首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Solubilities of amorphous silica were determined in separate aqueous solutions of sodium chloride, sodium sulfate, magnesium chloride, and magnesium sulfate at temperatures up to 350°C. These salts, of strong interest in hydrothermal oceanography and geothermal energy, generally ranged in concentration from zero to saturation. Solubilities in the sodium chloride solutions followed closely earlier observed decreases in sodium nitrate solutions at high temperatures.Amorphous silica solubilities were depressed most by magnesium chloride, followed by magnesium sulfate, and less by sodium chloride. As the temperature rose the relative decrease in solubility caused by added salt became smaller. Surprisingly, sodium sulfate solutions, showing little effect at 25°C, sharply raised the solubility as the temperature increased to 350°C. Plots of the logarithms of derived activity coefficients against molalities of added salt gave approximately straight lines. These plots allow simple predictions of amorphous silica solubility in single salt solutions.  相似文献   

2.
The solubility of quartz in 2, 3, and 4 molal NaCl was measured at 350°C and pressures ranging from 180 to 500 bars. The molal solubility in each of the salt solutions is greater than that in pure water throughout the measured pressure range, with the ratio of solubility in NaCl solution to solubility in pure water decreasing as pressure is increased. The measured solubilities are significantly higher than solubilities calculated using a simple model in which the water activity in NaCl solutions decreases either in proportion to decreasing vapor pressure of the solution as salinity is increased or in proportion to decreasing mole fraction of water in the solvent.  相似文献   

3.
Capacitive deionization has been developed as a promising desalination alternative for removing ions from aqueous solutions. In this study, the evaluation of capacitive performance was carried out by galvanostatic charge/discharge and cyclic voltammetry experiments. The good capacitive and electrosorption behaviors suggest carbon aerogel not only treated as an electrical double layer capacitor, but also as a potential electrode in capacitive deionization processes. Also, the capacitive deionization characteristics indicate that electrosorption/regeneration can be controlled by polarization and depolarization of each electrode. It implies that sodium and chloride ions are electrostatically held to form electrical double layer on the surface of charged electrodes. The electrosorption performance at different applied voltages and solution concentrations was investigated. It is found that the removal of sodium chloride increases with increasing applied voltage and solution concentration, resulting from stronger electrostatic interactions, higher concentration gradient, and less double layer overlapping effect. Based on Langmuir isotherm, the equilibrium electrosorption capacity at 1.2 V is determined as 270.59 μmol/g. Under this condition, due to the presence of micropores associated with the double layer overlapping, the effective surface area for electrosorption of ions at 1.2 V is estimated in the range of 12.18–14.25 % of the Brunauer–Emmett–Teller surface area. The results provide a fundamental understanding of electrosorption of ions and help promoting capacitive deionization technology for water purification and desalination.  相似文献   

4.
Solubilities of methane in multisalt solutions at 550 psia and 25°C can be predicted from single-salt salting coefficients. The ionic strength contribution of the ith salt, Ii, is multiplied by its molal salting coefficient, kmi, in the following summation over all salts:
logMoMs = ∑i kmiIi
where mo and ms are molal methane solubilities in distilled water and the salt solution, respectively, at the T, P and methane fugacity of interest.This equation predicts methane solubility in multisalt brines containing Na+, K+, Mg+2, Ca+2, Cl?, SO4?2 and CO3?2 ions. kmi values reported by Stoessell and Byrne (1982b) can be used in solubility predictions in brines at earth surface conditions. Prediction in reservoir brines would require determination of kmi, for the different salts at reservoir temperatures and pressures.  相似文献   

