does not support the alternative explanation advanced by Ringwood—that Re was volatilized during the Moon's formation, and is an incompatible element (like La or W4+) in igneous processes. Re is much more depleted than elements of far greater volatility: (Re/U)Cl~- 4 × 10?6 vs (T1/U)Cl = 1.3 × 10?4, and Re does not correlate with La or other incompatibles.Heavy alkalis (K, Rb, Cs) show increasing depletion with atomic number. Cs/Rb ratios in lunar basalts, eucrites, and shergottites are 0.44, 0.36, and 0.65 × Cl, whereas the value for the bulk Earth is 0.15–0.26. These ratios fall within the range observed in LL and E6 chondrites. supporting the suggestion that the alkali depletion in planets, as in chondrites, was caused by localized remelting of nebular dust (= chondrule formation). Indeed, the small fractionation of K, Rb and Cs, despite their great differences in volatility, suggests that the planets, like the chondrites, formed from a mixture of depleted and undepleted material, not from a single, partially devolatilized material.  相似文献   

3.
We present new data from a neutron activation analysis of four enstatite chondrites including the taxonomically important St. Sauveur, and discuss the classification of enstatite chondrites. The enstatite chondrites can be divided into two compositionally distinct sets; in one set abundances of nonrefractory siderophiles and moderately volatile chalcophiles and alkalis are 1.5–2.0× higher than in the other. A well-resolved compositional hiatus separates these two sets. The differences in composition are as great as those between the groups of ordinary chondrites, and therefore it appears best to treat these sets as separate groups. By analogy with the symbols used for ordinary chondrites we propose to designate the high-Fe, high siderophile group EH and the low-Fe, low-siderophile group EL. Known members of the EH group belong to petrologic types 4 and 5, whereas all EL members are petrologic type 6. Within the EH group no correlation is observed between petrologic type and abundance of nonrefractory siderophiles or moderately volatiles or alkalis.Two physical properties show only modest overlap between the EH and EL groups. Cosmic-ray ages for EH chondrites are 0.5–7 Ma, while those for EL chondrites are 4–18 Ma. Relative to Bjurböle, I-Xe formation intervals are ?1.3 ± 0.6 Ma for EH chondrites and 2.9 ± 0.5 Ma for EL chondrites. The weight of the chemical and physical evidence indicates that the EH and EL groups formed separate bodies at similar distances from the Sun.The available evidence for Shallowater and Happy Canyon, two strongly recrystallized silicate-rich meteorites containing > 40 mg/g Fe-Ni, indicates that the former is an enstatite-clan chondrite altered by loss of sulfide- and plagioclase-rich melts, whereas the latter is intermediate in composition between EL chondrites and the chondritic silicates in the Pine River IAB-anomalous meteorite.  相似文献   

4.
A suite of rocks from the Point Sal ophiolite, California, were analyzed for rare earth elements (REE), Sc, Co, Na2O, Cr, Zn and FeO. The lavas all have either flat or slightly light REE (LREE) depleted profiles relative to chondrites. The lavas contain smectite or greenschist facies mineralogy and some have radiogenically enriched 87Sr86Sr ratios. This is interpreted as evidence of basaltseawater interaction (Hopsonet al., 1975; Davis and Lass, 1975). The smectite and zeolite bearing lavas that have been exposed to seawater for prolonged periods have anomalous Ce abundances. At higher grades of metamorphism, the lavas show no marked changes in light REE. The plutonic igneous rocks vary from early cumulus dunite to late stage, noncumulus diorite. All the plutonic rocks are light REE depleted with total REE abundance varying by a factor of 100 × between the dunites and diorites. Analyses of clinopyroxene and hornblende separates indicate that these two minerals strongly influence the REE characteristics of the early cumulates and late stage fractionates, respectively.In general, REE contents are: hornblende > clinopyroxene > plagioclase > orthopyroxene > olivine. Estimates of the REE compositions of parental lavas were obtained by calculating the REE contents of liquids in equilibrium with early cumulate clinopyroxenes. This reveals that the parent to the stratiform sequence was more depleted in light REE than the parent to the lava pile.  相似文献   