5.
《Geochimica et cosmochimica acta》1999,63(19-20):3487-3497
The solubility of iron(III) hydroxide as a function of pH was investigated in NaCl solutions at different temperatures (5–50°C) and ionic strengths (0–5 M). Our results at 25°C and 0.7 M in the acidic range are similar to the solubility in seawater. The results between 7.5 to 9 are constant (close to 10−11 M) and are lower than those found in seawater (>10−10) in this pH range. The solubility subsequently increases as the pH increases from 9 to 12. The solubility between 6 and 7.5 has a change of slope that cannot be accounted for by changes in the speciation of Fe(III). This effect has been attributed to a solid-state transformation of Fe(OH)3 to FeOOH. The effect of ionic strength from 0.1 to 5 M at a pH near 8 was quite small. The solubility at 5°C is considerably higher than at 25°C at neutral pH range. The effects of temperature and ionic strength on the solubility at low and high pH have been attributed to the effects on the solubility product and the formation of FeOH2+ and Fe(OH)4. The results have been used to determine the solubility products of Fe(OH)3, K1Fe(OH)3 and hydrolysis constants, β11, β12, β13, and β14 as a function of temperature (T, K) and ionic strength (I):log K1Fe(OH)3 = −13.486 − 0.1856 I0.5 + 0.3073 I + 5254/T (σ = 0.08)log β11 = 2.517 − 0.8885 I0.5 + 0.2139 I − 1320/T (σ = 0.03)log β12 = 0.4511 − 0.3305 I0.5 − 1996/T (σ = 0.1)log β13 = −0.2965 − 0.7881 I0.5 − 4086/T (σ = 0.6)log β14 = 4.4466 − 0.8505 I0.5 − 7980/T. (σ = 0.2)Both strong ethylenediaminetetraacetic acid and weak (HA) organic ligands greatly affect iron solubility. The additions of ethylenediaminetetraacetic acid and humic material were shown to increase the solubility near pH 8. The higher solubility of Fe(III) in seawater compared to 0.7 M NaCl may be caused by natural organic ligands.  相似文献   

6.
The solubility of amorphous silica was obtained in aqueous sodium nitrate solutions up to six molal and at temperatures from 25 to 300°C. It was expected that solubilities in aqueous sodium chloride solutions would be similar. At 25°C, the solubility of amorphous silica is lowered from that in water to 0.00086 m in 6.12 m sodium nitrate, or a decrease of 60%. At 300°C, the corresponding decrease is only 27% from a solubility of 0.0269 m in H2O. From the change in solubility with temperature at a given constant molality of sodium nitrate, the molal heat of solution over the range, 100 to 300°C, increases from + 2.93 kcal mol?1 in water to + 3.64 kcal mol?1 in 6m sodium nitrate. The value approaches a constant of +3.8 kcal mol?1 as sodium nitrate approaches saturation at 10.8 molal.  相似文献   

7.
The solubility of amorphous silica was measured at 25°C in ten separate sets of aqueous salt solutions—potassium chloride, potassium nitrate, sodium chloride, lithium chloride, lithium nitrate, magnesium chloride, calcium chloride, magnesium sulfate, sodium bicarbonate and sodium sulfate. The concentrations of the salts were varied from zero to saturation with both salt and amorphous silica. With increasing concentration of salt, the solubility of amorphous silica always decreased as expected from an average value of 0.00218 m in water. Nevertheless, the extent of decrease differed greatly from a 6% decrease in a solution saturated with NaHCO3 to a 95.7% decrease in a solution saturated with CaCl2. A striking correlation was observed: In the 1-1 and 2-1 electrolyte salt solutions at a given molality the effect on the solubility of silica depended upon the cation in the order Mg2+, Ca2+ > Li+ > Na+ > K +.  相似文献   

8.
Nanofiltration of ternary mixtures of sodium chloride and aqueous solutions of Reactive Black-5 was studied in two different modules, namely, flat sheet and spiral wound over a wide range of operating conditions. Hydrophilized polyamide membrane with molecular weight cutoff of 150 was used for the experiments. Combined effect of dye and salt concentration, trans-membrane pressure drop, initial pH of feed solution on the permeate flux, and observed retention were investigated. Extent of color removal, chemical oxygen demand (COD), total dissolved solid (TDS), and conductivity were determined to assess performance of the membrane. The experimental results showed that both the permeate flux and observed retention decreased with increase in dye as well as salt concentration in the feed. Permeate fluxes were lower at higher pH values. Substantial removal of color was achieved in the nanofiltration experiments with a marked reduction in COD and TDS. The process allowed the production of permeate stream with great reutilization possibilities.  相似文献   

9.
Solubilities of amorphous silica in several aqueous electrolyte solutions up to 300°C (Marshall, 1980a; Chen and Marshall, 1982) fitted the Setchénow equation, log(s0s) = D·m as described earlier (Marshall, 1980b) where s0 and s are molal solubilities of silica in pure water and salt solution, respectively, m is the molality of salt, and D is a proportionality constant related to the particular salt and temperature. It is now shown that, to a first approximation, the D parameters for various salts at the same temperature are additive. For instance, D(NaCl) ? D(KCl) = D(NaNO3) ? D(KNO3) or D(MgSO4) = D(MgCl2) + D(Na2S04) ? 2D(NaCl). It also follows that (s0s) = i(Dimi).This additivity principle was used to estimate amorphous silica solubilities in mixed NaCl-Na2SO4, NaCl-MgCl2, NaCl-MgSO4, Na2SO4-MgCl2, Na2SO4-MgSO4, and MgCl2-MgSO4 aqueous solutions up to 300°C. The method produces results that agree reasonably well with experimental values and would be useful for predicting silica solubilities, for example, in seawater and its hydrothermal concentrates and in geothermal energy applications.  相似文献   

10.
The solubility of the high grade pelite assemblage albite+K-feldspar+andalusite+quartz at 650 °C and 2 kbar was determined in aqueous solutions over a total chloride range of 0.01–3 mCltot using rapid-quench hydrothermal technique. The concentration of Na, K, Si, and Al was determined in the fluid phase after quench. The K/Na ratio was determined by approaching the equilibrium from below and above. It is 0.34 at low chloride concentrations and decreases slightly to 0.31 with increasing total chloride. Silica and aluminum concentrations were determined only from undersaturation. The silica solubility is found to be independent of chloride concentration and is 0.13 molal. Aluminum is nearly independent of chloride concentration decreasing only slightly from 0.0015 to 0.0007 molal. Comparison of the experimental data with thermodynamic model calculations demonstrates that the silica concentrations are well predicted, while significant differences exist between individual databases for Al speciation and its total concentration. Al concentrations are underestimated by up to 10 to 15 orders of magnitude using the SUPCRT92 database. Predicted K/Na ratios are underestimated by up to 30%. The best predictions achieved for this simplified high-grade pelite assemblage are those using the SUPCRT92 database with revised thermodynamic data for feldspars and K- and Na-species (J. Phys. Chem. Ref. Data 24 (1995) 1401) and additional Al-species (Am. J. Sci. 295 (1995) 1255; Geochim. Cosmochim. Acta 61 (1997) 2175). The use of ideal mixing for neutral complexes in combination with the extended Debye–Hückel activity model for the charged species yields the most compatible speciation model.  相似文献   

11.
《Applied Geochemistry》1999,14(3):319-331
Despite the widespread occurrence of chlorophenols as groundwater contaminants, the aqueous solubilities of the chlorophenols are not well-characterized. In this study, the authors report the solubility of 2,4,6-trichlorophenol (2,4,6-TCP) and pentachlorophenol (PCP) based on experiments conducted as a function of pH, ionic strength and temperature, and a speciation-based model for estimating the solubilities of other chlorophenols is derived.Narrow constraints on the aqueous solubility of both chlorophenols were made possible by conducting experiments in pure water and in 0.1 NaCl at 25°C and 55°C, from both under- and over-saturation. The solubility of the chlorophenols is pH-independent under low pH conditions, but at higher pH values it increases with increasing pH. The concentration of the protonated chlorophenol species determines the low pH solubility and, at 25°C, the log molality of the protonated species of 2,4,6-TCP is −2.8±0.1, whereas for PCP the value is −5.1±0.3. Two other properties were used to model the solubility as a function of pH: the acidity constant (Ka) and the stability constant for a Na-chlorophenolate complex. The pKa and Na-chlorophenolate log stability constant values that best fit the solubility data for 2,4,6-TCP are 6.1±0.3 and 1.0±0.5, respectively; the values for PCP are 4.5±0.3 and 1.0±0.5, respectively. At 55°C, the log molality of protonated PCP increases to −4.7±0.2 and the pKa and log stability constant value are 4.1±0.3 and 0.9±0.5, respectively. The log stability constant for NaPCP° at 55°C is equal to 0.9±0.5.The experimental solubility measurements are used to construct a theoretical model which defines the solubility of a chlorophenol in terms of its acidity constant and its low pH minimum solubility. This approach enables estimations of the aqueous solubility of other chlorophenol molecules as a function of pH, ionic strength and temperature. In order to facilitate application of this model to other chlorophenol molecules, the authors compile and critically review the solubility data for 20 chlorophenols from the literature. The results of the experiments and review enable estimations of chlorophenol solubilities under a wide range of conditions of environmental interest.  相似文献   