5.
The LL-group chondrites Krähenberg (Krbg) and Bhola are heterogeneous agglomerates containing a variety of lithic fragments and chondrules as well as crystal fragments. The FeFe + Mg content of most olivine grains is uniform (Fa28), although a few with distinctly lower Fe contents were found (Fa19). Both meteorites contain large, cm-sized, fragments with high enrichments of K (~12×), Rb (~45×) and Cs (~70×) relative to LL-chondrites, while the REE concentrations are normal (except for a negative Eu anomaly); Na and Sr are depleted (~0.5×) and the NaK weight ratio is 0.33 compared to 11 in the host. However, there is no difference in the sum of Na + K atoms. Also, the major elements, Si, Al, Mg, Ca and Fe, are nearly the same in fragments as in the host material. The K-rich igneous lithic fragments have a microporphyritic texture of euhedral to skeletal olivines in a partly devitrified glass with ~4% K2O. The main pans of both Krbg and Bhola contain mesostasis glasses in porphyritic chondrules and lithic fragments with varying K content (0.1–8.6% K2O) and NaK ratios (0.2–100). Crystalline plagioclase is depleted in K with an average NaK ratio of 22, i.e. higher than that for ordinary chondritic plagioclase, 8.4. Olivines in the large, K-rich fragments and in the host meteorites have the same iron content (Fa28), indicating that both formed under the same oxygen fugacity and probably on the same parent body.Conceivable mechanisms for the formation of the K-rich rocks from normal LL-chondrite parent material are: 1, magmatic differentiation: 2. Na-K exchange via a vapor phase; 3. silicate liquid immiscibility; 4. volatilization and condensation in impact events. Process 2 appears most feasible for forming a rock enriched only in K and heavier alkalies and depleted in Na without noticeably changing other elements including the REE.  相似文献   

6.
The distribution equilibrium of Au and Re between nickel-iron and basaltic melts was studied at 1400–1600°C, using radioactive tracers. Metal/silicate distribution coefficients were 1–3 orders of magnitude higher than earlier estimates, as follows. Mauna Loa basalt—Fe10Ni90: DAu = 3.3 × 104, DRe = (2.4?89) × 104. Gorda Ridge basalt—Fe10Ni90: DAu = (18?75) × 104. Synthetic lunar basalt—Fe70 Ni30: DAu≥ 2 × 104, DRe ≥ 2 × 103. The experimental ΔG1800° for the distribution of Au between nickel-iron and Mauna Loa basalt is ?40 kcal/mole, compared to a calculated value of about ?110 kcal/mole for a reaction involving simple Au3+ ions. Presumably the difference represents stabilization of Au(III) by complex formation with ligands such as Cl?, H2O, etc.Gold abundances in lunar basalts are roughly consistent with the measured DAu, but those in terrestrial basalts are two orders of magnitude too high. This discrepancy may reflect complexing by volatiles in the Earth's upper lithosphere, as well as oxidative destruction of metal in the final stages of accretion. In the absence of a metal phase, siderophile trace elements would remain trapped in the upper mantle and crust.  相似文献   

7.
Luna 20 soil is remarkably similar to Apollo 16 soil, in its content of 17 mainly volatile or siderophile elements: Ag, Au, Bi, Br, Cd, Cs, Ge, In, Ir, Rb, Re, Sb, Se, Te, Tl, U, and Zn. Like other highland soils, it seems to contain an ancient meteoritic component of fractionated, volatile-poor composition. The bulk soil has a high TlCs ratio (9.4 × 10?2), similar to that in Apollo 16 soils (5.4 × 10?2), but higher than that in samples from other sites (1.1 × 10?2). It is severely contaminated with Ag, Cd, Re, and Sb, judging from a comparison with a 1.7 mg soil breccia sample from the coarse fraction of the soil.  相似文献   

8.
9.
Biopurification factors for Ca with respect to Sr, Ba, and natural, uncontaminated Pb were measured for different nutrient-consumer pairs in a remote subalpine ecosystem. The factor for Sr is expressed as: (nutrient SrCa) ÷ (consumer SrCa). Similar expressions were used for BaCa and PbCa. It was found that Ca was biopurified of Sr 3-fold, of Ba 16-fold, and of Pb 100-fold in going from rock to sedge leaves. In going from sedge leaf to vole, Ca was biopurified of Sr 4-fold, of Ba 8-fold, and of Pb 16-fold. In going from meadow vole to pine marten, Ca was biopurified of Sr 6-fold, of Ba 7-fold, and of Pb 1.1-fold. Similar ranges of values for these factors were obtained for detrital and amphibian food chains. Fluxes of industrial lead entering the ecosystem as precipitation and dry deposition were measured and it was found that 40% of the lead in soil humus and soil moisture, 82% of the lead in sedge leaves, 92% of the lead in vole, and 97% of the lead in marten was industrial. The natural skeletal PbCa ratio in carnivores (4 × 10?8) was determined by means of corrections for inputs of industrial lead, food chain relationships, and measured biopurification factors for the ecosystem studied. This represents a 1700-fold reduction of the average PbCa ratio in igneous rocks at the earth's surface (6.4 × 10?5) by the compounding of successive Pb biopurification factors in transferring Ca from rock to carnivore. The natural ratio is similar to the value of 6 × 10?8 observed for PbCa in the bones of Peruvians who lived 2000 years ago but is 1/900th of the value of about 3.5 × 10?5 for the skeletal PbCa ratio found in present day Americans.This study shows experimentally how the BaCa ratio in average surface igneous rock (3 × 10?3) has been reduced 800-fold through compounding of successive biopurification steps to provide the skeletal BaCa ratio of about 4 × 10?6 observed in humans. It also provides biopurification factors for Sr and Ba among a number of nutrient-consumer pairs which anthropologists can use to delineate degrees of herbivory in diets of hominids within the last 10,000 years.  相似文献   

10.
A 1D numerical model is constructed to investigate the impact of sedimentation and sea level changes on transport of Cl? in the aquifer–aquitard system in the Pearl River Delta (PRD), China. The model simulates the evolution of the vertical Cl? concentration profiles during the Holocene. Sedimentation is modeled as a moving boundary problem. Chloride concentration profiles are reconstructed for nine boreholes, covering a wide area of the PRD, from northwest to southeast. Satisfactory agreement is obtained between simulated and measured Cl? concentration profiles. Diffusion solely is adequate to reproduce the vertical Cl? concentration profiles, which indicates that diffusion is the regionally dominant vertical transport mechanism across the aquitards in the PRD. The estimated effective diffusion coefficients of the aquitards range from 2.0?×?10–11 to 2.0?×?10–10 m2/s. The effective diffusion coefficients of the aquifers range from 3.0?×?10–11 to 4.0?×?10–10 m2/s. Advective transport tends to underestimate Cl? concentrations in the aquitard and overestimate Cl? concentrations in the basal aquifer. The results of this study will help understand the mechanisms of solute transport in the PRD and other deltas with similar geological and hydrogeological characteristics.  相似文献   

11.
Solution calorimetric measurements compared with solubility determinations from the literature for the same samples of gibbsite have provided a direct thermochemical cycle through which the Gibbs free energy of formation of [Al(OH)4 aq?] can be determined. The Gibbs free energy of formation of [Al(OH)4 aq?] at 298.15 K is ?1305 ± 1 kJ/mol. These heat-of-solution results show no significant difference in the thermodynamic properties of gibbsite particles in the range from 50 to 0.05 μm.The Gibbs free energies of formation at 298.15 K and 1 bar pressure of diaspore, boehmite and bayerite are ?9210 ± 5.0, ?918.4 ± 2.1 and ?1153 ± 2 kJ/mol based upon the Gibbs free energy of [A1(OH)4 aq?] calculated in this paper and the acceptance of ?1582.2 ± 1.3 and ?1154.9 ± 1.2 kJ/mol for the Gibbs free energy of formation of corundum and gibbsite, respectively.Values for the Gibbs free energy formation of [Al(OH)2 aq+] and [AlO2 aq?] were also calculated as ?914.2 ± 2.1 and ?830.9 ± 2.1 kJ/mol, respectively. The use of [AlC2 aq?] as a chemical species is discouraged.A revised Gibbs free energy of formation for [H4SiO4aq0] was recalculated from calorimetric data yielding a value of ?1307.5 ± 1.7 kJ/mol which is in good agreement with the results obtained from several solubility studies.Smoothed values for the thermodynamic functions CP0, (HT0 - H2980)T, (GT0 - H2980)T, ST0 - S00, ΔH?,2980 kaolinite are listed at integral temperatures between 298.15 and 800 K. The heat capacity of kaolinite at temperatures between 250 and 800 K may be calculated from the following equation: CP0 = 1430.26 ? 0.78850 T + 3.0340 × 10?4T2 ?1.85158 × 10?4T212 + 8.3341 × 106 T?2.The thermodynamic properties of most of the geologically important Al-bearing phases have been referenced to the same reference state for Al, namely gibbsite.  相似文献   