12.
The degree of polymerization of silica in aqueous solution is calculated from quartz and cristobalite solubility and the free energy of the polymorphic transition. At temperatures below 130° C, the existing solubility data are not all compatible with a simple monomeric solute model. A combination of monomeric and tetrameric silica species is shown to be compatible with most of the chemical data on silica solutions. The analysis indicates that the low temperature solubilities of quartz and/or cristobalite must be more accurately defined or that the presence of polymeric silica in solution has been overlooked.  相似文献   

13.
This study, initiated to investigate the effect of additions of surface active reagents on the wet-grinding of ores, has shown that improved grinding can be obtained at certain levels of amine concentration and pH. At some other levels, amine addition can also produce deleterious effects. The observed effects are discussed with the help of data obtained for flocculation and zeta potential of corresponding quartz/amine systems and those normally obtained for flotation. In addition, results of a photographic study of the milling process has been helpful in the study of the above effects. Most importantly, microscopic examination of the ground product (treated with dispersant and sieved) has clearly shown the possibilities for the existence of major experimental artifacts in the past works. Examination of the product under microscope is necessary to guarantee dispersion, especially if the system has been contacted with a surfactant or polymer.  相似文献   

14.
The nucleation kinetics of binary solid solutions, with general formula BxC1−xA, crystallising from aqueous solution can be described using a generalised expression for the nucleation rate: the function, J(x), in which supersaturation, interfacial free energy and other parameters of the classical nucleation rate equation are considered as functions of the solid composition. As an example, we studied the behaviour of such J(x) functions for the case of the (Ba,Sr)SO4 and (Ba,Sr)CO3 solid solutions. J(x) functions are very sensitive to slight changes in the composition of the aqueous solution, which result in strong modifications of the nucleation kinetics. The implications of the relationship between supersaturation and nucleation rate functions for the general nucleation behaviour in solid solution-aqueous solution (SS-AS) systems are discussed. Finally, we present a method for constructing non-equilibrium Roozeboom diagrams based on the nucleation kinetics in SS-AS systems. Our Roozeboom diagrams calculated for different departures from equilibrium conditions are consistent with previous experimental work and they can be used to predict actual distribution coefficients.  相似文献   

15.
Based on the expert review of literature data on the thermodynamic properties of species in the Cl-Pd system, stepwise and overall stability constants are recommended for species of the composition [PdCl n ]2 ? n , and the standard electrode potential of the half-cell PdCl 4 2? /Pd(c) is evaluated at E 298,15° = 0.646 ± 0.007 V, which corresponds to Δ f G 298.15° = ?400.4 ± 1.4 kJ/mol for the ion PdCl 4 2? (aq). Derived from calorimetric data, Δ f H 298.15° PdCl 4 2? (aq) = ?524.6 ± 1.6 kJ/mol and Δ f H 298.15° Pd2+(aq) = 189.7 ± 2.6 kJ/mol. The assumed values of the overall stability constant of the PdCl 4 2? ion and the standard electrode potential of the PdCl 4 2? /Pd(c) half-cell correspond to Δ f G 298.15° = 190.1 ± 1.4 kJ/mol and S 298.15° = ?94.2 ± 10 J/(mol K) for the Pd2+(aq) ion.  相似文献   