12.
Solubility curves were determined for a synthetic gibbsite and a natural gibbsite (Minas Gerais, Brazil) from pH 4 to 9, in 0.2% gibbsite suspensions in 0.01 M NaNO3 that were buffered by low concentrations of non-complexing buffer agents. Equilibrium solubility was approached from oversaturation (in suspensions spiked with Al(NO3)3 solution), and also from undersaturation in some synthetic gibbsite suspensions. Mononuclear Al ion concentrations and pH values were periodically determined. Within 1 month or less, data from over-and undersaturated suspensions of synthetic gibbsite converged to describe an equilibrium solubility curve. A downward shift of the solubility curve, beginning at pH 6.7, indicates that a phase more stable than gibbsite controls Al solubility in alkaline systems. Extrapolation of the initial portion of the high-pH side of the synthetic gibbsite solubility curve provides the first unified equilibrium experimental model of Al ion speciation in waters from pH 4 to 9.The significant mononuclear ion species at equilibrium with gibbsite are Al3+, AlOH2+, Al(OH)+2 and Al(OH)?4, and their ion activity products are 1K50 = 1.29 × 108, 1Ks1 = 1.33 × 103, 1Ks2 = 9.49 × 10?3 and 1Ks4 = 8.94 × 10?15. The calculated standard Gibbs free energies of formation (ΔG°f) for the synthetic gibbsite and the A1OH2+, Al(OH)+2 and Al(OH)?4 ions are ?276.0, ?166.9, ?216.5 and ?313.5 kcal mol?1, respectively. These ΔG°f values are based on the recently revised ΔG°f value for Al3+ (?117.0 ± 0.3 kcal mol?1) and carry the same uncertainty. The ΔG°f of the natural gibbsite is ?275.1 ± 0.4 kcal mol?, which suggests that a range of ΔG°f values can exist even for relatively simple natural minerals.  相似文献   

13.
This study explores the possibility of establishing Nd isotopic variations in seawater over geologic time. Calcite, aragonite and apatite are examined as possible phases recording seawater values of ?Nd. Modern, biogenic and inorganically precipitated calcite and aragonite from marine environments were found to have Nd concentrations of from 0.2 to 70 ppb, showing that primary marine CaCO3 contains little REE and that Nd/Ca is not greatly enhanced relative to seawater during carbonate precipitation. Very young marine limestone and dolomite containing no continental detritus have ~200 ppb Nd. All the carbonates are LREE enriched (?0.16 ≤fSmNd≤?0.45). Modern and very young Atlantic and Pacific carbonates have ?Nd in the range of shallow Atlantic and Pacific seawater respectively, implying that they derive their REE from local seawater. The Nd in well preserved carbonate fossils is ≤4 × 104 ppb, much greater than in their modern counterparts but like the high values found for carbonates in other studies. We believe the high REE contents (at the 500 ppb level) in some detritusfree carbonates are due to REE-rich Fe-hydroxide in/on the carbonate. In favorable cases, such material may record seawater ?Nd values, however introduction of extraneous REE may obscure the original isotopic composition of pure CaCO3 because of its very low intrinsic primary REE abundance.Modern biogenic apatite is also shown to have very low REE content (<150 ppb Nd) but appears to quickly scavenge REE from seawater. Inorganically precipitated apatite from phosphorites has high concentrations of seawater-derived REE. Young phosphorite apatite from the Atlantic and Pacific oceans has ?Nd in the range of the seawater from these oceans. Older apatite samples of similar age from different localities bordering common oceans record similar values of ?Nd(T). Sedimentary apatite has ?Sr(T) values in good agreement with the curves for 87Sr86Sr of seawater as a function of time. Individual conodonts from a single formation yield the same ?Sr(T) and ?Nd(T). Other workers have shown that sedimentary apatite preserves seawater REE patterns. These characteristics suggest that sedimentary apatite can be used to determine ?Nd(T) in ancient seawater. The seawater values so inferred range between ?1.7 and ?8.9 over the last 700 my and lie in the range of modern seawater, showing no evidence for drastic changes. High values of seawater ?Nd(T) in the Triassic and latest Precambrian may correlate with the breakup of large continental landmasses. The initial ?Nd(T) =?15.0 of a 2 AE old phosphorite implies the presence of ~ 1.5 AE old continental crust at 2 AE ago. The approach outlined here can be used to constrain the age of the exposed crust as a function of time.  相似文献   