16.
山区河流的河床结构是来水来沙与河床相互作用的产物,对河床阻力及输沙率的计算具有重要意义。为更科学地表征河床结构的细节特征,采用2017年2次考察金沙江小江流域干支流7个河段的地形测量数据,提出河床结构表征的4个新量纲一数(凹凸数、平均凹度、平均凸度和凹凸度)及其计算方法。新参数的计算原理简单而直观,能够从多角度表征河床结构发育程度及其形态特征,而且当河床结构发育程度较低时,凹凸度的表征结果更具有区分度。结果表明:新参数表征结果与前人单一参数的计算结果具有一致性;吊嘎河下游、陶家小河和清水沟的河床结构凹凸程度大,河床凸起"高凸",凹陷"深陡",河床阻力大,输沙率低;吊嘎河上游、小江、蒋家沟和蓝泥坪沟的河床结构凹凸程度小,河床凸起"低平",凹陷"浅缓",河床阻力小,输沙率大。  相似文献   

17.
Using the available pressure–volume–temperature equation of state of sodium chloride, we show that the self-diffusion coefficients of sodium and chloride in sodium chloride as a function of temperature and pressure can be successfully reproduced in terms of bulk elastic and expansivity data. We use a thermodynamic model that interconnects point-defect parameters with bulk properties. Our calculated diffusion coefficients and point-defect parameters, including activation enthalpy, activation entropy, and activation volume, well agree with reported experimental results when uncertainties are considered. Furthermore, the ionic conductivity of sodium chloride inferred from our predicted diffusivities of sodium through the Nernst–Einstein equation is compared with previous experimental data.  相似文献   

18.
Solubility of gold in hydrothermal chloride solutions   总被引:1,自引:0,他引:1  
The solubility of gold has been determined in chloride solutions in the temperature range 300–500°C corresponding to the inferred range for the formation of “hypothermal” gold deposits. The solutions were buffered with respect to HC1 by a K-feldspar-muscovite-quartz assemblage, and to oxygen by the assemblage haematite-magnetite. Solubilities increased rapidly with temperature from about 10 p.p.m. at 300°C, to 500 and 1000 p.p.m. at 500°C at 1000 and 2000 bar, respectively.These results are discussed in terms of possible solution species in this high-temperature region where molecular behaviour predominates in the solution equilibria. It is suggested that gold and other metals may be transported to the site of ore-deposition in undersaturated high-temperature solutions. Ore deposition may take place at lower temperatures where ionic gold chloride or sulfide species dominate the chemistry of the ore solutions.  相似文献   

19.
Cementation of copper from zinc containing copper solutions using metallic zinc was studied in this work. The effect of copper, zinc and ammonium chloride concentration, stirring speed, pH and temperature on the cementation of copper was determined. Cementation rate increased with initial copper concentration, stirring speed and temperature. pH variation from 1 to 4 increased the cementation rate but at higher pH, the rate was not significantly effected. The cementation rate of copper increased with Zn2+ ion concentration. However, the rate of this rise was slightly less compared to the rise that occurred in the Zn2+ ions free copper solution.  相似文献   

20.
Naturally occurring pyroclastic materials, quartz-rich tuffs (Qz) and stellerite tuffs, were evaluated for their capacities to remove As(V) from aqueous solutions. The mechanism of As(V) uptake was evaluated using sequential extraction of As(V)-loaded adsorbent which entailed that the plausible removal mechanism is sorption to short-range ordered hydrous oxides of iron and aluminum. In addition, buffering effects of adsorbents could form favorable charges upon them through hydrolysis of amphoteric oxides, enhancing the performance of sorption. The influence of anions co-existing with As(V) in water such as carbonate, bicarbonate, nitrate, chloride, phosphate, and sulfate was studied in a batch sorption process. The impact of most anions on As(V) removal was found to be negligible except phosphate. The sorption behavior well fitted to Langmuir and Freundlich models. Estimated maximum sorption capacities of 0.42 and 0.23 mg/L were observed using quartz-rich tuffs and stellerite tuffs, respectively. As(V) concentration of 0.8 mg/L was easily decreased to below the drinking water standard of 0.01 mg/L using Qz adsorbent, whereas 0.1 mg/L As(V) decreased to below this limit upon the use of stellerite tuffs under similar conditions. The buffering capacity of quartz-rich tuffs and stellerite tuffs induced a pH increase to 5.76 and 5.40, respectively, from initial pH of 3.50, which will incur an important asset in real applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号