14.
The following hardsphere modified Redlich-Kwong (HSMRK) equation of state was obtained by least squares fitting to available P-V-T data for methane (P in bars; T in Kelvins; v in cm3 mol?1; b = 60.00 cm3 mol?1; R = 83.14 cm3barmol?1K?1): PRT(1 + y + y2?y3v(1?y)3)-c(T) + d(T)v + e(T)v2/v(v + b)T12y = b4vc(T) = 13.403 × 106 + (9.28 × 104)T + 2.7 T2d(T) = 5.216 × 109 ? (6.8 × 106)T + (3.28 × 103)T2e(T) = (?2.3322 × 1011) + (6.738 × 108)T + (3.179 × 105)T2 For the P-T range of experimental data used in the fit (50 to 8600 bars and from 320 to 670 K), calculated volumes and fugacity coefficients for CH4 relative to experimentally determined volumes and fugacity coefficients have average percent deviations of 0.279 and 1.373, respectively. The HSMRK equation, which predicts linear isochores over a wide P-T range, should yield reasonable estimates of fugacity coefficients for CH4 to pressures and temperatures well outside the P-T range of available P-V-T data. Calculations for the system H2O-CO2-CH4, using the HSMRK equations for H2O and CO2 of Kerrick and Jacobs (1981) and the HSMRK equation for CH4 of this study, indicate that compared to the binary H2O-CO2 system, small amounts of CH4 in the ternary system H2O-CO2-CH4 slightly increases the activity of H2O, and significantly decreases the activity of CO2.  相似文献   

15.
Rare Earth Element Geochemistry of Late Palaeozoic Coals in North China   总被引:7,自引:0,他引:7  
Instrumental Neutron Activation Analysis (INAA) was done to determine the abundances of rare earth elements (REE) of 58 samples of Late Palaeozoic Carboniferous-Permian coals and related rocks in North China. Detailed study of REE geochemistry shows that the ∑REE of most coals studied in this paper is in a normal range between 30×10-6 and 80×10-6 with a mean of 56×10-6. The REE in the Taiyuan Formation in the northern part of North China are much richer than those in the southern part. This is due to the shorter distance to the source area in the north. Moreover, the IREE is in positive correlation to coal ash, especially closely related to the content of clay minerals <2μm in size. This reveals that most REE were carried by terrigenous clastic materials, especially fine clay minerals. In the coals the light REE (LREE) are much richer than the heavy REE (HREE), and the LREE/HREE ratio in coals generally varies from 2 to 8. The LREE/HREE ratio of high-ash, low-sulphur coals is higher than that of lo  相似文献   

16.
The heat capacity of natural chamosite (XFe=0.889) and clinochlore (XFe=0.116) were measured by differential scanning calorimetry (DSC). The samples were characterised by X-ray diffraction, microprobe analysis and Mössbauer spectroscopy. DSC measurements between 143 and 623?K were made following the procedure of Bosenick et?al. (1996). The fitted data for natural chamosite (CA) in J?mol?1?K?1 give: C p,CA = 1224.3–10.685?×?103?×?T ??0.5???6.4389?× 106T ??2?+?8.0279?×?108?×?T ??3 and for the natural clinochlore (CE): C p,CE = 1200.5–10.908?×?103T ??0.5?? 5.6941?×?106?×?T ??2?+?7.1166?×?108?×?T ??3. The corrected C p-polynomial for pure end-member chamosite (Fe5Al)[Si3AlO10](OH)8 is C p,CAcor = 1248.3–11.116?× 103?×?T ??0.5???5.1623?×?106?×?T ??2?+?7.1867?×?108×T ??3 and the corrected C p-polynomial for pure end-member clinochlore (Mg5Al)[Si3AlO10](OH)8 is C p,CEcor = 1191.3–10.665?×?103?×?T ??0.5???6.5136?×?106?×?T ??2?+ 7.7206?×?108?×?T ??3. The corrected C p-polynomial for clinochlore is in excellent agreement with that in the internally consistent data sets of Berman (1988) and Holland and Powell (1998). The derived C p-polynomial for chamosite (C p,CAcor) leads to a 4.4% higher heat capacity, at 300?K, compared to that estimated by Holland and Powell (1998) based on a summation method. The corrected C p-polynomial (C p,CAcor) is, however, in excellent agreement with the computed C p-polynomial given by Saccocia and Seyfried (1993), thus supporting the reliability of Berman and Brown's (1985) estimation method of heat capacities.  相似文献   

17.
Eleven monthly estuarine profiles of dissolved inorganic germanium (Gei) and silica (Si) in a natural, pristine river/bay system demonstrate that Ge-removal and -input parallel the seasonal silica cycle, reflecting Ge-uptake by and -dissolution from diatoms. The Ge/Si atom ratio of the river is 0.6 ± 0.15 × 10?6, which is near the average value for continental granites and for uncontaminated, remote, natural rivers (0.7 ± 0.3 × 10?6). The GeSi ratio escaping this estuary to the ocean is 0.8 × 10?6, reflecting some estuarine enhancement of the fluvial Ge-flux, probably due to release of Gei from fluvial particulates. Nevertheless, the post-estuarine GeSi ratio is not significantly different from the continental crustal ratio but is very different from the ratio in sea-floor hot springs and mid-ocean ridge hydrothermal plumes (4 ± 2 × 10?6) and in oceanic basalts (2.6 × 10?6). Thus natural estuarine processes do not obscure the contrasting GeSi signatures entering the ocean from dissolution of continental and sea-floor silicates.  相似文献   

18.
A study was undertaken to determine the chronology of a pristine granite clast (1062) from Apollo 14 breccia 14321 using Rb-Sr, Sm-Nd and 39Ar-40Ar methods. The genesis of the granite as constrained by the isotopic results and trace element characteristics is discussed.Chronology: The Rb-Sr internal isochron is slightly disturbed and yields an age of 4.09 ± 0.11 AE (λ(87Rb) = 0.0139 AE?1) and an imprecise initial I(Sr) = 0.702 ? .008. If two data are excluded, the age becomes 4.13 ± 0.03 AE and I(Sr) = 0.698 ? .003. The whole rock and mineral separates are extremely radiogenic; they yield model ages which are relatively well-defined. The average model age is 4.12 ± 0.03 AE (relative to BABI = 0.69898). The Sm-Nd internal isochron is also slightly disturbed and gives an age of 4.11 ± 0.20 AE (λ(147Sm) = 0.00654 AE?1). The 39Ar-40Ar average age of the non-magnetic fraction of the sample yields a slightly younger age of 3.88 ± 0.03 AE (K-Ar constants from Steiger and >a?, 1977). The concordancy of Rb-Sr and Sm-Nd internal isochrons with the Rb-Sr model age strongly suggests that the granitic clast formed at 4.1 AE ago in the shallow crust and was later excavated and brecciated about 3.88 AE ago.Petrogenesis: Isotopic and trace element data of the lunar granite show large K/La and Rb/Sr fractionations, small Sm/Nd fractionation and the distinct V-shaped REE distribution pattern at the time of crystallization. A two-stage model involving crystal fractionation followed by silicate liquid immiscibility (SLI) is proposed for lunar granite genesis. We propose that the granite can be the immiscible acidic liquid produced by SLI from a residual liquid which underwent fractionation of ca, 3% of phases with REE distribution coefficients similar to those of phosphate minerals from a highly evolved parental magma with REE contents about twice those of the 15405,85 quartz monzodiorite (QMD).The extreme scarcity of lunar granitic samples and their young formation ages suggest that they are probably not directly crystallized from the differentiation of the primordial magma ocean. Our isotopic results and trace elements data from other workers suggest that granites, QMD and probably Mggabbronorites may be genetically related and may have formed in a plutonic environment similar to gabbro-granophyre associations in terrestrial layered intrusions such as the Skaergaard Intrusions.  相似文献   

19.
Xanthates are used in the flotation of sulfide ores although their aqueous solutions are not stable under certain conditions. Their stability in acidic and weakly acidic aqueous solutions was therefore investigated, as these media are required for some processes.The peak absorbances of ethylxanthate ion and carbon disulfide were first determined in aqueous solution. The decomposition of ethylxanthate ion was analyzed by measuring variations in absorbance (at 301 nm) and pH with respect to time. A pH regulation system was then used while measuring variations in absorbance and productions of protons caused by xanthate decomposition.The results concerning xanthate half-lives show good agreement with the literature, but the kinetic results deviate substantially. The following relation was obtained for half-life:
T12=9.67×10?6(pH)11;4?7;T12in seconds
We established that ethylxanthate decomposition at pH 4 is a first order reaction with respect to ethylxanthate concentration, and postulating this order to the other pH values, the following kinetic relation was found:
v= ?(1.22×104[H+]?1.36×10?2)([EtX?]) (4?pH?7)
where v is the rate of decomposition (mol l?1 min?1), and [EtX?] is the ethylxanthate concentration when the decomposition equilibria are reached (mol l?1). The better concentration was found to obey the law:
[EtX?]=3.142×10?5 pH ? 1.255 × 10?4 (4?pH?6)
  相似文献   

20.
Eight C3 chondrites were examined by the I129Xe129 dating method, to see whether their IXe “ages” (better, initial I129I127ratios ≡ R0) correlate with any other properties. The R0's range from 1.60 × 10?4 to 1.09 × 10?4, corresponding to IXe ages from 2.0 Myr before to 6.7 Myr after Murchison magnetite. Three C3O's (Lancé, Felix, Ornans) have essentially indistinguishable R0's of (1.41 ± 0.13) to (1.17 ± 0.10) × 10?4; the fourth C3O, Warrenton, is undatable owing to homogenization of radiogenic and trapped Xe.Four C3V's show a distinct spread: Vigarano and Grosnaja are highest [R0 = (1.60 ± 0.07) and (1.57 ± 0.14) × 10?4], Mokoia is intermediate, and Kaba is lowest [R0 = (1.38 ± 0.06) and (1.09 ± 0.10) × 10?4]. Literature values for Allende place it near Kaba. These R0's correlate inversely with 4 other properties: I-, Br-, and Cd-content, and olivine composition, both percent mean deviation (PMD) and proportion of iron-poor olivine grains (≤2% fayalite).It is difficult to accept the ~9 Myr spread in R0 as a true age, reflecting either nebular or parent-body processes. This time span is more than an order of magnitude longer than the lifetime of the solar nebula inferred from astronomical evidence. Nor does the degree of thermal metamorphism, which is slight for C3's anyway, correlate with R0. A more plausible interpretation is that the variations in R0 reflect mainly isotopic heterogeneity of iodine. The simplest model that accounts for the correlations with R0 involves mixing of two iodine components in the solar nebula, associated with gas and grains, respectively. The second, of lower I129I127 ratio, predominated at later times and thus became enriched in late-formed meteorites, along with other volatiles such as Cd and Br. The low Fe content and large PMD of olivine may reflect either less metamorphism owing to shallow location in the parent body, or greater reduction of Fe2+ during chondrule formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号